To see the other types of publications on this topic, follow the link: Tully-Fisher relation.

Journal articles on the topic 'Tully-Fisher relation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tully-Fisher relation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tully, Richard. "Tully-Fisher relation." Scholarpedia 2, no. 12 (2007): 4485. http://dx.doi.org/10.4249/scholarpedia.4485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

M. ALI, AKRAM. "TULLY - FISHER RELATION PROOFING." Journal of University of Anbar for Pure Science 3, no. 3 (December 1, 2009): 177–83. http://dx.doi.org/10.37652/juaps.2009.15642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gurovich, Sebastián, Stacy S. McGaugh, Ken C. Freeman, Helmut Jerjen, Lister Staveley-Smith, and W. J. G. De Blok. "The Baryonic Tully–Fisher Relation." Publications of the Astronomical Society of Australia 21, no. 4 (2004): 412–14. http://dx.doi.org/10.1071/as04038.

Full text
Abstract:
AbstractWe validate the baryonic Tully–Fisher (TF) relation by exploring the Tully–Fisher (TF) and BTF properties of optically and Hi-selected disk galaxies. The data includes galaxies from Sakai et al. (2000) calibrator sample, McGaugh et al. (2000: M2000) I-band sample, and 18 newly acquired Hi-selected field dwarf galaxies observed with the ANU 2.3-m telescope and the ATNF Parkes telescope (Gurovich 2005a).As in M2000, we re-cast the TF and BTF relations as relationships between baryon mass and W20. First we report some numerical errors in M2000. Then, we calculate weighted bi-variate linear fits to the data, and finally we compare the fits of the intrinsically fainter dwarfs with the brighter galaxies of Sakai et al. (2000). With regards to the local calibrator disk galaxies of Sakai et al. (2000), our results suggest that the BTF relation is indeed tighter than the TF relation and that the slopes of the BTF relations are statistically flatter than the equivalent TF relations. Further, for the fainter galaxies which include the I-band M2000 and Hi-selected galaxies of Gurovich's sample, we calculate a break from a simple power law model because of what appears to be real cosmic scatter. Not withstanding this point, the BTF models are marginally better models than the equivalent TF ones with slightly smaller Χred2 values.
APA, Harvard, Vancouver, ISO, and other styles
4

McGaugh, S. S., J. M. Schombert, G. D. Bothun, and W. J. G. de Blok. "The Baryonic Tully-Fisher Relation." Astrophysical Journal 533, no. 2 (April 20, 2000): L99—L102. http://dx.doi.org/10.1086/312628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meyer, Martin J., Martin A. Zwaan, Rachel L. Webster, and Stephen E. Schneider. "Tully-Fisher Relations from an HI-Selected Sample." Symposium - International Astronomical Union 220 (2004): 411–12. http://dx.doi.org/10.1017/s0074180900183731.

Full text
Abstract:
The Tully-Fisher relation is of interest because of its use as a secondary distance measure and the constraints it places on the physics of rotationally supported galaxies. We use data from the HI Parkes All-Sky Survey Catalogue to study and apply the Tully-Fisher relation on a sample of galaxies selected on their HI properties. the issues of third parameter dependencies and intrinsic scatter of the Tully-Fisher relation are investigated.
APA, Harvard, Vancouver, ISO, and other styles
6

de Oliveira, Claudia Mendes, Sergio Torres-Flores, Philippe Amram, Henri Plana, and Benoit Epinat. "3D Studies of Galaxies in Compact Groups." Proceedings of the International Astronomical Union 10, S309 (July 2014): 175–77. http://dx.doi.org/10.1017/s1743921314009612.

Full text
Abstract:
AbstractFabry-Perot data of compact group galaxies have been used to show that the Tully-Fisher relation in any photometric band, for galaxies with vmax > 100 km/s, is very similar to that for galaxies in other less dense environments. In the low-luminosity end, however, a few compact group galaxies fall above the relation apparently because they are too bright for their mass. Here we show that if the mass is properly computed from spectral energy distribution fitting or mass modelling, for the low-luminosity galaxies, their positions in the stellar-mass or baryonic Tully-Fisher relation are what is expected for a normal Tully-Fisher relation and the outlying positions observed in the B and K Tully-Fisher relation could be explained by brightening of the low-luminosity interacting galaxies due to strong star formation or AGN activity.
APA, Harvard, Vancouver, ISO, and other styles
7

Pfenniger, D., and Y. Revaz. "The Baryonic Tully-Fisher relation revisited." Astronomy & Astrophysics 431, no. 2 (February 2005): 511–16. http://dx.doi.org/10.1051/0004-6361:20041660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Andersen, David R., and Matthew A. Bershady. "A Face-on Tully-Fisher Relation." Astrophysical Journal 599, no. 2 (December 12, 2003): L79—L82. http://dx.doi.org/10.1086/381292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ferrero, Ismael, and Mario G. Abadi. "Redshift evolution of Tully-Fisher relation." Proceedings of the International Astronomical Union 11, S321 (March 2016): 126. http://dx.doi.org/10.1017/s1743921316009054.

