Journal articles on the topic 'Tumor necrosis factor – Receptors – Physiological effect'

To see the other types of publications on this topic, follow the link: Tumor necrosis factor – Receptors – Physiological effect.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tumor necrosis factor – Receptors – Physiological effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wilson, Michael R., Michael E. Goddard, Kieran P. O'Dea, Sharmila Choudhury, and Masao Takata. "Differential roles of p55 and p75 tumor necrosis factor receptors on stretch-induced pulmonary edema in mice." American Journal of Physiology-Lung Cellular and Molecular Physiology 293, no. 1 (July 2007): L60—L68. http://dx.doi.org/10.1152/ajplung.00284.2006.

Full text
Abstract:
Ventilator-induced lung injury plays a crucial role in the outcome of patients with acute lung injury. Previous studies have shown a role for the cytokine tumor necrosis factor-α (TNF) in stretch-induced alveolar neutrophil recruitment, but the involvement of TNF in stretch-induced pulmonary edema is unclear. We investigated the effects of TNF through its individual p55 and p75 receptors on early pulmonary edema formation during high stretch ventilation, before neutrophil infiltration. Anesthetized wild-type or TNF receptor single/double knockout mice were ventilated with high tidal volume (∼38 ml/kg) for 2 h or until they developed arterial hypotension. Pulmonary edema was assessed by physiological parameters including respiratory mechanics and blood gases, and by lavage fluid protein, lung wet:dry weight ratio, and lung permeability measurements using fluorescence-labeled albumin. High stretch ventilation in wild-type and TNF receptor double knockout animals induced similar pulmonary edema, and only 25–30% of mice completed the protocol. In contrast, the p55 receptor knockout mice were strongly protected from edema formation, with all animals completing the protocol. Myeloperoxidase assay indicated that this protective effect was not associated with decreased pulmonary neutrophil sequestration. The p75 receptor knockout mice, however, displayed increased susceptibility to edema formation, and no animals survived the full 2 h. These results demonstrate a novel role for TNF signaling (independent from its effects on neutrophil recruitment) specifically through the p55 receptor, in promoting high stretch-induced pulmonary edema, whereas p75 signaling may play an opposing role.
APA, Harvard, Vancouver, ISO, and other styles
2

Greenberg, S., J. Xie, Y. Wang, B. Cai, J. Kolls, S. Nelson, A. Hyman, W. R. Summer, and H. Lippton. "Tumor necrosis factor-alpha inhibits endothelium-dependent relaxation." Journal of Applied Physiology 74, no. 5 (May 1, 1993): 2394–403. http://dx.doi.org/10.1152/jappl.1993.74.5.2394.

Full text
Abstract:
Tumor necrosis factor-alpha (TNF-alpha) stimulates nitric oxide (NO) in vascular endothelium by induction of the enzyme NO synthase II (NOS II). We examined the effects of TNF-alpha on 1) endothelium-dependent (EDR) and endothelium-independent (EIR) relaxation and 2) contraction of bovine intralobar pulmonary arteries (BPA) and veins (BPV) in vitro. Acetylcholine (ACh), bradykinin (BK), histamine, and A23187 produced EDR of BPA contracted with a 50% effective concentration of U-46619 (15 nM), because relaxation was abolished by endothelium-rubbing and attenuated by L-NG-mono-methylarginine (L-NMMA; 300 microM). TNF-alpha (0.00417, 0.0417, 0.417, and 1.25 micrograms/ml) incubated with BPA for 60 min inhibited EDR of the BPA to ACh, BK, and histamine. The effects of TNF required 30 min for onset. Recovery of EDR occurred 3–4 h after washout of TNF-alpha. Pentoxifylline (1 microM) did not affect ACh-induced EDR but selectively reversed TNF-alpha-mediated inhibition of ACh-induced EDR. TNF-alpha-mediated inhibition of EDR was not reversible by L-NMMA, an inhibitor of NOS I and NOS II, the cyclooxygenase inhibitor ibuprofen, or CV-3908 (1 microM), a platelet-activating factor antagonist. The inhibitory effect of TNF-alpha on EDR was not mediated by nonspecific sensitization of the endothelium to human protein because recombinant human granulocyte colony-stimulating factor (10, 50, and 500 x 10(3) U/ml) did not affect EDR of BPA. The effect of TNF-alpha was specific for release of NO from the endothelium of BPA because TNF-alpha did not affect 1) EDR of BPV to ACh, BK, or ATP; 2) EIR of BPA or BPV to nitroprusside; and 3) contraction of either BPA or BPV to KCl, U-46619, histamine, norepinephrine, or serotonin. Thus TNF-alpha appears to selectively inhibit receptor-mediated EDR and NO release in BPA. TNF-alpha-mediated inhibition of EDR differs from that of L-arginine-based inhibitors and may represent an endogenous physiological mechanism of regulation of NO in the endothelium.
APA, Harvard, Vancouver, ISO, and other styles
3

Schuld, A., J. Mullington, D. Hermann, D. Hinze-Selch, T. Fenzel, F. Holsboer, and T. Pollmächer. "Effects of granulocyte colony-stimulating factor on night sleep in humans." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 276, no. 4 (April 1, 1999): R1149—R1155. http://dx.doi.org/10.1152/ajpregu.1999.276.4.r1149.

Full text
Abstract:
Numerous animal studies suggest that cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) mediate increased sleep amount and intensity observed during infection and are, moreover, involved in physiological sleep regulation. In humans the role of cytokines in sleep-wake regulation is largely unknown. In a single-blind, placebo-controlled study, we investigated the effects of granulocyte colony-stimulating factor (G-CSF, 300 μg sc) on the plasma levels of cytokines, soluble cytokine receptors, and hormones as well as on night sleep. G-CSF did not affect rectal temperature or the plasma levels of cortisol and growth hormone but did induce increases in the plasma levels of IL-1 receptor antagonist and both soluble TNF receptors within 2 h after injection. In parallel, the amount of slow-wave sleep and electroencephalographic delta power were reduced, indicating a lowered sleep intensity. We conclude that G-CSF suppresses sleep intensity via increased circulating amounts of endogenous antagonists of IL-1β and TNF-α activity, suggesting that these cytokines are involved in human sleep regulation.
APA, Harvard, Vancouver, ISO, and other styles
4

Ravid, A., E. Rubinstein, A. Gamady, C. Rotem, UA Liberman, and R. Koren. "Vitamin D inhibits the activation of stress-activated protein kinases by physiological and environmental stresses in keratinocytes." Journal of Endocrinology 173, no. 3 (June 1, 2002): 525–32. http://dx.doi.org/10.1677/joe.0.1730525.

Full text
Abstract:
In addition to its known effects on keratinocyte proliferation and differentiation, the hormonal form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), has been shown to protect keratinocytes from UV- and chemotherapy-induced damage. Epidermal keratinocytes contain both the machinery needed to produce 1,25(OH)(2)D(3) and vitamin D receptors. The activation of the stress-activated protein kinases (SAPKs), such as c-Jun N-terminal kinase (JNK) and p38, is an early cellular response to stress signals and an important determinant of cell fate. This study examines whether modulation of these SAPKs is associated with the effects of 1,25(OH)(2)D(3) on keratinocytes under stress. HaCaT keratinocytes were exposed to heat shock, hyperosmotic concentrations of sorbitol, the epidermal growth factor receptor tyrosine kinase inhibitor AG1487, the pro-inflammatory cytokine tumor necrosis factor alpha, and H(2)O(2). These stresses activated both SAPKs. Pretreatment with 1,25(OH)(2)D(3) inhibited the activation of JNK by all stresses and the activation of p38 by heat shock, AG1478 and tumor necrosis factor alpha. Under the same conditions, treatment with 1,25(OH)(2)D(3) protected HaCaT keratinocytes from cytotoxicity induced by exposure to H(2)O(2) and hyperosmotic shock. The effect of 1,25(OH)(2)D(3) was dose-dependent, already apparent at nanomolar concentrations, and time-dependent, maximal after a 24-h pre-incubation. We suggest that inhibition of SAPK activation may account for some of the well-documented protective effects of 1,25(OH)(2)D(3) on epidermal cells during exposure to UV or chemotherapy and may also be related to the anti-inflammatory actions of the hormone in skin.
APA, Harvard, Vancouver, ISO, and other styles
5

Mamińska, Agnieszka, Anna Bartosik, Magdalena Banach-Orłowska, Iwona Pilecka, Kamil Jastrzębski, Daria Zdżalik-Bielecka, Irinka Castanon, et al. "ESCRT proteins restrict constitutive NF-κB signaling by trafficking cytokine receptors." Science Signaling 9, no. 411 (January 19, 2016): ra8. http://dx.doi.org/10.1126/scisignal.aad0848.

Full text
Abstract:
Because signaling mediated by the transcription factor nuclear factor κB (NF-κB) is initiated by ligands and receptors that can undergo internalization, we investigated how endocytic trafficking regulated this key physiological pathway. We depleted all of the ESCRT (endosomal sorting complexes required for transport) subunits, which mediate receptor trafficking and degradation, and found that the components Tsg101, Vps28, UBAP1, and CHMP4B were essential to restrict constitutive NF-κB signaling in human embryonic kidney 293 cells. In the absence of exogenous cytokines, depletion of these proteins led to the activation of both canonical and noncanonical NF-κB signaling, as well as the induction of NF-κB–dependent transcriptional responses in cultured human cells, zebrafish embryos, and fat bodies in flies. These effects depended on cytokine receptors, such as the lymphotoxin β receptor (LTβR) and tumor necrosis factor receptor 1 (TNFR1). Upon depletion of ESCRT subunits, both receptors became concentrated on and signaled from endosomes. Endosomal accumulation of LTβR induced its ligand-independent oligomerization and signaling through the adaptors TNFR-associated factor 2 (TRAF2) and TRAF3. These data suggest that ESCRTs constitutively control the distribution of cytokine receptors in their ligand-free state to restrict their signaling, which may represent a general mechanism to prevent spurious activation of NF-κB.
APA, Harvard, Vancouver, ISO, and other styles
6

Pamir, Nathalie, Timothy S. McMillen, Karl J. Kaiyala, Michael W. Schwartz, and Renée C. LeBoeuf. "Receptors for Tumor Necrosis Factor-α Play a Protective Role against Obesity and Alter Adipose Tissue Macrophage Status." Endocrinology 150, no. 9 (May 28, 2009): 4124–34. http://dx.doi.org/10.1210/en.2009-0137.

Full text
Abstract:
Abstract TNF-α signals through two receptors, TNFR1 and TNFR2. Our goals were: 1) determine the role of TNFRs in obesity and metabolic disease and 2) investigate whether TNFRs contribute to the link between obesity and adipose tissue macrophage infiltration and polarization. R1−/−R2−/− (RKO) and wild-type (WT) mice were fed standard chow or a high-fat/high-sucrose diet (HFHS) over 14 wk. Body composition, food intake, and energy expenditure were measured. Oral glucose tolerance and insulin sensitivity tests assessed glucose homeostasis. Adipose tissue and systemic inflammatory status were evaluated by quantifying plasma adipokine levels and macrophage-specific gene expression in fat. RKO mice were heavier (10%) and fatter (18%) than WT controls at 4 wk of age and were 26% heavier and 50% fatter than WT after 14 wk of HFHS diet feeding. Age- and diet-adjusted 24-h oxygen consumption, activity, and respiratory exchange ratio were significantly reduced in RKO mice. Obese RKO mice were markedly insulin resistant, suggesting that intact TNFR signaling is not required for the effect of obesity to impair glucose metabolism. Adipose tissue from HFHS-fed RKO mice exhibited increased macrophage infiltration, but compared with WT mice, macrophage phenotypic markers featured a predominance of antiinflammatory M2 over proinflammatory M1 cells. TNFRs play a physiological role to limit body weight and adiposity by modestly increasing metabolic rate and fatty acid oxidation, and they are required for obesity-induced activation of adipose tissue macrophages. Despite these effects, TNFRs are not required for obesity-induced insulin resistance.
APA, Harvard, Vancouver, ISO, and other styles
7

Caldwell, J., and SG Emerson. "Interleukin-1 alpha upregulates tumor necrosis factor receptors expressed by a human bone marrow stromal cell strain: implications for cytokine redundancy and synergy." Blood 86, no. 9 (November 1, 1995): 3364–72. http://dx.doi.org/10.1182/blood.v86.9.3364.bloodjournal8693364.

Full text
Abstract:
To explore the biochemical and physiologic basis of the overlapping effects of interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor alpha (TNF-alpha) on myeloid cytokine production, we have studied the dynamics of granulocyte colony-stimulating factor (G-CSF) and granulocyte-monocyte colony-stimulating factor (GM-CSF) production as well as IL-1 receptor and TNF receptor expression in a clonally derived bone marrow stromal cell strain (CDCL). IL-1 alpha and TNF alpha act in a synergistic manner to stimulate G-CSF and GM-CSF production by CDCL, resulting in an increase in CSF secretion that is 250-fold greater than that observed with either cytokine alone. This synergism in protein secretion is paralleled by synergistic increases the steady-state level of GM- and G-CSF mRNA, with supra-additive levels achieved by 24 hours. Coincident with this synergistic induction of myeloid CSFs, treatment of CDCL cells with IL-1 alpha induces a 300% increase in the expression of TNF receptors. IL-1 alpha induction of TNF receptors reaches a peak after 6 hours and gradually returns to baseline level by 24 hours. IL-1 alpha does not affect TNF receptor ligand binding affinity. A kinetic study comparing IL-1/TNF synergistic induction of growth factor secretion with IL-1 alpha induction of TNF receptors shows that these events occur in parallel. In contrast with the induction of TNF receptors by IL-1 alpha, treatment with TNF alpha has no effect on either the number of IL-1 receptors expressed by CDCL cells or IL-1 receptor ligand binding affinity. Brief treatment of IL-1 alpha/TNF alpha-stimulated CDCL cells with cycloheximide before receptor induction reduces the synergistic increase in growth factor mRNA by 40% to 60% compared with cells not treated with CHX. Taken together, these results raise the possibility that IL-1 alpha cross-induction of TNF receptors may contribute to the biochemical mechanisms underlying the synergistic stimulation of G-CSF and GM-CSF production by IL-1 alpha and TNF alpha.
APA, Harvard, Vancouver, ISO, and other styles
8

Short, Sarah M., Gregory A. Talbott, and Rudolph L. Juliano. "Integrin-mediated Signaling Events in Human Endothelial Cells." Molecular Biology of the Cell 9, no. 8 (August 1998): 1969–80. http://dx.doi.org/10.1091/mbc.9.8.1969.

Full text
Abstract:
Vascular endothelial cells are important in a variety of physiological and pathophysiological processes. The growth and functions of vascular endothelial cells are regulated both by soluble mitogenic and differentiation factors and by interactions with the extracellular matrix; however, relatively little is known about the role of the matrix. In the present study, we investigate whether integrin-mediated anchorage to a substratum coated with the extracellular matrix protein fibronectin regulates growth factor signaling events in human endothelial cells. We show that cell adhesion to fibronectin and growth factor stimulation trigger distinct initial tyrosine phosphorylation events in endothelial cells. Thus, integrin-dependent adhesion of endothelial cells leads to tyrosine phosphorylation of both focal adhesion kinase and paxillin, but not of several growth factor receptors. Conversely, EGF stimulation causes receptor autophosphorylation, with no effect on focal adhesion kinase or paxillin tyrosine phosphorylation. Adhesion to fibronectin, in the absence of growth factors, leads to activation of MAPK. In addition, adhesion to fibronectin also potentiates growth factor signaling to MAPK. Thus, polypeptide growth factor activation of MAPK in anchored cells is far more effective than in cells maintained in suspension. Other agonists known to activate MAPK were also examined for their ability to activate MAPK in an anchorage-dependent manner. The neuropeptide bombesin, the bioactive lipid lysophosphatidic acid (LPA), and the cytokine tumor necrosis factor α, which signal through diverse mechanisms, were all able to activate MAPK to a much greater degree in fibronectin-adherent cells than in suspended cells. In addition, tumor necrosis factor α activation of c-Jun kinase (JNK) was also much more robust in anchored cells. Together, these data suggest a cooperation between integrins and soluble mitogens in efficient propagation of signals to downstream kinases. This cooperation may contribute to anchorage dependence of mitogenic cell cycle progression.
APA, Harvard, Vancouver, ISO, and other styles
9

Tannenbaum, C. S., J. A. Major, and T. A. Hamilton. "IFN-gamma and lipopolysaccharide differentially modulate expression of tumor necrosis factor receptor mRNA in murine peritoneal macrophages." Journal of Immunology 151, no. 12 (December 15, 1993): 6833–39. http://dx.doi.org/10.4049/jimmunol.151.12.6833.

Full text
Abstract:
Abstract Expression of TNF receptor (TNFR) mRNA has been examined in murine peritoneal macrophages stimulated with LPS and/or IFN-gamma. LPS markedly enhanced expression of a heterogenous population of mRNA, which hybridized with a cDNA encoding the type II TNFR. mRNA expression was optimally induced by 4 to 8 h and returned to baseline by 24 h after stimulation. Interestingly, though IFN-gamma can synergize with LPS for the expression of TNF-alpha, it abrogated the LPS-mediated enhancement of type II TNFR in a dose-dependent fashion. IFN-alpha, though less effective, had a qualitatively comparable effect. These effects were selective for the type II TNFR because levels of mRNA encoding the type I TNFR did not vary appreciably with any of the treatments described. The effects of IFN-gamma on LPS-mediated TNFR expression were dependent on the sequence of exposure; pretreatment with IFN-gamma was most effective at blocking response to LPS, whereas IFN-gamma added 1 h after initiation of LPS treatment had little or no effect. The effects of both LPS and IFN-gamma on type II TNFR expression were mediated at least in part by modulation of transcription. The effects of both LPS and IFN-gamma were also independent of protein synthesis because inclusion of cycloheximide in the treatment protocol did not abrogate either the inductive or the suppressive effects. These findings suggest that IFN-gamma and LPS modulate the physiologic action of TNF through complex mechanisms involving effects on the transcription of TNF-alpha itself and on receptors through which it may act in autocrine or paracrine fashion.
APA, Harvard, Vancouver, ISO, and other styles
10

Guarnieri, Giulia, Erica Sarchielli, Paolo Comeglio, Erika Herrera-Puerta, Irene Piaceri, Benedetta Nacmias, Matteo Benelli, et al. "Tumor Necrosis Factor α Influences Phenotypic Plasticity and Promotes Epigenetic Changes in Human Basal Forebrain Cholinergic Neuroblasts." International Journal of Molecular Sciences 21, no. 17 (August 25, 2020): 6128. http://dx.doi.org/10.3390/ijms21176128.

Full text
Abstract:
TNFα is the main proinflammatory cytokine implicated in the pathogenesis of neurodegenerative disorders, but it also modulates physiological functions in both the developing and adult brain. In this study, we investigated a potential direct role of TNFα in determining phenotypic changes of a recently established cellular model of human basal forebrain cholinergic neuroblasts isolated from the nucleus basalis of Meynert (hfNBMs). Exposing hfNBMs to TNFα reduced the expression of immature markers, such as nestin and β-tubulin III, and inhibited primary cilium formation. On the contrary, TNFα increased the expression of TNFα receptor TNFR2 and the mature neuron marker MAP2, also promoting neurite elongation. Moreover, TNFα affected nerve growth factor receptor expression. We also found that TNFα induced the expression of DNA-methylation enzymes and, accordingly, downregulated genes involved in neuronal development through epigenetic mechanisms, as demonstrated by methylome analysis. In summary, TNFα showed a dual role on hfNBMs phenotypic plasticity, exerting a negative influence on neurogenesis despite a positive effect on differentiation, through mechanisms that remain to be elucidated. Our results help to clarify the complexity of TNFα effects in human neurons and suggest that manipulation of TNFα signaling could provide a potential therapeutic approach against neurodegenerative disorders.
APA, Harvard, Vancouver, ISO, and other styles
11

Frisch, Carolin Maria, Katrin Zimmermann, Pia Zilleßen, Alexander Pfeifer, Kurt Racké, and Peter Mayer. "Non-small cell lung cancer cell survival crucially depends on functional insulin receptors." Endocrine-Related Cancer 22, no. 4 (June 25, 2015): 609–21. http://dx.doi.org/10.1530/erc-14-0581.

Full text
Abstract:
Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines.
APA, Harvard, Vancouver, ISO, and other styles
12

Halim, Sobia Ahsan, Almas Gul Sikandari, Ajmal Khan, Abdul Wadood, Muhammad Qaiser Fatmi, René Csuk, and Ahmed Al-Harrasi. "Structure-Based Virtual Screening of Tumor Necrosis Factor-α Inhibitors by Cheminformatics Approaches and Bio-Molecular Simulation." Biomolecules 11, no. 2 (February 22, 2021): 329. http://dx.doi.org/10.3390/biom11020329.

Full text
Abstract:
Tumor necrosis factor-α (TNF-α) is a drug target in rheumatoid arthritis and several other auto-immune disorders. TNF-α binds with TNF receptors (TNFR), located on the surface of several immunological cells to exert its effect. Hence, the use of inhibitors that can hinder the complex formation of TNF-α/TNFR can be of medicinal significance. In this study, multiple chem-informatics approaches, including descriptor-based screening, 2D-similarity searching, and pharmacophore modelling were applied to screen new TNF-α inhibitors. Subsequently, multiple-docking protocols were used, and four-fold post-docking results were analyzed by consensus approach. After structure-based virtual screening, seventeen compounds were mutually ranked in top-ranked position by all the docking programs. Those identified hits target TNF-α dimer and effectively block TNF-α/TNFR interface. The predicted pharmacokinetics and physiological properties of the selected hits revealed that, out of seventeen, seven compounds (4, 5, 10, 11, 13–15) possessed excellent ADMET profile. These seven compounds plus three more molecules (7, 8 and 9) were chosen for molecular dynamics simulation studies to probe into ligand-induced structural and dynamic behavior of TNF-α, followed by ligand-TNF-α binding free energy calculation using MM-PBSA. The MM-PBSA calculations revealed that compounds 4, 5, 7 and 9 possess highest affinity for TNF-α; 8, 11, 13–15 exhibited moderate affinities, while compound 10 showed weaker binding affinity with TNF-α. This study provides valuable insights to design more potent and selective inhibitors of TNF-α, that will help to treat inflammatory disorders.
APA, Harvard, Vancouver, ISO, and other styles
13

Gao, Jing, Dongsheng Wang, Dan Liu, Min Liu, Yehua Ge, Minghong Jiang, Yanxin Liu, and Dexian Zheng. "Tumor necrosis factor–related apoptosis-inducing ligand induces the expression of proinflammatory cytokines in macrophages and re-educates tumor-associated macrophages to an antitumor phenotype." Molecular Biology of the Cell 26, no. 18 (September 15, 2015): 3178–89. http://dx.doi.org/10.1091/mbc.e15-04-0209.

Full text
Abstract:
Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapy, because it can induce apoptosis in various tumor cells but not in most normal cells. Although it is well known that TRAIL and its receptors are expressed in many types of normal cells, including immune cells, their immunological effects and regulatory mechanisms are still obscure. In the present study, we demonstrated that TRAIL affected the activity of NF-κB (nuclear factor-κB) and the expression of its downstream proinflammatory cytokines IL-1β (interleukin-1β), IL-6, and tumor necrosis factor α in macrophages. TRAIL also induced microRNA-146a (miR-146a) expression in an NF-κB–dependent manner. As a result, miR-146a was involved as a negative-feedback regulator in the down-regulation of proinflammatory cytokine expression. In addition, the suppression of histone deacetylase (HDAC) activities by trichostatin A improved miR-146a expression due to the up-regulation of the DNA-binding activity of NF-κB at the miR-146a promoter in TRAIL-induced macrophages, suggesting that histone acetylation was involved in the suppression of miR-146a expression. Further investigation revealed that the HDAC subtype HDAC1 directly regulated the expression of miR-146a in TRAIL-stimulated macrophages. Finally, the TRAIL-sensitive human non small cell lung carcinoma cell line NCI-H460 was used to elucidate the physiological significance of TRAIL with respect to tumor-associated macrophages (TAMs). We demonstrated that TRAIL re-educated TAMs to an M1-like phenotype and induced cytotoxic effects in the tumor cells. These data provide new evidence for TRAIL in the immune regulation of macrophages and may shed light on TRAIL-based antitumor therapy in human patients.
APA, Harvard, Vancouver, ISO, and other styles
14

Hessman, Christopher L., Josephine Hildebrandt, Aneri Shah, Sabine Brandt, Antonia Bock, Björn C. Frye, Ute Raffetseder, et al. "YB-1 Interferes with TNFα–TNFR Binding and Modulates Progranulin-Mediated Inhibition of TNFα Signaling." International Journal of Molecular Sciences 21, no. 19 (September 25, 2020): 7076. http://dx.doi.org/10.3390/ijms21197076.

Full text
Abstract:
Inflammation and an influx of macrophages are common elements in many diseases. Among pro-inflammatory cytokines, tumor necrosis factor α (TNFα) plays a central role by amplifying the cytokine network. Progranulin (PGRN) is a growth factor that binds to TNF receptors and interferes with TNFα-mediated signaling. Extracellular PGRN is processed into granulins by proteases released from immune cells. PGRN exerts anti-inflammatory effects, whereas granulins are pro-inflammatory. The factors coordinating these ambivalent functions remain unclear. In our study, we identify Y-box binding protein-1 (YB-1) as a candidate for this immune-modulating activity. Using a yeast-2-hybrid assay with YB-1 protein as bait, clones encoding for progranulin were selected using stringent criteria for strong interaction. We demonstrate that at physiological concentrations, YB-1 interferes with the binding of TNFα to its receptors in a dose-dependent manner using a flow cytometry-based binding assay. We show that YB-1 in combination with progranulin interferes with TNFα-mediated signaling, supporting the functionality with an NF-κB luciferase reporter assay. Together, we show that YB-1 displays immunomodulating functions by affecting the binding of TNFα to its receptors and influencing TNFα-mediated signaling via its interaction with progranulin.
APA, Harvard, Vancouver, ISO, and other styles
15

Bauldry, S. A., C. E. McCall, S. L. Cousart, and D. A. Bass. "Tumor necrosis factor-alpha priming of phospholipase A2 activation in human neutrophils. An alternative mechanism of priming." Journal of Immunology 146, no. 4 (February 15, 1991): 1277–85. http://dx.doi.org/10.4049/jimmunol.146.4.1277.

Full text
Abstract:
Abstract The cytokine, TNF-alpha, interacts with human neutrophils (PMN) via specific membrane receptors and primes leukotriene B4 (LTB4) production in PMN for subsequent stimulation by calcium ionophores. We have further examined the effects of TNF-alpha on arachidonic acid (AA) release, LTB4 production, and platelet-activating factor (PAF) formation in PMN by prelabeling cells with either [3H]AA or [3H]lyso-PAF, priming with human rTNF-alpha, and then stimulating with the chemotactic peptide, FMLP. TNF-alpha, alone, had little effect; minimal AA release, LTB4 or PAF production occurred after PMN were incubated with 0 to 1000 U/ml TNF-alpha. However, when PMN were first preincubated with 100 U/ml TNF-alpha for 30 min and subsequently challenged with 1 microM FMLP, both [3H] AA release and LTB4 production were elevated two- to threefold over control values. Measurement of AA mass by gas chromatography and LTB4 production by RIA confirmed the radiolabeled results. TNF-alpha priming also increased PAF formation after FMLP stimulation. These results demonstrate that TNF-alpha priming before stimulation with a physiologic agonist can enhance activation of phospholipase A2 (PLA2) resulting in increased AA release and can facilitate the activities of 5-lipoxygenase (LTB4 production) and acetyltransferase (PAF formation). Reports in the literature have hypothesized that the priming mechanism involves either production of PLA2 metabolites, increased diglyceride (DG) levels, or enhanced cytosolic calcium levels induced by the priming agent. We investigated these possibilities in TNF-alpha priming of PMN and report that TNF-alpha had no direct effect on PLA2 activation or metabolite formation. Treatment of PMN with TNF-alpha did not induce DG formation and, in the absence of cytochalasin B, no increased DG production (measured by both radiolabel techniques and mass determinations) occurred after TNF-alpha priming followed by FMLP stimulation. TNF-alpha also had no effect on basal cytosolic calcium and did not enhance intracellular calcium levels after FMLP stimulation. These results suggest that an alternative, as yet undefined, mechanism is active in TNF-alpha priming of human PMN.
APA, Harvard, Vancouver, ISO, and other styles
16

Milsom, Michael D., Bernhard Schiedlmeier, Jeff Bailey, Mi-Ok Kim, Dandan Li, Michael Jansen, Abdullah Mahmood Ali, et al. "Ectopic HOXB4 overcomes the inhibitory effect of tumor necrosis factor-α on Fanconi anemia hematopoietic stem and progenitor cells." Blood 113, no. 21 (May 21, 2009): 5111–20. http://dx.doi.org/10.1182/blood-2008-09-180224.

Full text
Abstract:
AbstractEctopic delivery of HOXB4 elicits the expansion of engrafting hematopoietic stem cells (HSCs). We hypothesized that inhibition of tumor necrosis factor-α (TNF-α) signaling may be central to the self-renewal signature of HOXB4. Because HSCs derived from Fanconi anemia (FA) knockout mice are hypersensitive to TNF-α, we studied Fancc−/− HSCs to determine the physiologic effects of HOXB4 on TNF-α sensitivity and the relationship of these effects to the engraftment defect of FA HSCs. Overexpression of HOXB4 reversed the in vitro hypersensitivity to TNF-α of Fancc−/− HSCs and progenitors (P) and partially rescued the engraftment defect of these cells. Coexpression of HOXB4 and the correcting FA-C protein resulted in full correction compared with wild-type (WT) HSCs. Ectopic expression of HOXB4 resulted in a reduction in both apoptosis and reactive oxygen species in Fancc−/− but not WT HSC/P. HOXB4 overexpression was also associated with a significant reduction in surface expression of TNF-α receptors on Fancc−/− HSC/P. Finally, enhanced engraftment was seen even when HOXB4 was expressed in a time-limited fashion during in vivo reconstitution. Thus, the HOXB4 engraftment signature may be related to its effects on TNF-α signaling, and this pathway may be a molecular target for timed pharmacologic manipulation of HSC during reconstitution.
APA, Harvard, Vancouver, ISO, and other styles
17

Okada, Motohiro, Kouji Fukuyama, Takashi Shiroyama, and Yuto Ueda. "Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A2A Receptor." International Journal of Molecular Sciences 20, no. 15 (July 30, 2019): 3727. http://dx.doi.org/10.3390/ijms20153727.

Full text
Abstract:
Carbamazepine (CBZ) binds adenosine receptors, but detailed effects of CBZ on astroglial transmission associated with adenosine receptor still need to be clarified. To clarify adenosinergic action of CBZ on astroglial transmission, primary cultured astrocytes were acutely or chronically treated with CBZ, proinflammatory cytokines (interferon γ (IFNγ) and tumor necrosis factor α (TNFα)), and adenosine A2A receptor (A2AR) agonist (CGS21680). IFNγ and TNFα increased basal, adenophostin-A (AdA)-evoked, and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)-evoked astroglial L-glutamate releases. In physiological condition, CGS21680 increased basal astroglial L-glutamate release but glutamate transporter inhibition prevented this CGS21680 action. CBZ did not affect basal release, whereas glutamate transporter inhibition generated CBZ-induced glutamate release. Furthermore, AdA-evoked and AMPA-evoked releases were inhibited by CBZ but were unaffected by CGS21680. Contrary to physiological condition, chronic administrations of IFNγ and TNFα enhanced basal, AdA-, and AMPA-evoked releases, whereas IFNγ and TNFα decreased and increased CGS21680-evoked releases via modulation A2AR expression. Both chronic administration of CGS21680 and CBZ suppressed astroglial L-glutamate release responses induced by chronic cytokine exposer. Especifically, chronic administration of CBZ and CGS21680 prevented the reduction and elevation of A2AR expression by respective IFNγ and TNFα. These findings suggest that A2AR agonistic effects of CBZ contribute to chronic prevention of pathomechanisms developments of several neuropsychiatric disorders associated with proinflammatory cytokines.
APA, Harvard, Vancouver, ISO, and other styles
18

Abe, Shogo, Misako Ueno, Mami Nishitani, Tetsuya Akamatsu, Takumi Sato, Marie Shimoda, Hiroki Kanaoka, Yoshitaka Nii, Hiroko Yamasaki, and Keizo Yuasa. "Citrus sudachi Peel Extract Suppresses Cell Proliferation and Promotes the Differentiation of Keratinocytes through Inhibition of the EGFR–ERK Signaling Pathway." Biomolecules 10, no. 10 (October 21, 2020): 1468. http://dx.doi.org/10.3390/biom10101468.

Full text
Abstract:
Citrus sudachi is a well-known fruit in Tokushima Prefecture, Japan, and its peels are rich in phytochemicals, including phenolic compounds. Although it is expected that the extract of the C. sudachi peel elicits various beneficial physiological activities, the effect on the skin has not been investigated. In this study, we report that the aqueous extract from the peel of C. sudachi suppresses cell proliferation of the immortalized human keratinocyte cell line, HaCaT, and primary normal human epidermal keratinocytes. The extract of C. sudachi peel suppressed epidermal growth factor (EGF)-induced EGF receptor activation and tumor necrosis factor (TNF)-α-induced extracellular regulated kinase (ERK) 1/2 activation, which suggests that the extract exerts its inhibitory effect through inhibition of both the EGF receptor (EGFR) and its downstream molecules. Additionally, the extract of C. sudachi peel potentiated calcium-induced keratinocyte differentiation. These results suggest that the extract of C. sudachi peel may have beneficial effects against skin diseases that are characterized by hyperproliferation of epidermal keratinocytes, such as those seen in psoriasis and in cutaneous squamous cell carcinoma.
APA, Harvard, Vancouver, ISO, and other styles
19

Pfanzagl, Beatrix, Victor F. Zevallos, Detlef Schuppan, Roswitha Pfragner, and Erika Jensen-Jarolim. "Histamine causes influx via T-type voltage-gated calcium channels in an enterochromaffin tumor cell line: potential therapeutic target in adverse food reactions." American Journal of Physiology-Gastrointestinal and Liver Physiology 316, no. 2 (February 1, 2019): G291—G303. http://dx.doi.org/10.1152/ajpgi.00261.2018.

Full text
Abstract:
The P-STS human ileal neuroendocrine tumor cells, as a model for gut enterochromaffin cells, are strongly and synergistically activated by histamine plus acetylcholine (ACh), presumably via histamine 4 receptors, and weakly activated by histamine alone. Sensing these signals, enterochromaffin cells could participate in intestinal intolerance or allergic reactions to food constituents associated with elevated histamine levels. In this study we aimed to analyze the underlying molecular mechanisms. Inhibition by mepyramine and mibefradil indicated that histamine alone caused a rise in intracellular calcium concentration ([Ca2+]i) via histamine 1 receptors involving T-type voltage-gated calcium channels (VGCCs). Sensitivity to histamine was enhanced by pretreatment with the inflammatory cytokine tumor necrosis factor-α (TNF-α). In accordance with the relief it offers some inflammatory bowel disease patients, otilonium bromide, a gut-impermeable inhibitor of T-type (and L-type) VGCCs and muscarinic ACh receptors, efficiently inhibited the [Ca2+]i responses induced by histamine plus ACh or by histamine alone in P-STS cells. It will take clinical studies to show whether otilonium bromide has promise for the treatment of adverse food reactions. The cells did not react to the nutrient constituents glutamate, capsaicin, cinnamaldehyde, or amylase-trypsin inhibitors and the transient receptor potential channel vanilloid 4 agonist GSK-1016790A. The bacterial product butyrate evoked a rise in [Ca2+]i only when added together with ACh. Lipopolysaccharide had no effect on [Ca2+]i despite the presence of Toll-like receptor 4 protein. Our results indicate that inflammatory conditions with elevated levels of TNF-α might enhance histamine-induced serotonin release from intestinal neuroendocrine cells. NEW & NOTEWORTHY We show that histamine synergistically enhances the intracellular calcium response to the physiological agonist acetylcholine in human ileal enterochromaffin tumor cells. This synergistic activation and cell activation by histamine alone largely depend on T-type voltage-gated calcium channels and are inhibited by the antispasmodic otilonium bromide. The cells showed no response to wheat amylase-trypsin inhibitors, suggesting that enterochromaffin cells are not directly involved in nongluten wheat sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
20

Rameshwar, P., D. Ganea, and P. Gascon. "In vitro stimulatory effect of substance P on hematopoiesis." Blood 81, no. 2 (January 15, 1993): 391–98. http://dx.doi.org/10.1182/blood.v81.2.391.391.

Full text
Abstract:
Abstract The neuropeptide Substance P (SP) is widely distributed in the peripheral nervous system. Its biologic effects have been extensively studied in the immune system. However, even though the bone marrow (BM) is innervated with SP-immunoreactive fibers and some of its cells not only express SP receptors (T and B cells, endothelial cells, and macrophages) but also produce SP (macrophages, eosinophils, and endothelial cells), the effects of SP on hematopoiesis are scanty. Furthermore, SP induces the production of hematopoietic growth factors (HGFs) (interleukin-1 [IL-1], IL-6, and tumor necrosis factor alpha) from human monocytes. In this study, we have found a potent in vitro stimulatory effect of SP (10(-8) to 10(-12) mol/L) on hematopoiesis for both erythroid and granulocytic progenitors in short-term methyl- cellulose BM cultures. SP alone, in the absence of exogenous HGFs, is able to sustain hematopoiesis in vitro. This stimulatory effect of SP is: (1) mostly mediated by the adherent cells; (2) completely abrogated by two SP receptor (SP-R) antagonists; and (3) partially reduced by anti-IL-1, IL-3, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Furthermore, it appears that the stimulatory effect of SP may be mediated by IL-3 and GM-CSF because we have also found that SP induces the release of these two cytokines from BM mononuclear cells. Considering that the SP effect occurs at concentrations as low as 10(-11) mol/L, and via a specific receptor, it appears that SP may play a physiologic role in regulating hematopoiesis, at least partially through the adherent BM cells and the release of HGFs, and may place SP, a neuropeptide, in a new category of hematopoietic regulators.
APA, Harvard, Vancouver, ISO, and other styles
21

Rameshwar, P., D. Ganea, and P. Gascon. "In vitro stimulatory effect of substance P on hematopoiesis." Blood 81, no. 2 (January 15, 1993): 391–98. http://dx.doi.org/10.1182/blood.v81.2.391.bloodjournal812391.

Full text
Abstract:
The neuropeptide Substance P (SP) is widely distributed in the peripheral nervous system. Its biologic effects have been extensively studied in the immune system. However, even though the bone marrow (BM) is innervated with SP-immunoreactive fibers and some of its cells not only express SP receptors (T and B cells, endothelial cells, and macrophages) but also produce SP (macrophages, eosinophils, and endothelial cells), the effects of SP on hematopoiesis are scanty. Furthermore, SP induces the production of hematopoietic growth factors (HGFs) (interleukin-1 [IL-1], IL-6, and tumor necrosis factor alpha) from human monocytes. In this study, we have found a potent in vitro stimulatory effect of SP (10(-8) to 10(-12) mol/L) on hematopoiesis for both erythroid and granulocytic progenitors in short-term methyl- cellulose BM cultures. SP alone, in the absence of exogenous HGFs, is able to sustain hematopoiesis in vitro. This stimulatory effect of SP is: (1) mostly mediated by the adherent cells; (2) completely abrogated by two SP receptor (SP-R) antagonists; and (3) partially reduced by anti-IL-1, IL-3, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Furthermore, it appears that the stimulatory effect of SP may be mediated by IL-3 and GM-CSF because we have also found that SP induces the release of these two cytokines from BM mononuclear cells. Considering that the SP effect occurs at concentrations as low as 10(-11) mol/L, and via a specific receptor, it appears that SP may play a physiologic role in regulating hematopoiesis, at least partially through the adherent BM cells and the release of HGFs, and may place SP, a neuropeptide, in a new category of hematopoietic regulators.
APA, Harvard, Vancouver, ISO, and other styles
22

Bakleicheva, Margarita O., Irina V. Kovaleva, Olesya N. Bespalova, and Igor Yu Kogan. "The effect of vitamin D on women’s reproductive health." Journal of obstetrics and women's diseases 67, no. 3 (December 15, 2018): 4–19. http://dx.doi.org/10.17816/jowd6734-19.

Full text
Abstract:
Background. According to WHO data (2014), more than two billion people are deficient in microelements or have a “hidden hunger” due to the deficiencies of vitamins and minerals. Currently, experts estimate the vitamin D deficiency as a new type of pandemic of the XXI century. Aim. The current analysis was undertaken to evaluate the effect of vitamin D on women’s reproductive health. Materials and Methods. Based on the findings of retrospective and prospective studies, meta-analyzes, and material trials over the past 20 years, as well as in accordance with the results of 290 prospective cohort randomized trials, the level of vitamin D affects 172 basic physiological indicators associated with the risk of such complications of pregnancy as miscarriage, preeclampsia, gestational diabetes mellitus, and bacterial vaginosis. Results. Vitamin D has been shown to be able to act as an immune regulator during the implantation. The placenta produces and responds to vitamin D, which has a local anti-inflammatory response and simultaneously induces the production of decidual growth factors for successful pregnancy. Activated T- and B-lymphocytes have the vitamin D receptors and therefore 1,25(OH)2D is an effective modulator in the immune system. It is able to inhibit the proliferation of Th1 and to restrict the production of such cytokines as interferon-gamma (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-alpha (TNF-α). In addition, vitamin D is able to induce cytokines of Th2 that have the protective effect on pregnancy. Conclusion. Adequate vitamin D intake is important for the successful conception and prolongation of pregnancy, as well as for the health of the fetus and newborn.
APA, Harvard, Vancouver, ISO, and other styles
23

Leeuwenberg, J. F., M. A. Dentener, and W. A. Buurman. "Lipopolysaccharide LPS-mediated soluble TNF receptor release and TNF receptor expression by monocytes. Role of CD14, LPS binding protein, and bactericidal/permeability-increasing protein." Journal of Immunology 152, no. 10 (May 15, 1994): 5070–76. http://dx.doi.org/10.4049/jimmunol.152.10.5070.

Full text
Abstract:
Abstract Previously we demonstrated that two soluble(s) tumor necrosis factor receptors, TNF-R55 as well as sTNF-R75, are constitutively released in vitro by monocytes, and that this release was markedly enhanced after activation. Because LPS is an important activator of monocytes, we investigated the effect of LPS on sTNF-R release by monocytes. It was found that release of sTNF-R75, but not (or minimally) release of sTNF-R55, was enhanced after activation with LPS, reaching plateau levels after approximately 2 days. CD14, one of the membrane receptors for LPS, is an intermediate in this process, as shown in experiments using mAb directed against CD14. Under serum-free conditions, LPS-induced sTNF-R75 release was less as compared with release in the presence of serum, suggesting involvement of serum proteins. Addition of LPS binding protein (LBP) enhanced the LPS-induced sTNF-R75 release under serum-free conditions, but had no effect in the presence of serum. On the other hand, bactericidal/permeability-increasing protein (BPI), known to possess LPS neutralizing activity, inhibited LPS-induced sTNF-R75 release. Furthermore, cell surface expression of both types of TNF-R was shown to be controlled by LPS, LBP, and BPI. LPS caused, within 1 h, a complete reduction of TNF-R55 as well as TNF-R75 expression, followed by enhanced re-expression of both receptors after 24 h. The down-modulation of expression was increased by LBP, whereas BPI counteracted the LPS-induced down-regulation. The LPS-enhanced release of sTNF-R75, capable of inactivation of TNF, as well as LPS-induced initial down-modulation of TNF-R expression leading to postulated temporary unresponsiveness to TNF may share in a physiological mechanism to carefully control the effects of TNF.
APA, Harvard, Vancouver, ISO, and other styles
24

Roelofsen, H., M. Priebe, and R. Vonk. "The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes." Beneficial Microbes 1, no. 4 (November 1, 2010): 433–37. http://dx.doi.org/10.3920/bm2010.0028.

Full text
Abstract:
Short chain fatty acids (SCFA) are the main bacterial metabolites of colonic fermentation processes. The physiological relevance of the SCFA for the host outside the gastrointestinal tract is getting increased attention. In this review we will focus on the effect of SCFA on inflammation processes in the host in relation to insulin resistance. Obesity has been associated with a pro-inflammatory state of the adipose tissue that is associated with whole body insulin resistance leading to type 2 diabetes. Recently, two G protein-coupled receptors (GPCR) for SCFA, GPCR 41 and GPCR43, were described that are mainly expressed by immune cells but also by adipose tissue. Propionate can induce the satiety hormone leptin and reduce expression of inflammatory cytokines and chemokines indicating that SCFA have anti-inflammatory effects in human adipose tissue. In addition, in human nutritional experiments we observed that whole grain products could counteract a glucose-induced tumour necrosis factor α and interleukin-6 increase which was associated with increased plasma butyrate concentrations. This suggests that dietary fibre can produce a SCFA profile that could have anti-inflammatory effects in the body. The physiological relevance of these observations especially in relation to obesity-associated inflammation and insulin resistance is discussed.
APA, Harvard, Vancouver, ISO, and other styles
25

Kozsurek, Márk, Kornél Király, Klára Gyimesi, Erika Lukácsi, Csaba Fekete, Balázs Gereben, Petra Mohácsik, et al. "Unique, Specific CART Receptor-Independent Regulatory Mechanism of CART(55-102) Peptide in Spinal Nociceptive Transmission and Its Relation to Dipeptidyl-Peptidase 4 (DDP4)." International Journal of Molecular Sciences 24, no. 2 (January 4, 2023): 918. http://dx.doi.org/10.3390/ijms24020918.

Full text
Abstract:
Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord. CART(55-102) is not involved in acute nociception but regulates spinal pain transmission during peripheral inflammation. While the full-length peptide with a globular motif contributes to hyperalgesia, its N-terminal inhibits this process. Although the anti-hyperalgesic effects of CART(55-102), CART(55-76), and CART(62-76) are blocked by opioid receptor antagonists in our inflammatory models, but not in neuropathic Seltzer model, none of them bind to any opioid or G-protein coupled receptors. DPP4 interacts with Toll-like receptor 4 (TLR4) signalling in spinal astrocytes and enhances the TLR4-induced expression of interleukin-6 and tumour necrosis factor alpha contributing to inflammatory pain. Depending on the state of inflammation, CART(55-102) is processed in the spinal cord, resulting in the generation of biologically active isoleucine-proline-isoleucine (IPI) tripeptide, which inhibits DPP4, leading to significantly decreased glia-derived cytokine production and hyperalgesia.
APA, Harvard, Vancouver, ISO, and other styles
26

Ryan, Rachael Y. M., Viviana P. Lutzky, Volker Herzig, Taylor B. Smallwood, Jeremy Potriquet, Yide Wong, Paul Masci, et al. "Venom of the Red-Bellied Black Snake Pseudechis porphyriacus Shows Immunosuppressive Potential." Toxins 12, no. 11 (October 26, 2020): 674. http://dx.doi.org/10.3390/toxins12110674.

Full text
Abstract:
Venoms act with remarkable specificity upon a broad diversity of physiological targets. Venoms are composed of proteins, peptides, and small molecules, providing the foundation for the development of novel therapeutics. This study assessed the effect of venom from the red-bellied black snake (Pseudechis porphyriacus) on human primary leukocytes using bead-based flow cytometry, mixed lymphocyte reaction, and cell viability assays. We show that venom treatment had a significant immunosuppressive effect, inhibiting the secretion of interleukin (IL)-2 and tumor necrosis factor (TNF) from purified human T cells by 90% or greater following stimulation with mitogen (phorbol 12-myristate 13-acetate and ionomycin) or via cluster of differentiation (CD) receptors, CD3/CD28. In contrast, venom treatment did not inhibit TNF or IL-6 release from antigen-presenting cells stimulated with lipopolysaccharide. The reduced cytokine release from T cells was not associated with inhibition of T cell proliferation or reduction of cell viability, consistent with an anti-inflammatory mechanism unrelated to the cell cycle. Deconvolution of the venom using reverse-phase HPLC identified four fractions responsible for the observed immunosuppressive activity. These data suggest that compounds from P. porphyriacus venom may be potential drug leads for T cell-associated conditions such as graft versus host disease, rheumatoid arthritis, and inflammatory bowel disease.
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Gang, Qingsong Wang, Tingting Lin, and Chengye Liu. "Effect of thrombin injection on cerebral vascular in rats with subarachnoid hemorrhage." Journal of International Medical Research 47, no. 7 (June 10, 2019): 2819–31. http://dx.doi.org/10.1177/0300060519851353.

Full text
Abstract:
Objective To evaluate the effect of thrombin (TM) injection via the cerebellomedullary cistern on cerebral vessels in rats with subarachnoid hemorrhage (SAH). Methods Eighteen rats were randomly divided into three groups. In the A1 group, physiological saline was injected via the cerebellomedullary cistern; in the A2 group, 3 U of TM was injected into the subarachnoid space; and in the A3 group, SAH models were established and 3 U of TM was injected with the first injection of whole blood. Three days later, basilar artery specimens were collected for pathological examination. Results The basilar arterial lumen cross-sectional area was significantly smaller in the A2 versus the A1 group, and proteinase-activated receptor (PAR)-1 and tumor necrosis factor (TNF)-α average optical densities were significantly higher (all P < 0.05). Basilar arterial lumen cross-sectional areas were significantly smaller in the A3 than the A2 group and average TNF-α optical densities were significantly lower (both P < 0.05), while those of PAR-1 did not differ significantly. Conclusions There was no significant difference in the extent of cerebral vasospasm between SAH and non-SAH model groups following TM injection into the subarachnoid space, so TM was considered to be an independent factor affecting cerebral vasospasm.
APA, Harvard, Vancouver, ISO, and other styles
28

Fantuzzi, G., S. Sacco, P. Ghezzi, and C. A. Dinarello. "Physiological and cytokine responses in IL-1 beta-deficient mice after zymosan-induced inflammation." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 273, no. 1 (July 1, 1997): R400—R406. http://dx.doi.org/10.1152/ajpregu.1997.273.1.r400.

Full text
Abstract:
Interleukin (IL)-1 beta-deficient (IL-1 beta -/-) mice exhibited decreased zymosan-induced lethality and reduced production of IL-6 compared with wild-type controls (IL-1 beta +/+). In addition, IL-1 beta -/- mice had a diminished cellular infiltrate (33%) in the peritoneal cavity after zymosan. However, anorexia and hypoglycemia were not affected by the lack of IL-1 beta. The induction of corticosterone was only slightly reduced (14%) in IL-1 beta -/- mice. Peritoneal lavage fluid levels for IL-1 alpha, but not for tumor necrosis factor (TNF)-alpha, were also decreased. To evaluate the role of residual IL-1 alpha production in IL-1 beta -/- mice, we used IL-1-receptor antagonist (IL-1ra). In IL-1 beta +/+ mice, IL-1ra inhibited production of IL-6 after zymosan, without affecting TNF-alpha synthesis. There was no further inhibitory effect of IL-1ra on IL-6 production in IL-1 beta -/- mice, suggesting no role for IL-1 alpha in zymosan-induced IL-6. Our results demonstrate that IL-1 beta plays a significant, although not exclusive, role in the physiological and cytokine responses to zymosan-mediated inflammation.
APA, Harvard, Vancouver, ISO, and other styles
29

Zauli, Giorgio, Claudio Celeghini, Lorenzo Monasta, Monica Martinelli, Stefania Luppi, Arianna Gonelli, Vittorio Grill, Giuseppe Ricci, and Paola Secchiero. "Soluble TRAIL is present at high concentrations in seminal plasma and promotes spermatozoa survival." REPRODUCTION 148, no. 2 (August 2014): 191–98. http://dx.doi.org/10.1530/rep-14-0144.

Full text
Abstract:
The expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL(TNFSF10)) and of its receptors (TRAILR1, TRAILR2, TRAILR3, and TRAILR4) have been documented in testis, but the presence of soluble TRAIL in seminal fluid, as well as the potential physiopathological role of the TRAIL/TRAILR system in spermatozoa, has not been previously investigated. Male donors (n=123) among couples presenting for infertility evaluation were consecutively enrolled in this study. The presence of soluble TRAIL was analyzed in seminal samples by ELISA, while the surface expression of TRAIL receptors was investigated by flow cytometry. High levels of soluble TRAIL were detected in seminal plasma (median, 11 621 pg/ml and mean±s.d., 13 371±8367 pg/ml) and flow cytometric analysis revealed a variable expression of TRAIL receptors in the sperm cellular fraction among different subjects. In addition, the effect of physiologically relevant concentrations of recombinant TRAIL was investigated on survival and motility of spermatozoa. Of interest, the in vitro exposure of capacitated spermatozoa to recombinant TRAIL (10 ng/ml) significantly preserved their overall survival. Therefore, the present study demonstrates for the first time the presence of elevated levels of the anti-inflammatory cytokine TRAIL in seminal fluids. Moreover, the demonstration that recombinant TRAIL promotes spermatozoa survival after capacitation suggests potential therapeutic implications.
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Yiying, Kai-Ying Guo, Patricia A. Diaz, Moonseong Heo, and Rudolph L. Leibel. "Determinants of leptin gene expression in fat depots of lean mice." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 282, no. 1 (January 1, 2002): R226—R234. http://dx.doi.org/10.1152/ajpregu.00392.2001.

Full text
Abstract:
The relationship of leptin gene expression to adipocyte volume was investigated in lean 10-wk-old male C57BL/6J mice. mRNA levels for leptin, insulin receptor, glucocorticoid receptor, and tumor necrosis factor (TNF)-α in inguinal, epididymal, and retroperitoneal adipose tissues were quantified and related to adipocyte volume. Leptin mRNA levels were highly correlated with adipocyte volume within each fat depot. Multiple regression analysis of pooled data from the three depots showed that leptin mRNA levels were strongly correlated with adipocyte volumes (β = 0.84, P < 0.001) and, to a smaller degree, with glucocorticoid receptor mRNA levels (β = 0.36, P < 0.001). Depot of origin had no effect ( P > 0.9). Rates of leptin secretion in vitro were strongly correlated with leptin mRNA levels ( r = 0.89, P < 0.001). mRNA levels for TNF-α, insulin receptor, and glucocorticoid receptor showed no significant correlation with adipocyte volume. These results demonstrate that depot-specific differences in leptin gene expression are mainly related to the volumes of the constituent adipocytes. The strong correlation between leptin gene expression and adipocyte volume supports leptin's physiological role as a humoral signal of fat mass.
APA, Harvard, Vancouver, ISO, and other styles
31

Meszaros, K., S. Aberle, R. Dedrick, R. Machovich, A. Horwitz, C. Birr, G. Theofan, and JB Parent. "Monocyte tissue factor induction by lipopolysaccharide (LPS): dependence on LPS-binding protein and CD14, and inhibition by a recombinant fragment of bactericidal/permeability-increasing protein." Blood 83, no. 9 (May 1, 1994): 2516–25. http://dx.doi.org/10.1182/blood.v83.9.2516.2516.

Full text
Abstract:
Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (&gt; or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.
APA, Harvard, Vancouver, ISO, and other styles
32

Meszaros, K., S. Aberle, R. Dedrick, R. Machovich, A. Horwitz, C. Birr, G. Theofan, and JB Parent. "Monocyte tissue factor induction by lipopolysaccharide (LPS): dependence on LPS-binding protein and CD14, and inhibition by a recombinant fragment of bactericidal/permeability-increasing protein." Blood 83, no. 9 (May 1, 1994): 2516–25. http://dx.doi.org/10.1182/blood.v83.9.2516.bloodjournal8392516.

Full text
Abstract:
Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (> or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.
APA, Harvard, Vancouver, ISO, and other styles
33

Fang, Xiaobin, Ren Liao, Yingyan Yu, Jingyi Li, Zaipei Guo, and Tao Zhu. "Thrombin Induces Secretion of Multiple Cytokines and Expression of Protease-Activated Receptors in Mouse Mast Cell Line." Mediators of Inflammation 2019 (November 14, 2019): 1–12. http://dx.doi.org/10.1155/2019/4952131.

Full text
Abstract:
Background. Thrombin could elicit degranulation of mast cells involved in numerous physiologic and pathologic processes; however, the detailed scrutiny of this procedure and further research of possible cell signaling pathways are lacking. Methods. P815 mouse mast cells were exposed to various concentrations of thrombin for 16 h. Expression of protease-activated receptor (PAR)1, PAR2, PAR3, and PAR4 mRNA in P815 was analyzed by quantitative real-time PCR (qRT-PCR) and the fittest concentration of thrombin was decided. Then, secretions of mediators from P815 stimulated by thrombin 0.2 U/ml were determined using enzyme-linked immunosorbent assay (ELISA) and Luminex liquichip; the possible cell signaling pathways were measured by immunoblotting. Furthermore, inhibition of thrombin inhibitor (hirudin), PAR1 inhibitor (SCH79797), and MAPK inhibitors (SB203580, PD98059, and SP600125) on the mediator section was evaluated by ELISA and Luminex liquichip. Results. Thrombin 0.2 U/ml induced the elevated expression of PAR1, PAR2, PAR3, and PAR4, as well as the increasing level of phospho-IκBα, phospho-SAPK/JNK MAPK, phospho-P38 MAPK (Thr180/Tyr182), and phospho-ERK1/2 MAPK (p44/42) in P815. Secretion of vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), interleukin- (IL-) 2, IL-6, chemokine ligand- (CCL-) 2, chemokine (C-X-C motif) ligand- (CXCL-) 1, and CXCL-5 from P815 increased apparently; this effect could be diminished by hirudin, whereas SCH79797 and MAPK inhibitors (SB203580, PD98059, and SP600125) diminish the secretions with weaker effect. Conclusion. We found the expression of PAR mRNA in P815, activation of signaling pathways of nuclear factor-kappaB (NF-κB), and mitogen-activated protein kinases (MAPKs) including C-Jun NH2-terminal kinase (JNK), P38, and extracellular signal-regulated kinase 1/2 (ERK1/2), and the release of multiple inflammatory mediators stimulated by thrombin, as well as the inhibition of the inflammatory releases by hirudin, SCH79797, and MAPK inhibitors including SB203580, PD98059, and SP600125.
APA, Harvard, Vancouver, ISO, and other styles
34

Aioi, Akihiro, and Tomozumi Imamichi. "IL-27 regulates cytokine production as a double-edged sword in keratinocytes." Trends in Immunotherapy 6, no. 1 (May 12, 2022): 23. http://dx.doi.org/10.24294/ti.v6.i1.1436.

Full text
Abstract:
Inflammaging is a subject of considerable attention, because aging is characterized by low-grade, chronic, and asymptomatic inflammation, concomitant with increased blood levels of senescence-associated secretory phenotype (SASP) factors, including IL-1, IL-6, IL-8, IL-18, and tumor necrosis factor-α (TNF-α). However, IL-27 is currently not categorized as a SASP factor, although it is known to play pleiotropic roles in inflammation. In this study, we evaluated the interaction between TNF-α and IL-27 in context of low-grade inflammation using HaCaT cells. TNF-α induced significant upregulation of the mRNA levels of IL-6 and IL-8 at the experimental concentration (~10ng/ml), while the mRNA levels of IL-1RA, IL-10, and IL-18BP were unchanged. After confirming the expression of functional IL-27 receptors in HaCaT cells, we examined the effects of IL-27 alone on cytokine expression. IL-27 alone significantly upregulated the mRNA levels of IL-10, IL-18BP and IL-6 by 1.61-fold, 1.46-fold, and 2.32-fold, respectively. In the presence of 100 ng/ml of IL-27, the mRNA levels of the anti-inflammatory cytokines IL-1RA, IL-10 and IL-18BP, were significantly upregulated upon treatment with TNF-α at the physiological concentration (1 ng/ml). Taken together, this study indicates that a high concentration of IL-27 exhibits anti-inflammatory effects in the presence of a low concentration of TNF-α, in keratinocytes, suggesting that the anti-inflammatory role of IL-27 in inflammaging may be regulated by TNF-α concentration.
APA, Harvard, Vancouver, ISO, and other styles
35

Snyder, F. "Platelet-activating factor and related acetylated lipids as potent biologically active cellular mediators." American Journal of Physiology-Cell Physiology 259, no. 5 (November 1, 1990): C697—C708. http://dx.doi.org/10.1152/ajpcell.1990.259.5.c697.

Full text
Abstract:
Platelet-activating factor (PAF or 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is the most potent lipid mediator yet discovered. It is known to stimulate a wide span of biological responses ranging from aggregation and degranulation of platelets and neutrophils to a variety of cellular effects involving the stimulation of chemotaxis; chemokinesis; superoxide formation; protein phosphorylation; activation of protein kinase C, arachidonic acid, and phosphoinositide metabolites; glycogenolysis; and tumor necrosis factor production. Obviously, with such a diversity of biological activities, it is not surprising that PAF has been considered to be a key component in numerous diseases related to hypersensitivity and inflammatory responses. Evidence has also been presented for the role of PAF in physiological processes, particularly those involving reproduction and fetal development. Furthermore, because of its potent hypotensive action, PAF has been implicated as a contributing factor in blood pressure regulation. PAF is produced by two independent enzymatic pathways. The remodeling route involves the structural modification of a membrane lipid (1-alkyl-2-acyl-sn-glycero-3-phosphocholine) by replacement of the acyl moiety with an acetate group. An alternate route is the de novo synthesis of PAF from an O-alkyl analogue of a lysophosphatidic acid that requires a reaction sequence of acetylation, dephosphorylation, and phosphocholine addition steps. Hypersensitivity and other pathophysiological reactions are thought to be caused by activation of the remodeling pathway, whereas the de novo route is believed to be the source of endogenous levels of PAF required for physiological functions. Inactivation of PAF occurs when the acetate group is hydrolyzed by an acetylhydrolase that is present in both extra- and intracellular compartments, although the catalytic activity of the two forms of acetylhydrolase are identical, some of their properties differ. The control of PAF metabolism is very complex, but acetylhydrolase, Ca2+, phosphorylation/dephosphorylation of enzymes, and fatty acids (especially polyunsaturates) appear to be important regulatory factors. Specific PAF receptors have clearly been demonstrated on several different types of cells, and although the mechanism of PAF actions is poorly understood, it appears that the PAF/receptor-induced responses are closely associated with the signal transduction process; both G proteins and adenyl cyclase appear to be involved. Because significant quantities of PAF are often retained within certain cells, the possibility of PAF serving as an intracellular mediator has also been proposed.
APA, Harvard, Vancouver, ISO, and other styles
36

Tomaszewska-Zaremba, Dorota, Karolina Haziak, Monika Tomczyk, and Andrzej P. Herman. "Inflammation and LPS-Binding Protein Enable the Stimulatory Effect of Endotoxin on Prolactin Secretion in the Ovine Anterior Pituitary: Ex Vivo Study." Mediators of Inflammation 2018 (August 14, 2018): 1–7. http://dx.doi.org/10.1155/2018/5427089.

Full text
Abstract:
Prolactin is a hormone that plays an important role in the regulation of many physiological processes including lactation, reproduction, fat metabolism, and immune response. The secretion of prolactin could be disturbed by an immune stress commonly accompanying infection. This study was designed to determine the influence of bacterial endotoxin—lipopolysaccharide (LPS)—on prolactin gene (PRL) expression and prolactin release from the ovine anterior pituitary (AP) explants collected from saline- and LPS-treated ewes in the follicular phase. The expressions of toll-like receptor 4 (TLR4) and proinflammatory cytokines interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α genes were also assayed. The results of the study showed that LPS stimulates prolactin secretion and IL-6 gene expression in the AP explants, but its action on lactotrophs depends on the immunological status of animal. It was demonstrated that an important role in enhancing the effect of LPS on the pituitary in the saline-treated ewes is played by LPS-binding protein (LBP)- “adapter molecule” for LPS binding to the cell surface receptor CD14 and then to TLR4. Also, it was found that bacterial endotoxin acting on the anterior pituitary cells may enhance prolactin secretion, and this effect of LPS could be mediated by IL-6 which is known as prolactin-releasing factor. Identification of the neuroendocrine and immune interactions in the regulation of prolactin secretion could be helpful in developing newer and more effective treatments for dysfunctions connected with disorders in this hormone secretion.
APA, Harvard, Vancouver, ISO, and other styles
37

Kruse-Elliott, K. T., M. V. Pino, and N. C. Olson. "Effect of PAF receptor antagonism on cardiopulmonary alterations during coinfusion of TNF-alpha and IL-1 alpha in pigs." American Journal of Physiology-Lung Cellular and Molecular Physiology 264, no. 2 (February 1, 1993): L175—L182. http://dx.doi.org/10.1152/ajplung.1993.264.2.l175.

Full text
Abstract:
We examined the possibility that platelet-activating factor (PAF) might be a mediator of cardiopulmonary alterations induced by a 6-h coinfusion of human recombinant tumor necrosis factor (TNF-alpha) and interleukin-1 alpha (IL-1 alpha) in anesthetized pigs. Our hypothesis was tested by pretreating TNF-alpha + IL-1 alpha-infused pigs with WEB 2086 (3 mg/kg from -0.5 to 0 h + 0.75 mg.kg-1.h-1 from 0–6 h), a specific PAF receptor antagonist. Each cytokine was infused intravenously at 0.5 microgram/kg from 0-0.5 h + 5 ng.kg-1.min-1 from 0.5-6 h. WEB 2086 attenuated the early (0.25 h) cytokine-induced increases in mean pulmonary arterial pressure and pulmonary vascular resistance and blocked or markedly attenuated the later occurring (4–6 h) systemic hypertension and increased systemic vascular resistance. WEB 2086 lessened the severity of TNF-alpha + IL-1 alpha-induced hemoconcentration and airway constriction, but did not modify leukopenia, granulocytopenia, or the cytokine-induced increases in plasma concentrations of thromboxane B2, prostaglandin F2 alpha, and 6-ketoprostaglandin F1 alpha. Microscopically, WEB 2086 did not modify the increased number of granulocytes present in lung tissue derived from pigs infused with TNF-alpha + IL-1 alpha. We conclude that PAF occupies a physiological role in modulating TNF-alpha + IL-1 alpha-induced hemoconcentration, the early changes in pulmonary hemodynamics, and the later alterations in systemic hemodynamics.
APA, Harvard, Vancouver, ISO, and other styles
38

Akaike, Masashi, Wenyi Che, Nicole-Lerner Marmarosh, Shinsuke Ohta, Masaki Osawa, Bo Ding, Bradford C. Berk, Chen Yan, and Jun-ichi Abe. "The Hinge-Helix 1 Region of Peroxisome Proliferator-Activated Receptor γ1 (PPARγ1) Mediates Interaction with Extracellular Signal-Regulated Kinase 5 and PPARγ1 Transcriptional Activation: Involvement in Flow-Induced PPARγ Activation in Endothelial Cells." Molecular and Cellular Biology 24, no. 19 (October 1, 2004): 8691–704. http://dx.doi.org/10.1128/mcb.24.19.8691-8704.2004.

Full text
Abstract:
ABSTRACT Peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that form a subfamily of the nuclear receptor gene family. Since both flow and PPARγ have atheroprotective effects and extracellular signal-regulated kinase 5 (ERK5) kinase activity is significantly increased by flow, we investigated whether ERK5 kinase regulates PPARγ activity. We found that activation of ERK5 induced PPARγ1 activation in endothelial cells (ECs). However, we could not detect PPARγ phosphorylation by incubation with activated ERK5 in vitro, in contrast to ERK1/2 and JNK, suggesting a role for ERK5 as a scaffold. Endogenous PPARγ1 was coimmunoprecipitated with endogenous ERK5 in ECs. By mammalian two-hybrid analysis, we found that PPARγ1 associated with ERK5a at the hinge-helix 1 region of PPARγ1. Expressing a hinge-helix 1 region PPARγ1 fragment disrupted the ERK5a-PPARγ1 interaction, suggesting a critical role for hinge-helix 1 region of PPARγ in the ERK5-PPARγ interaction. Flow increased ERK5 and PPARγ1 activation, and the hinge-helix 1 region of the PPARγ1 fragment and dominant negative MEK5β significantly reduced flow-induced PPARγ activation. The dominant negative MEK5β also prevented flow-mediated inhibition of tumor necrosis factor alpha-mediated NF-κB activation and adhesion molecule expression, including vascular cellular adhesion molecule 1 and E-selectin, indicating a physiological role for ERK5 and PPARγ activation in flow-mediated antiinflammatory effects. We also found that ERK5 kinase activation was required, likely by inducing a conformational change in the NH2-terminal region of ERK5 that prevented association of ERK5 and PPARγ1. Furthermore, association of ERK5a and PPARγ1 disrupted the interaction of SMRT and PPARγ1, thereby inducing PPARγ activation. These data suggest that ERK5 mediates flow- and ligand-induced PPARγ activation via the interaction of ERK5 with the hinge-helix 1 region of PPARγ.
APA, Harvard, Vancouver, ISO, and other styles
39

Pacheva, Iliyana, and Ivan Ivanov. "Targeted Biomedical Treatment for Autism Spectrum Disorders." Current Pharmaceutical Design 25, no. 41 (January 8, 2020): 4430–53. http://dx.doi.org/10.2174/1381612825666191205091312.

Full text
Abstract:
Background: A diagnosis of autism spectrum disorders (ASD) represents presentations with impairment in communication and behaviour that vary considerably in their clinical manifestations and etiology as well as in their likely pathophysiology. A growing body of data indicates that the deleterious effect of oxidative stress, mitochondrial dysfunction, immune dysregulation and neuroinflammation, as well as their interconnections are important aspects of the pathophysiology of ASD. Glutathione deficiency decreases the mitochondrial protection against oxidants and tumor necrosis factor (TNF)-α; immune dysregulation and inflammation inhibit mitochondrial function through TNF-α; autoantibodies against the folate receptors underpin cerebral folate deficiency, resulting in disturbed methylation, and mitochondrial dysfunction. Such pathophysiological processes can arise from environmental and epigenetic factors as well as their combined interactions, such as environmental toxicant exposures in individuals with (epi)genetically impaired detoxification. The emerging evidence on biochemical alterations in ASD is forming the basis for treatments aimed to target its biological underpinnings, which is of some importance, given the uncertain and slow effects of the various educational interventions most commonly used. Methods: Literature-based review of the biomedical treatment options for ASD that are derived from established pathophysiological processes. Results: Most proposed biomedical treatments show significant clinical utility only in ASD subgroups, with specified pre-treatment biomarkers that are ameliorated by the specified treatment. For example, folinic acid supplementation has positive effects in ASD patients with identified folate receptor autoantibodies, whilst the clinical utility of methylcobalamine is apparent in ASD patients with impaired methylation capacity. Mitochondrial modulating cofactors should be considered when mitochondrial dysfunction is evident, although further research is required to identify the most appropriate single or combined treatment. Multivitamins/multiminerals formulas, as well as biotin, seem appropriate following the identification of metabolic abnormalities, with doses tapered to individual requirements. A promising area, requiring further investigations, is the utilization of antipurinergic therapies, such as low dose suramin. Conclusion: The assessment and identification of relevant physiological alterations and targeted intervention are more likely to produce positive treatment outcomes. As such, current evidence indicates the utility of an approach based on personalized and evidence-based medicine, rather than treatment targeted to all that may not always be beneficial (primum non nocere).
APA, Harvard, Vancouver, ISO, and other styles
40

Markewitz, B. A., J. R. Michael, and D. E. Kohan. "Endothelin-1 inhibits the expression of inducible nitric oxide synthase." American Journal of Physiology-Lung Cellular and Molecular Physiology 272, no. 6 (June 1, 1997): L1078—L1083. http://dx.doi.org/10.1152/ajplung.1997.272.6.l1078.

Full text
Abstract:
Because nitric oxide (NO.) and endothelin (ET)-1 frequently have opposing effects on physiological and inflammatory processes, we sought to determine whether ET-1 regulates NO. synthesis by the inducible isoform of NO. synthase (iNOS). L2 cells are a rat lung epithelial cell line that synthesizes ET-1 and in which ET-1 has an autocrine role. In the current study, we demonstrate that L2 cells generate the oxidative products of NO., nitrite and nitrate, after exposure to tumor necrosis factor-alpha, lipopolysaccharide, and interferon-gamma. Exposure to these cytokines also dramatically increases the expression of iNOS mRNA. NG-monomethyl-L-arginine, dexamethasone, and cycloheximide prevent the cytokine-mediated increase in NO. oxidative products, demonstrating that iNOS accounts for their generation. Because L2 cells synthesize ET-1, to test the effect of removing endogenous ET-1, we used phosphoramidon (an ET-converting enzyme inhibitor) or BQ-123 (an ET receptor A antagonist). Removal of endogenous ET-1 with either phosphoramidon or BQ-123 significantly augments cytokine-stimulated NO. synthesis by approximately 20%. To further test the effect of ET-1 on iNOS, we treated cells with phosphoramidon to inhibit endogenous ET-1 synthesis and then administered ET-1 (10(-9) to 10(-7) M). In this setting, ET-1 significantly decreases inducible NO. production by 33% and iNOS mRNA by 50%. We conclude that ET-1 can decrease inducible NO. synthesis by cytokine-stimulated lung epithelial cells.
APA, Harvard, Vancouver, ISO, and other styles
41

Rasmuson, Sigbritt, Birgitta Näsman, and Tommy Olsson. "Increased serum levels of dehydroepiandrosterone (DHEA) and interleukin-6 (IL-6) in women with mild to moderate Alzheimer's disease." International Psychogeriatrics 23, no. 9 (May 18, 2011): 1386–92. http://dx.doi.org/10.1017/s1041610211000810.

Full text
Abstract:
ABSTRACTBackground: It has been suggested that hypercortisolism contributes to the pathophysiology of Alzheimer's disease (AD), based on the fact that excess glucocorticoid exposure has potent adverse effects on the central nervous system. In contrast, dehydroepiandrosterone (DHEA) has been linked to a broad range of beneficial physiological effects including neuronal excitability and neuroprotection and even memory enhancing properties. Of note, proinflammatory cytokines are present in neuritic plaques (a hallmark of AD) and may regulate cortisol/DHEA release. In this exploratory study, we hypothesized that there is a flattened diurnal curve of cortisol and DHEA in mild to moderate AD, linked to increased cytokine levels.Methods: Diurnal profiles of cortisol, adrenocorticotropic hormone (ACTH), and DHEA were studied in 15 patients with mild to moderate AD (7 men and 8 women, 75.6 ± 5.5 years) and 15 healthy elderly controls (7 men and 8 women, 73.3 ± 5.8 years, respectively). Interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and soluble TNF receptors were analyzed.Results: Women with AD had significantly increased morning levels of ACTH, DHEA, and IL-6 compared to healthy elderly women. Cortisol levels were significantly increased in men with AD at 0300 h versus healthy elderly men, in spite of slightly decreased ACTH levels.Conclusions: Our data suggest important sex differences in hypothalamic–pituitary–adrenal (HPA) axis regulation and steroid hormone clearance in patients with AD. Increased secretion of IL-6 may have a contributory role in this difference.
APA, Harvard, Vancouver, ISO, and other styles
42

Palacios-Ortega, Sara, Maider Varela-Guruceaga, Miriam Algarabel, Fermín Ignacio Milagro, J. Alfredo Martínez, and Carlos de Miguel. "Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes." Cellular Physiology and Biochemistry 36, no. 4 (2015): 1499–516. http://dx.doi.org/10.1159/000430314.

Full text
Abstract:
Background/Aims: Tumor necrosis factor-α (TNF-α)-mediated chronic low-grade inflammation of adipose tissue is associated with obesity and insulin resistance. Caveolin-1 (Cav-1) is the central component of adipocyte caveolae and has an essential role in the regulation of insulin signaling. The effects of TNF-α on Cav-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes were studied. Methods: 3T3-L1 cells were differentiated (21 days) in the presence TNF-α (10 ng/mL) and mature adipocytes were also treated with TNF-α for 48 hours. Cav-1 and insulin receptor (IR) gene methylation were determined as well as Cav-1, IR, PKB/AKT-2 and Glut-4 expression and activation by real time RT-PCR and western blot. Baseline and insulin-induced glucose uptake was measured by the 2-[C14]-deoxyglucose uptake assay. Results: TNF-α slowed down the differentiation program, hindering the expression of some insulin signaling intermediates without fully eliminating insulin-mediated glucose uptake. In mature adipocytes, TNF-α did not compromise lipid-storage capacity, but downregulated the expression of the insulin signaling intermediates, totally blocking insulin-mediated glucose uptake. Insulin sensitivity correlated with the level of activated phospho-Cav-1 in both situations, strongly suggesting the direct contribution of Cav-1 to the maintenance of this physiological response. Conclusion: Cav-1 activation by phosphorylation seems to be essential for the maintenance of an active and insulin-sensitive glucose uptake.
APA, Harvard, Vancouver, ISO, and other styles
43

Anandam, Kasin Yadunandam, Omar A. Alwan, Veedamali S. Subramanian, Padmanabhan Srinivasan, Rubina Kapadia, and Hamid M. Said. "Effect of the proinflammatory cytokine TNF-α on intestinal riboflavin uptake: inhibition mediated via transcriptional mechanism(s)." American Journal of Physiology-Cell Physiology 315, no. 5 (November 1, 2018): C653—C663. http://dx.doi.org/10.1152/ajpcell.00295.2018.

Full text
Abstract:
Riboflavin (RF), is essential for normal cellular metabolism/function. Intestinal RF absorption occurs via a specific carrier-mediated process that involves the apical transporter RFVT-3 ( SLC52A3) and the basolateral RFVT-1 (SLC52A1). Previously, we characterized different cellular/molecular aspects of the intestinal RF uptake process, but nothing is known about the effect of proinflammatory cytokines on the uptake event. We addressed this issue using in vitro, ex vivo, and in vivo models. First, we determined the level of mRNA expression of the human (h)RFVT-3 and hRFVT-1 in intestinal tissue of patients with inflammatory bowel disease (IBD) and observed a markedly lower level compared with controls. In the in vitro model, exposing Caco-2 cells to tumor necrosis factor-α (TNF-α) led to a significant inhibition in RF uptake, an effect that was abrogated upon knocking down TNF receptor 1 (TNFR1). The inhibition in RF uptake was associated with a significant reduction in the expression of hRFVT-3 and -1 protein and mRNA levels, as well as in the activity of the SLC52A3 and SLC52A1 promoters. The latter effects appear to involve Sp1 and NF-κB sites in these promoters. Similarly, exposure of mouse small intestinal enteroids and wild-type mice to TNF-α led to a significant inhibition in physiological and molecular parameters of intestinal RF uptake. Collectively, these findings demonstrate that exposure of intestinal epithelial cells to TNF-α leads to inhibition in RF uptake and that this effect is mediated, at least in part, via transcriptional mechanism(s). These findings may explain the significantly low RF levels observed in patients with IBD.
APA, Harvard, Vancouver, ISO, and other styles
44

Cauwels, Anje, Emmanuel S. Buys, Robrecht Thoonen, Lisa Geary, Joris Delanghe, Sruti Shiva, and Peter Brouckaert. "Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase–dependent manner." Journal of Experimental Medicine 206, no. 13 (November 23, 2009): 2915–24. http://dx.doi.org/10.1084/jem.20091236.

Full text
Abstract:
Nitrite (NO2−), previously viewed as a physiologically inert metabolite and biomarker of the endogenous vasodilator NO, was recently identified as an important biological NO reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodilation, and cytoprotection after ischemia–reperfusion injury. Reduction of nitrite to NO may occur enzymatically at low pH and oxygen tension by deoxyhemoglobin, deoxymyoglobin, xanthine oxidase, mitochondrial complexes, or NO synthase (NOS). We show that nitrite treatment, in sharp contrast with the worsening effect of NOS inhibition, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in a mouse shock model induced by a lethal tumor necrosis factor challenge. Mechanistically, nitrite-dependent protection was not associated with inhibition of mitochondrial complex I activity, as previously demonstrated for ischemia–reperfusion, but was largely abolished in mice deficient for the soluble guanylate cyclase (sGC) α1 subunit, one of the principal intracellular NO receptors and signal transducers in the cardiovasculature. Nitrite could also provide protection against toxicity induced by Gram-negative lipopolysaccharide, although higher doses were required. In conclusion, we show that nitrite can protect against toxicity in shock via sGC-dependent signaling, which may include hypoxic vasodilation necessary to maintain microcirculation and organ function, and cardioprotection.
APA, Harvard, Vancouver, ISO, and other styles
45

Avanzi, Gian Carlo, Margherita Gallicchio, Flavia Bottarel, Loretta Gammaitoni, Giuliana Cavalloni, Donatella Buonfiglio, Manuela Bragardo, et al. "GAS6 Inhibits Granulocyte Adhesion to Endothelial Cells." Blood 91, no. 7 (April 1, 1998): 2334–40. http://dx.doi.org/10.1182/blood.v91.7.2334.

Full text
Abstract:
Abstract GAS6 is a ligand for the tyrosine kinase receptors Rse, Axl, and Mer, but its function is poorly understood. Previous studies reported that both GAS6 and Axl are expressed by vascular endothelial cells (EC), which play a key role in leukocyte extravasation into tissues during inflammation through adhesive interactions with these cells. The aim of this work was to evaluate the GAS6 effect on the adhesive function of EC. Treatment of EC with GAS6 significantly inhibited adhesion of polymorphonuclear cells (PMN) induced by phorbol 12-myristate 13-acetate (PMA), platelet-activating factor (PAF), thrombin, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but not that induced by FMLP and IL-8. GAS6 did not affect adhesion to resting EC. Titration experiments showed that high concentrations of GAS6 were needed to inhibit PMN adhesion and that inhibition was dose-dependent at the concentration range of 0.1 to 1 μg/mL. One possibility was that high concentrations were needed to overwhelm the effect of endogenous GAS6 produced by EC. In line with this possibility, treatment of resting EC with soluble Axl significantly potentiated PMN adhesion. Analysis of localization of GAS6 by confocal microscopy and cytofluorimetric analysis showed that it is concentrated along the plasma membrane in resting EC and treatment with PAF induces depletion and/or redistribution of the molecule. These data suggest that GAS6 functions as a physiologic antiinflammatory agent produced by resting EC and depleted when proinflammatory stimuli turn on the proadhesive machinery of EC.
APA, Harvard, Vancouver, ISO, and other styles
46

Avanzi, Gian Carlo, Margherita Gallicchio, Flavia Bottarel, Loretta Gammaitoni, Giuliana Cavalloni, Donatella Buonfiglio, Manuela Bragardo, et al. "GAS6 Inhibits Granulocyte Adhesion to Endothelial Cells." Blood 91, no. 7 (April 1, 1998): 2334–40. http://dx.doi.org/10.1182/blood.v91.7.2334.2334_2334_2340.

Full text
Abstract:
GAS6 is a ligand for the tyrosine kinase receptors Rse, Axl, and Mer, but its function is poorly understood. Previous studies reported that both GAS6 and Axl are expressed by vascular endothelial cells (EC), which play a key role in leukocyte extravasation into tissues during inflammation through adhesive interactions with these cells. The aim of this work was to evaluate the GAS6 effect on the adhesive function of EC. Treatment of EC with GAS6 significantly inhibited adhesion of polymorphonuclear cells (PMN) induced by phorbol 12-myristate 13-acetate (PMA), platelet-activating factor (PAF), thrombin, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but not that induced by FMLP and IL-8. GAS6 did not affect adhesion to resting EC. Titration experiments showed that high concentrations of GAS6 were needed to inhibit PMN adhesion and that inhibition was dose-dependent at the concentration range of 0.1 to 1 μg/mL. One possibility was that high concentrations were needed to overwhelm the effect of endogenous GAS6 produced by EC. In line with this possibility, treatment of resting EC with soluble Axl significantly potentiated PMN adhesion. Analysis of localization of GAS6 by confocal microscopy and cytofluorimetric analysis showed that it is concentrated along the plasma membrane in resting EC and treatment with PAF induces depletion and/or redistribution of the molecule. These data suggest that GAS6 functions as a physiologic antiinflammatory agent produced by resting EC and depleted when proinflammatory stimuli turn on the proadhesive machinery of EC.
APA, Harvard, Vancouver, ISO, and other styles
47

Dzjuba, O. I., and M. V. Yatsenko. "Ecological and physiological as well as biochemical properties of representatives of the Genus sedum L." Ecology and Noospherology 25, no. 3-4 (October 15, 2014): 24–33. http://dx.doi.org/10.15421/031417.

Full text
Abstract:
The article deals with the history of the study and the current state of research of physiological and biochemical properties of the plant genus Sedum that are useful for human and has been used in folk medicine for many years. It was noticed that antioxidant properties of extracts from plants S. sarmentosum, S. sempervivoides, S. takesimense were caused by the presence of phenolic compounds. Methanol extract of plants S. takesimense exhibited strong scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals as well as significant inhibitory effects on lipid peroxidation and low density lipoprotein (LDL) oxidation induced by a metal ion Cu2+. Various immunomodulatory activities of various fractions of plants extracts (S. dendroideum, S. kamtschaticum, S. sarmentosum, S. telephium) are observed. It was shown that the ethanol extract of S. sarmentosum and it’s fractions suppressed specific antibody and cellular responses to ovalbumin in mice. The methanol extract of plants S. sarmentosum reduced the levels of anti-inflammatory markers, such as volume of exudates, number of polymorphonuclear leukocytes, suppressed nitric oxide synthesis in activated macrophages via suppressed induction of inducible nitric oxide synthase (iNOS). Polysaccharides fractions from plants S. telephium inducing productions of tumor necrosis factor alpha (TNF-α), increasing the intensity of phagocytosis in vitro and in vivo. Methanol extract from the whole part of S. kamtschaticum strongly inhibit PGE2 production from lipopolysaccharide-induced RAW 264.7 cells, a mouse macrophage cell line via modulating activity in gene expression of the enzyme cyclooxygenase-2 (COX-2). The methanol extract of plants S. sarmentosum and the major kaempferol glycosides from S. dendroideum have antinociceptive activity. It was noticed that anti-adipogenic activity of extracts from plants S. kamtschaticum were caused by inhibition of peroxisome-proliferator-activated receptor γ (PPARγ) expression and it’s dependent target genes, such as genes encoding adipocyte protein 2 (аР2), lipoprotein lipase (LPL), adiponectin and CD36. Polysaccharides fractions from S. telephium cause inhibition of cell adhesion of human fibroblast (MRC5) to laminin and fibronectin via interfere with integrin-mediated cell behaviour and they contributed to the role of polysaccharides in cell-matrix interaction. The methanol extract of plants S. sarmentosum exhibited a significant inhibitory activity in the chick embryo chorioallantoic membrane angiogenesis in a dose-dependent manner. The crude alkaloid fraction of S. sarmentosum caused a dose-dependent inhibition of cell proliferation on murine hepatoma cell line BNL CL.2 and human hepatoma cell line HepG2 without necrosis or apoptosis. Alkaloids from plants S. sarmentosum may improve survival of hepatoma patients via the inhibition of excessive growth of tumor cells. Plant’s juices have antiviral activity (S. sarmentosum, S. spurium, S. stahlii). Crude ethanol extract S. praealtum have spermicidal activity of the in mice and a relevant inhibitory effect of aqueous extract on human spermatozoa motility as well as an anti-fertilizing activity in rats. Hepatoprotective triterpenes, e.g., δ-amyrone, 3-epi-δ-amyrin, δ-amyrin and sarmentolin were isolated from S. sarmentosum. 2- and 2,6-substituted piperidine alkaloids (e.g., norsedamine, allosedridine, sedamine, allosedamine) are observed in plants S. acre, which in the presence of data on the use of pyridine and piperidine derivatives for treating neurodegenerative diseases (e.g., Alzheimer's disease), points on the promising research in this area. Taking into account that biologically active compounds are accumulated in the aboveground vegetative organs of plants of Sedum, the prospects of further study of the use of Sedum for the purposes of biotechnology and in the pharmaceutical industry becomes apparent. This work extends the existing views regarding the use of plants Sedum.
APA, Harvard, Vancouver, ISO, and other styles
48

Suresh, Reshma, Perayil Jayachandran, Angel Fenol, Raja Biswas, Sajitha Krishnan, K. Aswini Kumar, Darshan Devang Divakar, and Sajith Vellappally. "Effect of Non-Surgical Periodontal Therapy on the Serum Sialic Acid Levels in Diabetic Patients with Periodontitis." Acta Medica (Hradec Kralove, Czech Republic) 62, no. 3 (2019): 109–16. http://dx.doi.org/10.14712/18059694.2019.134.

Full text
Abstract:
Sialic acid (SA), a family of acetylated derivatives of neuraminic acid, an acute phase reactant by itself. It usually occurs as a terminal component at the non-reducing end of carbohydrate chains of glycoproteins and glycolipids. SA participates in multiple physiological functions, such as cell-to-cell interactions, cell migration and proliferation. Diabetes mellitus (DM) is a chronic metabolic disorder characterized by rise in blood glucose level. Periodontitis is a chronic inflammatory disease of the periodontal tissue, leading to destruction of bone surrounding the tooth and ultimately tooth loss. There is a two way relationship between diabetes mellitus and periodontitis. Periodontitis is the sixth complication of diabetes along with retinopathy, nephropathy, neuropathy, macrovascular disease, and altered wound healing. Inflammatory mediators like interleukin-6 and tumor necrosis factor-alpha produced during periodontal inflammation can interfere with the actions of insulin receptors and worsen the glycemic control of diabetic patients. Periodontitis is a major cause of tooth loss, affecting over 300 million people and bacteria associated with periodontitis are also linked with systemic problems like endocarditis, atherosclerosis. Recent work has highlighted a major role for the host sugar sialic acid in the biofilm physiology and host-pathogen interactions of T. forsithya, a key periodontal pathogen. There exists a need for a biomarker, for early detection of disease evolution and more robust therapy efficacy measurements. Serum sialic acids were estimated in Indian population by diphenylamine method and Thiobarbituric acid method. The average values were 68 ± 2.6 mg percent by DPA method and 56 ± 5 mg percent by TBA (thiobarbituric acid assay) method. Age and sex showed no influence on serum sialic acid level. Objectives of the present study was to compare (TSSA) level in healthy subjects, subjects with (CMP) with and without (NIDDM) and its effect on non-surgical periodontal therapy. In the present study, the participants were divided into three groups: Group A, B and C. Group A consists of systemically healthy subjects, Group B consists of subjects with (CMP) while Group C consists of subjects with (CMP) with (NIDDM) and results of this study indicated that, at baseline, there were significant differences between Group A, B and Group C with respect to all the clinical parameters, including (GI), (OHI-S), (PPD), (CAL), (TSSA) and (HbA1c) levels. Thus (TSSA) level could be considered as novel biomarker in the progression of periodontal disease and diabetic status. Periodontitis could be considered as a potential, modifiable, and independent risk factor for the development of diabetes. Early detection of elevated (TSSA) level may help in interpreting the progression of periodontitis, risk of development of diabetes mellitus in future and also to prevent complications.
APA, Harvard, Vancouver, ISO, and other styles
49

Shamji, Mohammed F., Odelia Ghodsizadeh, Allan H. Friedman, William J. Richardson, Ashutosh Chilkoti, and Lori A. Setton. "Development of a thermally responsive peptide for sustained deliver of solyble TNF receptor II to attenuate inflammatory events associated with radiculopathys." Clinical & Investigative Medicine 30, no. 4 (August 1, 2007): 94. http://dx.doi.org/10.25011/cim.v30i4.2873.

Full text
Abstract:
Background: Tumor necrosis factor alpha (TNFα) is a cytokine that may mediate inflammatory histopathology of the dorsal root ganglion following lumbar disc herniation.1 Soluble TNF receptor II (sTNFRII) competitively binds TNFa with clinical value for painful radiculopathy.2 Bioactive peptides expressed with elastin-like polypeptides (ELP) fusion partners gain a thermally responsive domain, by which they can undergo hydrophobic collapse and separate from solution to aggregate at physiological temperatures.3 Protein release from such a depot may locally sustain drug presence, an effect demonstrated for non-fusion ELP after intra-articular injection.4 Methods: We expressed sTNFRII fused to ELP to demonstrate potential bidomain functionality. Protein Expression. A gene encoding ELP-(VPGVG)60 was subcloned adjacent to the sTNFRII and transformed into E.coli for expression.5 Protein Safety. Endotoxin content of purified fusion protein was evaluated using a limulus amebocyte lysate endpoint assay and compared to non-fusion ELP using a two-tailed Student’s t-test. Thermal Responsiveness. Dynamic light scattering evaluated the inverse thermal phase transition behaviour of ELP-sTNFRII, and absorbance spectrophotometry quantified the in vitro depot release at 37°C. Fusion Domain Function. Anti-TNFα bioactivity was assessed by the in vitro inhibition of TNFα-induced glutamate production by microglia. Single-factor ANOVA analyzed treatment differences for ELP-sTNFRII, commercial sTNFRII (positive control), and non-fusion ELP (negative control). A 44 kDa recombinant fusion protein was expressed from E. coli and purified by inverse transition cycling. Results: Measured endotoxin content for ELP-sTNFRII was comparable to ELP alone (p < 0.01), well below FDA levels for biomedical implants. The fusion protein underwent a thermally-induced phase transition and formed observable aggregates of ~240 nm upon heating to physiological temperatures (Tt = 32°C). Slow release was observed from this depot with a time constant of 21 ± 3 hours. The fusion protein demonstrated anti-TNFα activity in vitro by attenuating TNFα-induced microglial glutamate production, albeit requiring a greater concentration than the free antagonist to achieve the same effect.(p < 0.01). Conclusion: Fusion of a sTNFRII protein to an ELP can serve to generate a thermally-induced drug depot that may sustain anti-cytokine activity of agents delivered locally to a nerve region. Further directions may involve studying in vivo biodistribution after perineural delivery of ELP and in vivo disease modifying activity of this agent.
APA, Harvard, Vancouver, ISO, and other styles
50

Le Clorennec, Christophe, Tan-Sothéa Ouk, Ibtissam Youlyouz-Marfak, Stéphanie Panteix, Catherine-Claude Martin, Julia Rastelli, Eric Adriaenssens, et al. "Molecular Basis of Cytotoxicity of Epstein-Barr Virus (EBV) Latent Membrane Protein 1 (LMP1) in EBV Latency III B Cells: LMP1 Induces Type II Ligand-Independent Autoactivation of CD95/Fas with Caspase 8-Mediated Apoptosis." Journal of Virology 82, no. 13 (April 30, 2008): 6721–33. http://dx.doi.org/10.1128/jvi.02250-07.

Full text
Abstract:
ABSTRACT The Epstein-Barr virus (EBV) oncoprotein latent membrane protein 1 (LMP1) is thought to act as the major transforming protein in various cell types, by rerouting the tumor necrosis factor receptor family signaling pathway. Despite this implication in EBV-associated transformation of cells, LMP1 toxicity is a well-known but poorly studied feature, perhaps because it contradicts its role in transformation. We show that LMP1 physiological levels are very heterogeneous and that the highest levels of LMP1 correlate with Fas overexpression and spontaneous apoptosis in lymphoblastoid cell lines (LCLs). To understand the cytotoxic effect of LMP1 in LCLs, we cloned wild-type LMP1 into a doxycycline double-inducible episomal vector pRT-1, with a truncated version of NGFR as a surrogate marker of inducibility. We found that LMP1 overexpression induced apoptosis in LCL B cells, as shown by annexin V labeling, sub-G1 peak, and poly(ADP ribose) polymerase cleavage. Knocking down Fas expression by small interfering RNA abolished LMP1-induced apoptosis. The absence of detectable levels of Fas ligand mRNA suggested a ligand-independent activation of Fas. LMP1 induced Fas overexpression with its relocalization in lipid raft microdomains of the membrane. Fas immunoprecipitation detected FADD (Fas-associated death domain protein) and caspase 8, suggesting a Fas-dependent formation of the death-inducing signaling complex. Caspases 8, 9, 3, and 7 were activated by LMP1. Caspase 8 activation was associated with BID cleavage and truncated-BID mitochondrial relocalization, consistent with type II apoptosis. Therefore, our results are in agreement with a model where LMP1-dependent NF-κB activation induces Fas overexpression and autoactivation that could overwhelm the antiapoptotic effect of NF-κB, revealing an ambivalent function of LMP1 in cell survival and programmed cell death.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography