Academic literature on the topic 'Tubulin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tubulin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tubulin"
Shu, H. B., and H. C. Joshi. "Gamma-tubulin can both nucleate microtubule assembly and self-assemble into novel tubular structures in mammalian cells." Journal of Cell Biology 130, no. 5 (September 1, 1995): 1137–47. http://dx.doi.org/10.1083/jcb.130.5.1137.
Full textInclan, Y. F., and E. Nogales. "Structural models for the self-assembly and microtubule interactions of gamma-, delta- and epsilon-tubulin." Journal of Cell Science 114, no. 2 (January 15, 2001): 413–22. http://dx.doi.org/10.1242/jcs.114.2.413.
Full textBurke, D., P. Gasdaska, and L. Hartwell. "Dominant effects of tubulin overexpression in Saccharomyces cerevisiae." Molecular and Cellular Biology 9, no. 3 (March 1989): 1049–59. http://dx.doi.org/10.1128/mcb.9.3.1049-1059.1989.
Full textBurke, D., P. Gasdaska, and L. Hartwell. "Dominant effects of tubulin overexpression in Saccharomyces cerevisiae." Molecular and Cellular Biology 9, no. 3 (March 1989): 1049–59. http://dx.doi.org/10.1128/mcb.9.3.1049.
Full textBurland, T. G., E. C. Paul, M. Oetliker, and W. F. Dove. "A gene encoding the major beta tubulin of the mitotic spindle in Physarum polycephalum plasmodia." Molecular and Cellular Biology 8, no. 3 (March 1988): 1275–81. http://dx.doi.org/10.1128/mcb.8.3.1275-1281.1988.
Full textBurland, T. G., E. C. Paul, M. Oetliker, and W. F. Dove. "A gene encoding the major beta tubulin of the mitotic spindle in Physarum polycephalum plasmodia." Molecular and Cellular Biology 8, no. 3 (March 1988): 1275–81. http://dx.doi.org/10.1128/mcb.8.3.1275.
Full textZhou, Yujun, Jianqiang Xu, Yuanye Zhu, Yabing Duan, and Mingguo Zhou. "Mechanism of Action of the Benzimidazole Fungicide on Fusarium graminearum: Interfering with Polymerization of Monomeric Tubulin But Not Polymerized Microtubule." Phytopathology® 106, no. 8 (August 2016): 807–13. http://dx.doi.org/10.1094/phyto-08-15-0186-r.
Full textRudolph, J. E., M. Kimble, H. D. Hoyle, M. A. Subler, and E. C. Raff. "Three Drosophila beta-tubulin sequences: a developmentally regulated isoform (beta 3), the testis-specific isoform (beta 2), and an assembly-defective mutation of the testis-specific isoform (B2t8) reveal both an ancient divergence in metazoan isotypes and structural constraints for beta-tubulin function." Molecular and Cellular Biology 7, no. 6 (June 1987): 2231–42. http://dx.doi.org/10.1128/mcb.7.6.2231-2242.1987.
Full textRudolph, J. E., M. Kimble, H. D. Hoyle, M. A. Subler, and E. C. Raff. "Three Drosophila beta-tubulin sequences: a developmentally regulated isoform (beta 3), the testis-specific isoform (beta 2), and an assembly-defective mutation of the testis-specific isoform (B2t8) reveal both an ancient divergence in metazoan isotypes and structural constraints for beta-tubulin function." Molecular and Cellular Biology 7, no. 6 (June 1987): 2231–42. http://dx.doi.org/10.1128/mcb.7.6.2231.
Full textChu, Chih-Wen, Fajian Hou, Junmei Zhang, Lilian Phu, Alex V. Loktev, Donald S. Kirkpatrick, Peter K. Jackson, Yingming Zhao, and Hui Zou. "A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation." Molecular Biology of the Cell 22, no. 4 (February 15, 2011): 448–56. http://dx.doi.org/10.1091/mbc.e10-03-0203.
Full textDissertations / Theses on the topic "Tubulin"
Nacoulma, Aminata. "Reprogrammation métabolique induite dans les tissus hyperplasiques formés chez le tabac infecté par Rhodococcus fascians: aspects fondamentaux et applications." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209429.
Full textAu sein de cette hyperplasie, les altérations métaboliques induites concernent non seulement les produits du métabolisme primaire mais également le métabolisme secondaire et plus particulièrement des composés qui interviennent dans les mécanismes de défense ou qui affectent la prolifération cellulaire végétale.
Dans le cadre de notre travail de thèse, nous nous sommes fixé deux objectifs principaux qui sont de caractériser les altérations métaboliques au niveau des tissus hyperplasiques de tabac mais aussi de rechercher des applications potentielles du point de vue thérapeutique de cette interaction.
L’approche métabolomique globale basée sur une analyse comparative des spectres 1H-RMN d’extraits bruts de tissus infectés et de tissus non-infectés couplée à des analyses statistiques de données multivariées (ACP, OPLS-DA) a été utilisé pour l’étude de la reprogrammation métabolique. Le résultat indique une accumulation de composés phénoliques et des métabolites de la famille des diterpènes dans les tissus de la galle feuillée.
Les activités biologiques des extraits de la galle feuillée ont ensuite été évaluées, notamment des activités antioxydantes (DPPH, FRAP), anti-inflammatoire (15-LOX) et antiproliférative (MTT). Il ressort de cette analyse une augmentation du potentiel réducteur et anti-radicalaire des extraits de la galle feuillée, une activité inhibitrice de la lipoxygénase ainsi qu'une activité antiproliférative sur lignées tumorales humaines, comparée à la plante non infectée.
L’étude des composés affectant la prolifération des cellules cancéreuses humaines a aboutit à la mise en évidence d’un mélange de molécules (F3.1.1) appartenant au groupe des incensoles (cembrènoïdes). Ces composés ralentissent la durée de la division cellulaire, affectent la taille des cellules et induisent des anomalies de la karyokinèse et de la cytokinèse des cellules de glioblastome U373. La dynamique tubuline/microtubule est identifiée comme étant la cible des cembrènoïdes (F3.1.1). L’effet des ces composés est original comparé aux anti-tubulines usuels tel que la colchicine et le paclitaxel. Le mécanisme d’action des incensoles est unique et donc prometteur du fait que la dynamique des microtubules reste une cible de choix dans le traitement des cellules cancéreuses.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Mackeh, Rafah. "Mécanisme de l’hyperacétylation de la tubuline en réponse aux stress." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA114852.
Full textBeyond its presence in stable microtubules, -tubulin acetylation can be boosted after UV exposure or after nutrient deprivation but the mechanisms of this hyperacetylation are still unknown. In this study, we show that tubulin hyperacetylation is a general cell stress response, and aimed to characterize this response, to identify the stress-activated signaling pathway leading to its induction and the biological significance of this rapid and reversible phenomenon. We found that the major tubulin acetyltransferase MEC-17/-TAT1 is the main enzyme required for mediating tubulin hyperacetylation upon stress, and that it is regulated under normal conditions by the acetyltransferase p300. Upon stress, we show that the increased production of reactive oxygen species (ROS), leads to the activation of AMP-activated protein kinase (AMPK), which in turn mediates MEC-17 phosphorylation, and probably its subsequent activation. Finally, we show that tubulin hyperacetylation induced upon stress participate in cell survival under stress conditions and in the induction of protective autophagy
Cao, Luyan. "bases structurales de la motilité des kinésines." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS267/document.
Full textKinesins are a family of microtubule-interacting motor proteins that convert the chemical energy from ATP hydrolysis into mechanical work. Many kinesins are motile, walking along microtubules to fulfill different functions. Most kinesins are dimers, the monomer comprising a motor domain, a dimerizing stalk domain, and a tail domain. The motor domain contains both the nucleotide-binding site and the microtubule-binding site. I am interested in the molecular mechanism of kinesin's motility. In particular I want to establish the structural variations of the kinesin motor domain along with the mechanochemical cycle of this motor protein. During my thesis, I have focused my work on the human kinesin-1, also named conventional kinesin, which is the best characterized kinesin.I have studied two aspects of the kinesin mechanochemical cycle, by combining structural and mutational approaches. Both aspects rely on the binding of ADP-kinesin to a microtubule, which leads to the release of the nucleotide and to a tight kinesin-microtubule association. First I determined the crystal structure of nucleotide-free kinesin-1 motor domain in complex with a tubulin heterodimer, which is the building block of microtubule. This structure represented the main missing piece of the structural cycle of kinesin. Three subdomains in the kinesin motor domain can be identified through the comparison of my structure with ATP-analog kinesin-1-tubulin structure. The relative movements of these subdomains explain how ATP binding to apo-kinesin bound to microtubule triggers the opening of a hydrophobic cavity, 28 Å distant from the nucleotide-binding site. This cavity accommodates the first residue of the “neck linker”, a short peptide that is C-terminal to the motor domain, allowing the neck linker to dock on the motor domain. The docking of the neck linker is proposed to trigger the mechanical step, i.e. the displacement of the cargo and the stepping of the dimeric kinesin. By studying mutants of the neck linker, I have shown that, reciprocally, this peptide locks kinesin in the ATP state, which is also the conformation efficient for ATP hydrolysis. Doing so, it prevents the motor domain from switching back to the apo-state. It prevents also an untimely hydrolysis of ATP, before the mechanical step has occurred. These features are required for movement and processivity.Second, these structural data also suggest how the binding of ADP-kinesin to tubulin enhances nucleotide release from kinesin. To further study this step of the kinesin cycle, I studied the effect of kinesin-1 mutations. These mutations were designed in isolated kinesin to mimic the state when kinesin is bound to a microtubule. I identified two groups of mutations leading to a high spontaneous ADP dissociation rate, suggesting that there are two ways to interfere with ADP binding. Then I determined the crystal structures of the apo form of two mutants as well as that of the nucleotide-depleted wild type kinesin. It showed that apo-kinesin adopts either and ADP-like conformation or a tubulin-bound apo-like one. In the natural context, the second one is stabilized upon microtubule binding. Overall, the mutational and structural data suggest that microtubules accelerate ADP dissociation in kinesin by two main paths, by interfering with magnesium binding and by destabilizing the nucleotide-binding P-loop motif
Bladh, Håkan. "Structure-activity studies of novel colchicine analogs synthesis, conformation and tublin binding /." Lund : Lund University, 1998. http://books.google.com/books?id=1sBqAAAAMAAJ.
Full textFrancisco, Samuel Nuno Furtado da Conceição. "Toxoplasma gondii Tubulin Cofactor B plays a key role in host cell invasion and replication." Doctoral thesis, Universidade de Lisboa, Faculdade de Medicina Vterinária, 2020. http://hdl.handle.net/10400.5/20149.
Full textTubulin cofactors participate in the folding, dimerization, and dissociation pathways of the tubulin dimer, being implicated in the control of tubulin proteostasis and consequently in the control of microtubule (MT) dynamics in vivo. We hypothesise that these proteins have a role in the regulation of MT cytoskeleton dynamics during Toxoplasma gondii host cell invasion. In this context, we characterized the Tubulin cofactor B (TBCB) in T. gondii. TBCB is a CAPGly domain-containing protein that together with TBCE, interact with and dissociate the tubulin dimer. The TBCB sub-cellular localization in T. gondii was studied using an in-house anti-TBCB serum. T. gondii lines overexpressing TBCB were obtained by random integration as well as TBCB conditional knockout lines by CRISPR/Cas9 system. TBCB transgenic clones were characterized by growing assays (plaque, invasion, replication and egress assays), western blot analysis and fluorescence microscopy (standard, confocal and super-resolution). TBCB showed a polarized localization, at the anterior region of the parasite, under the conoid and in close association with polar ring and subpellicular MTs. It did not present a clear co-localization with the apical complex secretory vesicles, although the interaction with rhoptries and micronemes cannot be excluded. TBCB overexpression lines showed a significant decrease in the capacity to form plaques, attributable to a proportional reduction in the capacity to invade. No differences were observed in replication and egress assays. The TgTBCB knockout line, showed a complete depletion of the protein and a viability no longer than a week. These lines showed a strong reduction in their capacity to invade the host cell and in their replication rate. In the absence of TBCB, cells have an altered axis of division resulting in abnormal division. Some parasites show the loss of the correct division axis and some parasites have four daughter cells forming inside instead of two. TBCB is a polarity marker in T. gondii and is involved in the invasion and replication processes. Its apical localization, together with TBCB mammalian partners already described (MT associated proteins) and the invasion phenotypes, suggest that TBCB can be involved in the intracellular traffic of secretory vesicles depending on MTs. Importantly, TBCB is an essential protein, constituting a good target for new control strategies.
RESUMO - O Cofactor B da Tubulina de Toxoplasma gondii tem um papel central na invasão da célula hospedeira e na replicação - Os parasitas protozoários pertencentes ao Filo Apicomplexa são agentes patogénicos responsáveis por um vasto leque de doenças. Apesar da grande biodiversidade deste filo, os mecanismos moleculares adjacentes ao processo de invasão das células hospedeiras parecem ser conservados entre as diferentes espécies. O processo de invasão das células hospedeiras tem gerado grande interesse em vários grupos, incluindo o nosso, visto ser um importante alvo para o delineamento de estratégias médicas profilácticas e terapêuticas. Assim, nos últimos anos o nosso grupo tem vindo a interessar-se pelo estudo e compreensão do envolvimento do citoesqueleto de microtúbulos, tanto do parasita como da célula hospedeira, no processo de invasão. Os nossos resultados anteriores em Besnoitia besnoiti mostraram que este parasita, aquando da interação com a célula hospedeira, sofre alterações dramáticas na sua forma e superfície, acompanhadas pela remodelação de estruturas específicas de microtúbulos (MTs), nomeadamente os MTs subpeliculares. Estas alterações foram evidenciadas através de uma marcação distinta da tubulina na zona posterior do parasita. Para além disso, o citoesqueleto de MTs da célula hospedeira também responde à entrada do parasita, resultados que, posteriormente, foram também obtidos em Toxoplasma gondii. Estudos anteriores em T. gondii demonstraram que os MTs subpeliculares são muito estáveis. Esta estabilidade está possivelmente relacionada com modificações pós-traducionais (MPT) da tubulina, uma vez que, ao contrário dos vertebrados, estes organismos possuem uma família multigénica de α- e β-tubulinas composta por um número reduzido de membros. As MPTs referidas parecem modelar a interação dos MTs com as proteínas que lhes estão associadas. Mais ainda, em T. gondii, foram descritas proteínas que cobrem os MTs, num padrão complexo e definido, e que são importantes para a estabilidade dos mesmos. Deste modo, as proteínas que interagem com os MTs podem desempenhar um papel crucial na regulação do citoesqueleto do parasita aquando da invasão da célula hospedeira. Outras proteínas importantes para a regulação da dinâmica do citoesqueleto de MTs são os cofactores da tubulina, os quais participam nas vias de “folding”, dimerização e dissociação do dímero de tubulina. Estes cofatores controlam a proteostase da tubulina, através do controlo da “pool” de tubulina solúvel, participando na regulação da dinâmica dos MTs in vivo. Consequentemente, estas proteínas são candidatas a desempenhar um papel crucial nas modificações observadas no citoesqueleto de MTs do parasita aquando da invasão da célula hospedeira. Neste contexto o nosso objetivo principal foi avaliar e caracterizar o papel do Cofator B da Tubulina (TBCB de “Tubulin-binding cofactor B”) em T. gondii. Esta é uma proteína relativamente pequena que possui um domínio CAP-Gly na sua extremidade C-terminal e um domínio semelhante à ubiquitina (UBL de “ubiquitin-like”) na extremidade N-terminal. Em conjugação com o Cofactor E da tubulina (TBCE de “Tubulin binding cofactor E”), o TBCB dissocia o dímero de tubulina, controlando desta forma a “pool” de tubulina solúvel disponível na célula e consequentemente a dinâmica do citoesqueleto de MTs. A escolha do parasita protozoário T. gondii como modelo biológico deve-se ao facto de o mesmo possuir um genoma totalmente sequenciado e bem anotado, juntamente com o vasto conjunto de ferramentas disponíveis para a sua manipulação genética. Neste trabalho identificámos o gene do Tbcb em T. gondii, analisámos os níveis de expressão por RT-PCR durante o processo de invasão da célula hospedeira e de replicação, estudámos a localização intracelular do TgTBCB usando um anticorpo produzido no nosso laboratório e recorrendo a microscopia confocal e de super resolução, examinámos o fenótipo de TBCB em excesso (sobre-expressão por integração ao acaso) e de ausência do TBCB (deleção do gene utilizando o sistema CRISPR/Cas9). Nestes dois últimos casos foram criadas e selecionadas linhas transgénicas de parasitas, as quais foram analisadas em ensaios de crescimento (formação de pacas, invasão, replicação e egresso) bem como por western blot e por microscopia de fluorescência. Da análise dos níveis da expressão do Tbcb de T. gondii durante o processo de invasão e de replicação do parasita na célula hospedeira, notámos uma diminuição significativa dos níveis de expressão às 4 horas após a invasão da célula hospedeira, à qual se seguiu uma fase de recuperação desses níveis. Quanto à localização sub-celular do TgTBCB, observámos que em T. gondii esta proteína tem uma localização polarizada, estando localizada essencialmente no polo anterior, junto do conoide, podendo, por vezes, ser também observada uma marcação menos abundante no polo posterior. Constatámos ainda que o TgTBCB co-localiza parcialmente com as proteínas 2 e 3 das micronemas e com a tubulina glutamilada. Foi ainda possível constatar que na região apical o TBCB em T. gondii parece co-alinhar com os MTs subpeliculares, MTs que afunilam para estarem ancorados ao anel polar. Desta forma, o TBCB também parece estar junto ou imediatamente abaixo ao anel polar apical. Observámos que o excesso de TgTBCB causa uma queda acentuada na capacidade de formar placas de lise em tapetes celulares, a qual foi acompanhada de forma proporcional por uma diminuição notória dos níveis de invasão de células pelos parasitas. Curiosamente, não verificámos qualquer alteração na replicação ou no egresso dos mesmos. Em relação à deleção do gene Tbcb do parasita, 72 horas após a indução da CRISPR/Cas9 comprovámos a completa ausência de TgTBCB por western blot. Observámos também que a viabilidade dos parasitas sem TgTBCB não supera uma semana e que após a indução da deleção do gene, os parasitas demonstraram uma enorme redução na capacidade de invasão e também de replicação. Isto é, os poucos parasitas que conseguiam invadir as células hospedeiras apresentavam enormes problemas na replicação. Por western blot, nos extratos proteicos insolúveis, notámos uma diminuição nos níveis de a-tubulina, tubulina acetilada e poliglutamilada. Estes resultados também foram confirmados por imunofluorescência. Constatámos ainda que os parasitas sem TgTBCB apresentavam vários problemas de divisão, entre eles a alteração do eixo de divisão, a perda do controlo da divisão e a formação de células com morfologia arredondada, compatível com a perda de polaridade. Por microscopia eletrónica observámos também a perda de polaridade dos parasitas bem como a presença de núcleos de dimensões muito superiores ao normal ou dois núcleos dentro da célula, sem que a divisão celular tivesse sido concluída. Concluindo, o TgTBCB é uma proteína com uma localização polar, sendo observada no polo anterior abaixo do conoide e junto ao anel apical polar, acompanhado os MTs subpeliculares na região apical. A sua co-localização parcial com as proteínas das micronemas e com os MTs subpeliculares, bem como os seus parceiros já descritos em células de mamífero (proteínas de ligação aos MTs), juntamente com o fenótipo de invasão, sugerem que esta proteína em T. gondii poderá estar envolvida no tráfego vesicular ao longo dos MTs subpeliculares. A sobre-expressão do TgTBCB demonstrou a importância desta proteína no processo de invasão e a sua deleção provou que é essencial quer para a invasão quer para a replicação do parasita, visto que na ausência de TgTBCB há um comprometimento irreversível do citoesqueleto de MTs do parasita, levando à morte em menos de uma semana. Este fenótipo, aparentemente, está associado à diminuição dos MTs subpeliculares bem como à impossibilidade de formar novos MTs nas células filhas. Em suma, o TgTBCB é uma proteína essencial em T. gondii, podendo constituir um novo potencial alvo para novas estratégias de controlo e tratamento do parasita.
N/A
Imboden, Martin Alex. "Tubulin genes of Trypanosoma brucei /." [S.l : s.n.], 1987. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textDeshpande, Amit. "α-Tubulin nitrotyrosination affects cell growth and is regulated by tubulin tyrosine ligase like 12." Strasbourg, 2009. https://publication-theses.unistra.fr/restreint/theses_doctorat/2009/DESHPANDE_Amit_2009.pdf.
Full textMicrotubules are an important component of the cytoskeleton and carry out a variety of essential functions. Functional diversity of microtubules comes from various different - and -tubulin isotypes that are expressed within the cell, and an extensive array of reversible post-translational modifications. Tubulin tyrosination is one of such modifications executed by tubulin tyrosine ligase (TTL). TTL is the founding member of 14 member tubulin tyrosine ligase like (TTLL) family. Wasylyk’s laboratory found TTLL12 to be differentially expressed in head and neck cancer and prostate cancer. Functional analysis on TTLL12 revealed that it can regulate tubulin nitrotyrosination. Nitrotyrosine - a structural analogue of tyrosine is present in cells in pathological conditions and is incorporated on the α-tubulin thus hampering the normal functioning of microtubules. Tubulin nitrotyrosination is detrimental to cell growth. We show that over expression of TTLL12 leads to decrease in α-tubulin nitrotyrosination and vice versa. We show that α-tubulin nitrotyrosination affects cell growth in A549 and HEp-2 cells. We further show that TTLL12 can alter α-tubulin nitrotyrosination and affect the cell growth in HEp-2 and DU145 cells. Thus TTLL12 could play an important role in the regulation of cell growth or cell survival in tumors with increased levels of nitrotyrosine. We developed a high throughput assay to find compounds which can increase tubulin nitrotyrosination via TTLL12, TTL or other mechanisms. Screening a library of 10000 compounds resulted in two potential hits which increased tubulin nitrotyrosination. Further investigations of these hits on cell growth in the presence of nitrotyrosine and mechanism of action is in progress
Karamtzioti, Paraskevi 1990. "Tubulin modifications in human gametes : from the oocytes spindle to the sperm flagellum : Characterization of tubulin post translational modifications in female meiosis and sperm pathologies." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/670643.
Full textEsta tesis tuvo como objetivo caracterizar el perfil de PTM de los microtúbulos de ovocitos y espermatozoides humanos. Las estructuras ricas en tubulina juegan un papel fundamental en el comportamiento celular de los gametos humanos. Las mutaciones en la tubulina o proteínas relacionadas pueden afectar la maduración de los ovocitos y la motilidad del flagelo. En primer lugar, nos centramos en las modificaciones posteriores a la traducción (PTM) de la tubulina en el huso del ovocito y el flagelo del esperma. Caracterizamos el perfil de PTM del huso en ovocitos de MII cultivados in vitro y madurados in vivo, y comparamos los niveles de transcripción de PTM enzimas con dos grupos adicionales: GV y ovocitos que no maduraron. Además se estudió la regulación de la transcripción de los RNA mensajeros por el código del elemento de poliadenilación citoplásmica con experimentos en oocitos de Xenopus. Además, investigamos el patrón y los niveles de PTM de tubulina a lo largo de la cola del esperma y su correlacioón potencial con patologías como la astenozoospermia y la teratozoospermia.
Paul, E. C. A. "The biology of tubulin in Physarum." Thesis, University of Kent, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371147.
Full textDoll, John M. 1976. "Catalysis of tubulin heterodimerization in vivo." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32259.
Full textIncludes bibliographical references.
The heterodimerization of α- and β-tubulin represents a critical early step in microtubule morphogenesis. In vitro studies have defined a pathway that mediates the incorporation of monomeric tubulin polypeptides into heterodimer. The components of this pathway, tubulin cofactors, are dispensable for growth in Saccharomyces cerevisiae under laboratory conditions. Yet, these proteins are required for survival under conditions of stress or in the presence of a weakened tubulin heterodimer. This finding suggests cofactors may function in vivo to promote reformation of dissociated tubulin heterodimer. In order to carry out this activity, cofactors are thought to facilitate the association of tubulin monomers without likewise promoting the dissociation of tubulin heterodimer. However, the mechanism of cofactor activity in vivo and the method by which these proteins achieve vectorial catalysis of heterodimerization has remained obscure. In this study, we present evidence that several endogenous tubulin cofactors associate with one another in vivo and bind tubulin monomer under conditions of stress. We also provide physical and genetic data suggesting that Cin4p, an ARF family GTPase, associates with the tubulin cofactor Cin1 p (cofactor D) and promotes tubulin heterodimerization by modulating Cin1 p's association with β-tubulin. Through site-directed mutagenesis, we conclude that Cin4p GTPase activity is important for these functions. These data support a model in which the production of tubulin heterodimer via a putative cofactor complex is coupled to nucleotide hydrolysis by a small GTPase. The linkage of these reactions could serve to impart directionality to the activity of tubulin cofactors, allowing them to selectively promote tubulin heterodimerization without also catalyzing heterodimer dissociation.
by John M. Doll.
Ph.D.
Books on the topic "Tubulin"
service), SpringerLink (Online, ed. Tubulin-binding agents: Synthetic, structural and mechanistic insights. Berlin: Springer, 2009.
Find full textCarlomagno, Teresa, ed. Tubulin-Binding Agents. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69039-9.
Full textYamauchi, Wei. Tubulin: Structure, functions, and roles in disease. Hauppauge, N.Y: Nova Science, 2011.
Find full textRead, M. Tubulin in the erythrocytic stages of phasmodium falciparum. Manchester: UMIST, 1995.
Find full textLeyland, Steven. A unique tubulin antiserum inhibits poleward chromosome movement in anaphase. Ottawa: National Library of Canada, 1990.
Find full textPape, Michaela. Charakterisierung des [beta]-Tubulin-Gens der kleinen Strongyliden des Pferdes. [S.l.]: [s.n.], 1999.
Find full textLamb, Jeremy Charles. Fluorescent derivatives of tubulin as probes for the analysis of microtubule dynamics. Norwich: University of East Anglia, 1985.
Find full textPoetsch, Bettina. Zur Expression und Funktion von Aktin und Tubulin in der Photomorphogenese von Physarum polycephalum. Gauting bei München: Intemann, 1989.
Find full textKaluzienski, Mark Henry. Changes in rat skeletal muscle phenotype following colchicine disruption of motor axonal tubulin. Sudbury, Ont: Laurentian University, Behavioural Neuroscience Program, 1999.
Find full textA, Cross R., and Kendrick-Jones J, eds. Motor proteins: A volume based on the EMBO Workshop, Cambridge, September 1990. Cambridge [England]: Company of Biologists, 1991.
Find full textBook chapters on the topic "Tubulin"
Yariv, Joseph. "Tubulin." In The Discreet Charm of Protein Binding Sites, 19–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24996-4_2.
Full textCarlier, Marie-France, and Dominique Pantaloni. "Tubulin as a G-Protein: Regulation of Tubulin-Tubulin Interactions by GTP Hydrolysis." In The Guanine — Nucleotide Binding Proteins, 379–84. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-2037-2_37.
Full textStephens, R. E. "Ciliary Membrane Tubulin." In Ciliary and Flagellar Membranes, 217–40. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0515-6_9.
Full textAmos, Linda A., and W. Bradshaw Amos. "Properties of Tubulin." In Molecules of the Cytoskeleton, 117–41. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21739-7_7.
Full textStearns, Tim. "The Tubulin Superfamily." In Centrosomes in Development and Disease, 17–25. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603808.ch2.
Full textYoung, David H. "Anti-tubulin Agents." In Fungicide Resistance in Plant Pathogens, 93–103. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55642-8_7.
Full textSchomburg, Dietmar, and Dörte Stephan. "Tubulin N-acetyltransferase." In Enzyme Handbook 11, 1111–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61030-1_240.
Full textSebastian de Bono, Johann, Anthony W. Tolcher, and Eric K. Rowinsky. "Tubulin-Targeting Drugs." In Current Cancer Therapeutics, 95–108. London: Current Medicine Group, 2001. http://dx.doi.org/10.1007/978-1-4613-1099-0_5.
Full textMiñana, Maria-Dolores, Vicente Felipo, and Santiago Grisolía. "Hyperammonemia Induces Brain Tubulin." In Advances in Experimental Medicine and Biology, 65–80. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5826-8_4.
Full textBreviario, Diego. "Tubulin Genes and Promotors." In Plant Microtubules, 137–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-22300-0_7.
Full textConference papers on the topic "Tubulin"
Deriu, Marco A., Søren Enemark, Emiliano Votta, Franco M. Montevecchi, Alberto Redaelli, and Monica Soncini. "Bottom-Up Mesoscale Model of Microtubule." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176115.
Full textDeriu, Marco A., Monica Soncini, Mario Orsi, Mishal Patel, Jonathan W. Essex, Franco M. Montevecchi, and Alberto Redaelli. "Elastic Network Normal Mode Analysis for Microtubule Mechanics." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206618.
Full textSheldon, Kely L., and Dan L. Sackett. "Abstract 3044: The ability of tubulin to close mitochondrial VDAC pores depends on beta tubulin isotype." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3044.
Full textYang, Chia-Ping H., and Susan B. Horwitz. "Abstract 664: Polymerization of human βIII-tubulin is distinct from βI-tubulin in a cell-free system." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-664.
Full textRingel, Israel, Varda Gottfried, Lila Levdansky, James W. Winkelman, and Sol Kimel. "Photodynamic activity of porphines on tubulin assembly." In BiOS Europe '95, edited by Benjamin Ehrenberg, Giulio Jori, and Johan Moan. SPIE, 1996. http://dx.doi.org/10.1117/12.230982.
Full textSackett, Dan L., and Adrian Begaye. "Abstract 1219: Tubulin binding to mitochondrial VDAC: A new regulator of oxidative metabolism and apoptosis? A new role for tubulin." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1219.
Full textTamura, Daisuke, Tokuzo Arao, Tomoyuki Nagai, Hiroyasu Kaneda, Kanae Kudo, Keiichi Aomatsu, Kazuko Sakai, et al. "Slug Increases Sensitivity To Tubulin Binding Agents Via The Downregulation Of Beta III And IVa-Tubulin In Lung Cancer Cells." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6284.
Full textEnemark, So̸ren, Marco A. Deriu, and Monica Soncini. "Mechanical Properties of Tubulin Molecules by Molecular Dynamics Simulations." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95674.
Full textViel, A., S. Deschamps, H. Phillippe, H. Denis, and M. le Maire. "Ise EF−1α associated with tubulin in X.laevis oocytes." In The living cell in four dimensions. AIP, 1991. http://dx.doi.org/10.1063/1.40585.
Full textPeyrot, V., C. Briand, and J. M. Andreu. "Limited proteolysis of tubulin by subtilisin induces ring formation." In The living cell in four dimensions. AIP, 1991. http://dx.doi.org/10.1063/1.40597.
Full textReports on the topic "Tubulin"
Banerjee, Asok. Characterization of Tubulin Isoforms in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada393136.
Full textBanerjee, Asok. Characterization of Tubulin Isoforms in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada381325.
Full textYang, KyoungLang, and Gunda I. Georg. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada443679.
Full textBanerjee, Asok. Characterization of Tubulin Isoforms in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada395082.
Full textYang, Kyounglang, and AGunda I. Georg. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada432471.
Full textRamadas, Vidya. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada416994.
Full textLuduena, Richard. Nuclear Tubulin: A Novel for Breast Cancer Chemotherapy. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada392981.
Full textYang, KyoungLang, and Gunda I. Georg. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada474734.
Full textSusan M. Wick. Growth and development of maize that contains mutant tubulin genes. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/826290.
Full textLuduena, Richard F. The Role of Nuclear Beta II-Tubulin in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada405620.
Full text