Full text
Abstract:
AbstractUsing the eagle cosmological simulation of galaxy formation we test the ability of the ΛCDM cosmological model to reproduce the Tully-Fisher relation (TFR) and its redshift evolution. We find that our simulated galaxies follow a TFR that is in good agreement with observed results up to z = 1, indicating no evolution in the slope and a weak decrease in the zero-point.
APA, Harvard, Vancouver, ISO, and other styles
10

Mould, Jeremy, Mingsheng Han, and Greg Bothun. "Nonlinearity of the Tully-Fisher relation." Astrophysical Journal 347 (December 1989): 112. http://dx.doi.org/10.1086/168101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Metevier, Anne J., and David C. Koo. "The Tully-Fisher Relation in Cl0024+1654 at z=0.4." Symposium - International Astronomical Union 220 (2004): 415–16. http://dx.doi.org/10.1017/s0074180900183755.

Full text
Abstract:
We present the Tully-Fisher relation in cluster Cl0024+1654 at z=0.4. We find that our sample of 15 distant cluster members are ⋐ 0.5 mag overluminous as compared to local galaxies, and they exhibit slightly more Tully-Fisher scatter. This scatter is correlated with galaxy colours and sizes such that the smallest and bluest Cl0024 members in our sample are most overluminous.
APA, Harvard, Vancouver, ISO, and other styles
12

De Rossi, María E., Patricia B. Tissera, and Susana E. Pedrosa. "The Tully-Fisher Relation in Numerical Simulations of Structure Formation." Proceedings of the International Astronomical Union 5, S262 (August 2009): 327–28. http://dx.doi.org/10.1017/s1743921310003078.

Full text
Abstract:
AbstractThe Tully-Fisher Relation (TFR) is of fundamental importance for galaxy formation as it provides information about the relation between the baryonic content of galaxies and the depth of their dark halos potential wells. In recent years, it has been possible to study this relation at different redshifts. However, there are still controversies about its origin and evolution. In this work, we try to address the origin of the Tully-Fisher Relation by employing cosmological hydrodynamical simulations.
APA, Harvard, Vancouver, ISO, and other styles
13

Böhm, A., B. L. Ziegler, R. P. Saglia, R. Bender, K. J. Fricke, A. Gabasch, J. Heidt, D. Mehlert, S. Noll, and S. Seitz. "The Tully-Fisher relation at intermediate redshift." Astronomy & Astrophysics 420, no. 1 (May 14, 2004): 97–114. http://dx.doi.org/10.1051/0004-6361:20034256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Persic, M., and P. Salucci. "Non-linearity of the Tully-Fisher relation." Monthly Notices of the Royal Astronomical Society 248, no. 2 (January 15, 1991): 325–27. http://dx.doi.org/10.1093/mnras/248.2.325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Neistein, Eyal, Dan Maoz, Hans-Walter Rix, and John L. Tonry. "A Tully-Fisher Relation for S0 Galaxies." Astronomical Journal 117, no. 6 (June 1999): 2666–75. http://dx.doi.org/10.1086/300869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Biviano, A., G. Giuricin, F. Mardirossian, and M. Mezzetti. "The Tully-Fisher relation in different environments." Astrophysical Journal Supplement Series 74 (October 1990): 325. http://dx.doi.org/10.1086/191502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yegorova, I., and P. Salucci. "The Tully-Fisher relation of spiral galaxies." Proceedings of the International Astronomical Union 1, no. C198 (March 2005): 267–68. http://dx.doi.org/10.1017/s174392130500390x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Giraud, E. "Distance Moduli from the Tully-Fisher Relation." Symposium - International Astronomical Union 124 (1987): 199–205. http://dx.doi.org/10.1017/s0074180900159157.

Full text
Abstract:
When the Bottinelli et al. version of the Tully-Fisher relation is applied to derive distances, and when the observed parameters are used to predict the Malmquist bias at a given distance, the observed variation of the Hubble ratio as a function of kinematic distance is about 2.5 times the predicted variation.
APA, Harvard, Vancouver, ISO, and other styles
19

Makarov, D. I., N. A. Zaitseva, and D. V. Bizyaev. "The Tully–Fisher relation for flat galaxies." Monthly Notices of the Royal Astronomical Society 479, no. 3 (June 20, 2018): 3373–80. http://dx.doi.org/10.1093/mnras/sty1629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Courteau, Stephane, and Hans‐Walter Rix. "Maximal Disks and the Tully‐Fisher Relation." Astrophysical Journal 513, no. 2 (March 10, 1999): 561–71. http://dx.doi.org/10.1086/306872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Courteau, Stephane, David R. Andersen, Matthew A. Bershady, Lauren A. MacArthur, and Hans‐Walter Rix. "The Tully‐Fisher Relation of Barred Galaxies." Astrophysical Journal 594, no. 1 (September 2003): 208–24. http://dx.doi.org/10.1086/376754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bedregal, A. G., A. Aragón-Salamanca, and M. R. Merrifield. "The Tully–Fisher relation for S0 galaxies." Monthly Notices of the Royal Astronomical Society 373, no. 3 (November 13, 2006): 1125–40. http://dx.doi.org/10.1111/j.1365-2966.2006.11031.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bureau, M., M. J. Williams, and M. Cappellari. "Lenticular vs spiral galaxies: dark matter content and the Tully-Fisher relation." Proceedings of the International Astronomical Union 5, H15 (November 2009): 82. http://dx.doi.org/10.1017/s1743921310008355.

Full text
Abstract:
We provide observational constraints on disk galaxy evolution for a sample of 28 local edge-on early-type (S0–Sb) disk galaxies. We do this in two ways: (i) we use simple dynamical modelling techniques to constrain their stellar and dark matter content (Williams et al. 2009) and (ii) we compare the zero points of the Tully-Fisher relations (TFRs; Tully & Fisher 1977) of the spirals and S0s.
APA, Harvard, Vancouver, ISO, and other styles
24

Karachentsev, Igor D., Elena I. Kaisina, and Olga G. Kashibadze (Nasonova). "THE LOCAL TULLY–FISHER RELATION FOR DWARF GALAXIES." Astronomical Journal 153, no. 1 (December 19, 2016): 6. http://dx.doi.org/10.3847/1538-3881/153/1/6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Freedman, Wendy L. "Local calibrators for the infrared Tully-Fisher relation." Astrophysical Journal 355 (June 1990): L35. http://dx.doi.org/10.1086/185732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sorce, Jenny G., Hélène M. Courtois, R. Brent Tully, Mark Seibert, Victoria Scowcroft, Wendy L. Freedman, Barry F. Madore, S. Eric Persson, Andy Monson, and Jane Rigby. "CALIBRATION OF THE MID-INFRARED TULLY-FISHER RELATION." Astrophysical Journal 765, no. 2 (February 20, 2013): 94. http://dx.doi.org/10.1088/0004-637x/765/2/94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gurovich, Sebastián, Kenneth Freeman, Helmut Jerjen, Lister Staveley-Smith, and Ivânio Puerari. "THE SLOPE OF THE BARYONIC TULLY-FISHER RELATION." Astronomical Journal 140, no. 3 (July 30, 2010): 663–76. http://dx.doi.org/10.1088/0004-6256/140/3/663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Koda, Jin, Yoshiaki Sofue, and Keiichi Wada. "On the Origin of the Tully‐Fisher Relation." Astrophysical Journal 532, no. 1 (March 20, 2000): 214–20. http://dx.doi.org/10.1086/308579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tiley, Alfred L., Martin Bureau, Amélie Saintonge, Selcuk Topal, Timothy A. Davis, and Kazufumi Torii. "The Tully–Fisher relation of COLD GASS Galaxies." Monthly Notices of the Royal Astronomical Society 461, no. 4 (June 28, 2016): 3494–515. http://dx.doi.org/10.1093/mnras/stw1545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Dickey, John M., and Ilya Kazes. "The Tully-Fisher relation for the CO line." Astrophysical Journal 393 (July 1992): 530. http://dx.doi.org/10.1086/171526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Amram, Philippe, Claudia Mendes De Oliveira, Henri Plana, and Chantal Balkowski. "The Tully-Fisher Relation for Hickson Compact Groups." Symposium - International Astronomical Union 220 (2004): 413–14. http://dx.doi.org/10.1017/s0074180900183743.

Full text
Abstract:
We investigate the properties of the B-band Tully-Fisher (TF) relation for 25 compact group galaxies, using Vmax derived from 2-D velocity maps. Our main result is that the majority of the Hickson Compact Group (HCG) galaxies lie on the TF relation, although with large scatter. However, 20% of the galaxies, including the lowest-mass systems, seem to have higher B luminosities, for a given mass, or alternatively, a mass which is too low for their luminosities. We favour the scenario of brightening of the outliers due to either enhanced star formation or merging, rather than truncation of the dark halo due to interactions, to explain the position of the outliers on the TF relation.
APA, Harvard, Vancouver, ISO, and other styles
32

Steinmetz, Matthias, and Julio F. Navarro. "The Cosmological Origin of the Tully‐Fisher Relation." Astrophysical Journal 513, no. 2 (March 10, 1999): 555–60. http://dx.doi.org/10.1086/306904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dutton, Aaron A. "The baryonic Tully-Fisher relation and galactic outflows." Monthly Notices of the Royal Astronomical Society 424, no. 4 (July 13, 2012): 3123–28. http://dx.doi.org/10.1111/j.1365-2966.2012.21469.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bamford, S. P., B. Milvang-Jensen, A. Aragón-Salamanca, and L. Simard. "The Tully—Fisher relation of distant cluster galaxies." Monthly Notices of the Royal Astronomical Society 361, no. 1 (July 2005): 109–27. http://dx.doi.org/10.1111/j.1365-2966.2005.09135.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bamford, S. P., A. Aragon-Salamanca, and B. Milvang-Jensen. "The Tully-Fisher relation of distant field galaxies." Monthly Notices of the Royal Astronomical Society 366, no. 1 (February 11, 2006): 308–20. http://dx.doi.org/10.1111/j.1365-2966.2005.09867.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kurbatov, E. P., A. V. Tutukov, and B. M. Shustov. "Evolution of galaxies and the Tully-Fisher relation." Astronomy Reports 49, no. 7 (July 2005): 510–19. http://dx.doi.org/10.1134/1.1985948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sofue, Y., Y. Tutui, M. Honma, T. Ichikawa, K. Wakamatsu, I. Kazes, and J. Dickey. "CO Tully-Fisher Relation for the Distance Measurement to Redshift cz=20,000 to 50,000 km/s." Symposium - International Astronomical Union 183 (1999): 70. http://dx.doi.org/10.1017/s0074180900132152.

Full text
Abstract:
The accuracy of measurement of the Hubble constant depends not only on the accuracy of distance measurement but also on how small is the effect of local flows: The larger are redshifts of used galaxies, the higher is the accuracy of H0, if the error in distance measurement is comparable. The HI Tully-Fisher relation has been the standard tool for distance measurement up to cz ∼ 10,000 km s–1 (Tully and Fisher 1977), where, however, the local flow is not negligible.
APA, Harvard, Vancouver, ISO, and other styles
38

Rhee, Myung-Hyun, and Adrick H. Broeils. "HI LINEWIDTHS, ROTATION VELOCITIES AND THE TULLY-FISHER RELATION." Journal of Astronomy and Space Sciences 22, no. 2 (June 1, 2005): 89–112. http://dx.doi.org/10.5140/jass.2005.22.2.089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lelli, Federico, Stacy S. McGaugh, and James M. Schombert. "THE SMALL SCATTER OF THE BARYONIC TULLY–FISHER RELATION." Astrophysical Journal 816, no. 1 (December 31, 2015): L14. http://dx.doi.org/10.3847/2041-8205/816/1/l14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

De Rossi, M. E., P. B. Tissera, and S. E. Pedrosa. "Impact of supernova feedback on the Tully-Fisher relation." Astronomy and Astrophysics 519 (September 2010): A89. http://dx.doi.org/10.1051/0004-6361/201014058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

RHEE, MYUNG-HYUN. "ON THE PHYSICAL BASIS OF THE TULLY-FISHER RELATION." Journal of The Korean Astronomical Society 37, no. 1 (March 1, 2004): 15–39. http://dx.doi.org/10.5303/jkas.2004.37.1.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

RHEE, MYUNG-HYUN. "MASS-TO-LIGHT RATIO AND THE TULLY-FISHER RELATION." Journal of The Korean Astronomical Society 37, no. 3 (September 1, 2004): 91–117. http://dx.doi.org/10.5303/jkas.2004.37.3.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

van Driel, W., A. C. van den Broek, and W. Baan. "The Tully-Fisher relation of the IRAS minisurvey galaxies." Astrophysical Journal 444 (May 1995): 80. http://dx.doi.org/10.1086/175584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

van Starkenburg, L., P. P. van der Werf, L. Yan, and A. F. M. Moorwood. "On measuring the Tully-Fisher relation atz > 1." Astronomy & Astrophysics 450, no. 1 (April 2006): 25–37. http://dx.doi.org/10.1051/0004-6361:20053733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Glowacki, M., E. Elson, and R. Davé. "The baryonic Tully–Fisher relation in the simba simulation." Monthly Notices of the Royal Astronomical Society 498, no. 3 (August 27, 2020): 3687–702. http://dx.doi.org/10.1093/mnras/staa2616.

Full text
Abstract:
ABSTRACT We investigate the Baryonic Tully–Fisher relation (BTFR) in the $(100\, h^{-1}{\rm Mpc})^3$simba hydrodynamical galaxy formation simulation together with a higher resolution $(25\, h^{-1}{\rm Mpc})^3$simba run, for over 10 000 disc-dominated, H i-rich galaxies. We generate simulated galaxy rotation curves from the mass distribution, which we show yields similar results to using the gas rotational velocities. From this, we measure the galaxy rotation velocity Vcirc using four metrics: $V_{\rm max}, V_{\rm flat}, V_{2R_e},$ and Vpolyex. We compare the predicted BTFR to the SPARC observational sample and find broad agreement. In detail, however, simba is biased towards higher Vcirc by up to 0.1 dex. We find evidence for the flattening of the BTFR in Vcirc > 300 km s−1 galaxies, in agreement with recent observational findings. simba’s rotation curves are more peaked for lower mass galaxies, in contrast with observations, suggesting overly bulge-dominated dwarf galaxies in our sample. We investigate for residuals around the BTFR versus H i mass, stellar mass, gas fraction, and specific star formation rate, which provide testable predictions for upcoming BTFR surveys. simba’s BTFR shows sub-optimal resolution mass convergence, with the higher resolution run lowering V in better agreement with data.
APA, Harvard, Vancouver, ISO, and other styles
46

Tonini, Chiara, Claudia Maraston, Bodo Ziegler, Asmus Böhm, Daniel Thomas, Julien Devriendt, and Joseph Silk. "The hierarchical build-up of the Tully-Fisher relation." Monthly Notices of the Royal Astronomical Society 415, no. 1 (May 18, 2011): 811–28. http://dx.doi.org/10.1111/j.1365-2966.2011.18767.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Noordermeer, E., and M. A. W. Verheijen. "The high-mass end of the Tully-Fisher relation." Monthly Notices of the Royal Astronomical Society 381, no. 4 (November 11, 2007): 1463–72. http://dx.doi.org/10.1111/j.1365-2966.2007.12369.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Neill, J. D., Mark Seibert, R. Brent Tully, Hélène Courtois, Jenny G. Sorce, T. H. Jarrett, Victoria Scowcroft, and Frank J. Masci. "THE CALIBRATION OF THEWISEW1 AND W2 TULLY-FISHER RELATION." Astrophysical Journal 792, no. 2 (August 25, 2014): 129. http://dx.doi.org/10.1088/0004-637x/792/2/129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Aragón-Salamanca, Alfonso. "The Tully-Fisher relation: evolution with redshift and environment." Proceedings of the International Astronomical Union 2, S235 (August 2006): 8–11. http://dx.doi.org/10.1017/s1743921306004947.

Full text
Abstract:
AbstractThe Tully-Fisher Relation (TFR) links two fundamental properties of disk galaxies: their luminosity and their rotation velocity (mass). The pioneering work of Vogt et al. in the 1990's showed that it is possible to study the TFR for spiral galaxies at considerable look-back-times, and use it as a powerful probe of their evolution. In recent years, several groups have studied the TFR for galaxies in different environments reaching redshifts beyond one. In this brief review I summarise the main results of some of these studies and their consequences for our understanding of the formation and evolution of disk galaxies. Particular emphasis is placed on the possible environment-driven differences in the behaviour of the TFR for field and cluster galaxies.
APA, Harvard, Vancouver, ISO, and other styles
50

Kannappan, Sheila J., Daniel G. Fabricant, and Marijn Franx. "Physical Sources of Scatter in the Tully-Fisher Relation." Astronomical Journal 123, no. 5 (May 2002): 2358–86. http://dx.doi.org/10.1086/339972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography