Academic literature on the topic 'Tubulin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tubulin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tubulin"

1

Shu, H. B., and H. C. Joshi. "Gamma-tubulin can both nucleate microtubule assembly and self-assemble into novel tubular structures in mammalian cells." Journal of Cell Biology 130, no. 5 (September 1, 1995): 1137–47. http://dx.doi.org/10.1083/jcb.130.5.1137.

Full text
Abstract:
alpha-, beta-, and gamma-tubulins are evolutionarily highly conserved members of the tubulin gene superfamily. While the abundant members, alpha- and beta-tubulins, constitute the building blocks of cellular microtubule polymers, gamma-tubulin is a low abundance protein which localized to the pericentriolar material and may play a role in microtubule assembly. To test whether gamma-tubulin mediates the nucleation of microtubule assembly in vivo, and co-assembles with alpha- and beta-tubulins into microtubules or self-assembles into macro-molecular structures, we experimentally elevated the expression of gamma-tubulin in the cell cytoplasm. In most cells, overexpression of gamma-tubulin causes a dramatic reorganization of the cellular microtubule network. Furthermore, we show that when overexpressed, gamma-tubulin causes ectopic nucleation of microtubules which are not associated with the centrosome. In a fraction of cells, gamma-tubulin self-assembles into novel tubular structures with a diameter of approximately 50 nm (named gamma-tubules). Furthermore, unlike microtubules, gamma-tubules are resistant to cold or drug induced depolymerization. These data provide evidence that gamma-tubulin can cause nucleation of microtubule assembly and can self-assemble into novel tubular structures.
APA, Harvard, Vancouver, ISO, and other styles
2

Inclan, Y. F., and E. Nogales. "Structural models for the self-assembly and microtubule interactions of gamma-, delta- and epsilon-tubulin." Journal of Cell Science 114, no. 2 (January 15, 2001): 413–22. http://dx.doi.org/10.1242/jcs.114.2.413.

Full text
Abstract:
alphabeta-tubulin heterodimers self-assemble to form microtubules nucleated by gamma-tubulin in the cell. Gamma-tubulin is believed to recruit the alphabeta-tubulin dimers that form the minus ends of microtubules, but the molecular mechanism of this action remains a matter of heated controversy. Still less is known about the function and molecular interactions of delta-tubulin and epsilon-tubulin. delta-tubulin may seed the formation of the C triplet tubules in the basal bodies of Chlamydomonas and epsilon-tubulin is known to localize to the centrosome in a cell cycle-dependent manner. Using the structure of alphabeta tubulin as a model, we have analyzed the sequences of gamma-, delta- and epsilon-tubulin in regions corresponding to different polymerization interfaces in the tubulin alphabeta dimer. The sequence comparisons sometimes show clear conservation, pointing to similar types of contacts being functionally important for the new tubulin considered. Conversely, certain surfaces show marked differences that rule out equivalent interactions for non-microtubular tubulins. This sequence/structure analysis has led us to structural models of how these special tubulins may be involved in protein-protein contacts that affect microtubule self-assembly. delta-tubulin most likely interacts longitudinally with alpha-tubulin at the minus ends of microtubules, while epsilon-tubulin most likely binds to the plus end of beta-tubulin. Conservation of key residues in gamma-tubulin suggests that it is capable of longitudinal self-assembly. The implications for the protofilament and template models of nucleation are considered.
APA, Harvard, Vancouver, ISO, and other styles
3

Burke, D., P. Gasdaska, and L. Hartwell. "Dominant effects of tubulin overexpression in Saccharomyces cerevisiae." Molecular and Cellular Biology 9, no. 3 (March 1989): 1049–59. http://dx.doi.org/10.1128/mcb.9.3.1049-1059.1989.

Full text
Abstract:
The consequences of altering the levels of alpha- and beta-tubulin in Saccharomyces cerevisiae were examined by constructing fusions of the structural genes encoding the tubulins to strong galactose-inducible promoters. Overexpression of beta-tubulin (TUB2) was lethal: cells arrested in the G2 stage of the cell cycle exhibited an increased frequency of chromosome loss, were devoid of microtubules, and accumulated beta-tubulin in a novel structure. Overexpression of the major alpha-tubulin gene (TUB1) was not lethal and did not affect chromosome segregation. The rate of alpha-tubulin mRNA and protein synthesis was increased, but the protein did not accumulate. Overexpression of both alpha- and beta-tubulin together resulted in arrested cell division, and cells accumulated excess tubules that contained both alpha- and beta-tubulin. Transient overexpression of both tubulins resulted in a high frequency of chromosome loss. These data suggest that strong selective pressure exists to prevent excess accumulation of microtubules or beta-tubulin and suggest a model by which this goal may be achieved by selective degradation of unassembled alpha-tubulin. Furthermore, the phenotype of beta-tubulin overexpression is similar to the phenotype of a beta-tubulin deficiency. These results add to a number of recent studies demonstrating that mutant phenotypes generated by overexpression can be informative about the function of the gene product.
APA, Harvard, Vancouver, ISO, and other styles
4

Burke, D., P. Gasdaska, and L. Hartwell. "Dominant effects of tubulin overexpression in Saccharomyces cerevisiae." Molecular and Cellular Biology 9, no. 3 (March 1989): 1049–59. http://dx.doi.org/10.1128/mcb.9.3.1049.

Full text
Abstract:
The consequences of altering the levels of alpha- and beta-tubulin in Saccharomyces cerevisiae were examined by constructing fusions of the structural genes encoding the tubulins to strong galactose-inducible promoters. Overexpression of beta-tubulin (TUB2) was lethal: cells arrested in the G2 stage of the cell cycle exhibited an increased frequency of chromosome loss, were devoid of microtubules, and accumulated beta-tubulin in a novel structure. Overexpression of the major alpha-tubulin gene (TUB1) was not lethal and did not affect chromosome segregation. The rate of alpha-tubulin mRNA and protein synthesis was increased, but the protein did not accumulate. Overexpression of both alpha- and beta-tubulin together resulted in arrested cell division, and cells accumulated excess tubules that contained both alpha- and beta-tubulin. Transient overexpression of both tubulins resulted in a high frequency of chromosome loss. These data suggest that strong selective pressure exists to prevent excess accumulation of microtubules or beta-tubulin and suggest a model by which this goal may be achieved by selective degradation of unassembled alpha-tubulin. Furthermore, the phenotype of beta-tubulin overexpression is similar to the phenotype of a beta-tubulin deficiency. These results add to a number of recent studies demonstrating that mutant phenotypes generated by overexpression can be informative about the function of the gene product.
APA, Harvard, Vancouver, ISO, and other styles
5

Burland, T. G., E. C. Paul, M. Oetliker, and W. F. Dove. "A gene encoding the major beta tubulin of the mitotic spindle in Physarum polycephalum plasmodia." Molecular and Cellular Biology 8, no. 3 (March 1988): 1275–81. http://dx.doi.org/10.1128/mcb.8.3.1275-1281.1988.

Full text
Abstract:
The multinucleate plasmodium of Physarum polycephalum is unusual among eucaryotic cells in that it uses tubulins only in mitotic-spindle microtubules; cytoskeletal, flagellar, and centriolar microtubules are absent in this cell type. We have identified a beta-tubulin cDNA clone, beta 105, which is shown to correspond to the transcript of the betC beta-tubulin locus and to encode beta 2 tubulin, the beta tubulin expressed specifically in the plasmodium and used exclusively in the mitotic spindle. Physarum amoebae utilize tubulins in the cytoskeleton, centrioles, and flagella, in addition to the mitotic spindle. Sequence analysis shows that beta 2 tubulin is only 83% identical to the two beta tubulins expressed in amoebae. This compares with 70 to 83% identity between Physarum beta 2 tubulin and the beta tubulins of yeasts, fungi, alga, trypanosome, fruit fly, chicken, and mouse. On the other hand, Physarum beta 2 tubulin is no more similar to, for example, Aspergillus beta tubulins than it is to those of Drosophila melanogaster or mammals. Several eucaryotes express at least one widely diverged beta tubulin as well as one or more beta tubulins that conform more closely to a consensus beta-tubulin sequence. We suggest that beta-tubulins diverge more when their expression pattern is restricted, especially when this restriction results in their use in fewer functions. This divergence among beta tubulins could have resulted through neutral drift. For example, exclusive use of Physarum beta 2 tubulin in the spindle may have allowed more amino acid substitutions than would be functionally tolerable in the beta tubulins that are utilized in multiple microtubular organelles. Alternatively, restricted use of beta tubulins may allow positive selection to operate more freely to refine beta-tubulin function.
APA, Harvard, Vancouver, ISO, and other styles
6

Burland, T. G., E. C. Paul, M. Oetliker, and W. F. Dove. "A gene encoding the major beta tubulin of the mitotic spindle in Physarum polycephalum plasmodia." Molecular and Cellular Biology 8, no. 3 (March 1988): 1275–81. http://dx.doi.org/10.1128/mcb.8.3.1275.

Full text
Abstract:
The multinucleate plasmodium of Physarum polycephalum is unusual among eucaryotic cells in that it uses tubulins only in mitotic-spindle microtubules; cytoskeletal, flagellar, and centriolar microtubules are absent in this cell type. We have identified a beta-tubulin cDNA clone, beta 105, which is shown to correspond to the transcript of the betC beta-tubulin locus and to encode beta 2 tubulin, the beta tubulin expressed specifically in the plasmodium and used exclusively in the mitotic spindle. Physarum amoebae utilize tubulins in the cytoskeleton, centrioles, and flagella, in addition to the mitotic spindle. Sequence analysis shows that beta 2 tubulin is only 83% identical to the two beta tubulins expressed in amoebae. This compares with 70 to 83% identity between Physarum beta 2 tubulin and the beta tubulins of yeasts, fungi, alga, trypanosome, fruit fly, chicken, and mouse. On the other hand, Physarum beta 2 tubulin is no more similar to, for example, Aspergillus beta tubulins than it is to those of Drosophila melanogaster or mammals. Several eucaryotes express at least one widely diverged beta tubulin as well as one or more beta tubulins that conform more closely to a consensus beta-tubulin sequence. We suggest that beta-tubulins diverge more when their expression pattern is restricted, especially when this restriction results in their use in fewer functions. This divergence among beta tubulins could have resulted through neutral drift. For example, exclusive use of Physarum beta 2 tubulin in the spindle may have allowed more amino acid substitutions than would be functionally tolerable in the beta tubulins that are utilized in multiple microtubular organelles. Alternatively, restricted use of beta tubulins may allow positive selection to operate more freely to refine beta-tubulin function.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Yujun, Jianqiang Xu, Yuanye Zhu, Yabing Duan, and Mingguo Zhou. "Mechanism of Action of the Benzimidazole Fungicide on Fusarium graminearum: Interfering with Polymerization of Monomeric Tubulin But Not Polymerized Microtubule." Phytopathology® 106, no. 8 (August 2016): 807–13. http://dx.doi.org/10.1094/phyto-08-15-0186-r.

Full text
Abstract:
Tubulins are the proposed target of clinically relevant anticancer drugs, anthelmintic, and fungicide. β2-tubulin of the plant pathogen Fusarium graminearum was considered as the target of benzimidazole compounds by homology modeling in our previous work. In this study, α1-, α2-, and β2-tubulin of F. graminearum were produced in Escherichia coli. Three benzimidazole compounds (carbendazim, benomyl, and thiabendazole) interacted with the recombinant β2-tubulin and reduced the maximum fluorescence intensity of 2 μM β2-tubulin 47, 50, and 25%, respectively, at saturation of compound-tubulin complexes. Furthermore, carbendazim significantly inhibited the polymerization of α1-/β2-tubulins and α2-/β2-tubulins 90.9 ± 0.4 and 93.5 ± 0.05%, respectively, in vitro. A similar result appeared with benomyl on the polymerization of α1-/β2-tubulins and α2-/β2-tubulins at 89.9 ± 0.1% and 92.6 ± 1.2% inhibition ratios, respectively. In addition, thiabendazole inhibited 81.6 ± 1% polymerization of α1-/β2-tubulins, whereas it had less effect on α2-/β2-tubulin polymerization, with 20.1 ± 1.9% inhibition ratio. However, the three compounds cannot destabilize the polymerized microtubule. To illuminate the issue, mapping the carbendazim binding sites and β/α subunit interface on β/α-tubulin complexes by homology modeling showed that the two domains were closed to each other. Understanding the nature of the interaction between benzimidazole compounds and F. graminearum tubulin is fundamental for the development of tubulin-specific anti-F. graminearum compounds.
APA, Harvard, Vancouver, ISO, and other styles
8

Rudolph, J. E., M. Kimble, H. D. Hoyle, M. A. Subler, and E. C. Raff. "Three Drosophila beta-tubulin sequences: a developmentally regulated isoform (beta 3), the testis-specific isoform (beta 2), and an assembly-defective mutation of the testis-specific isoform (B2t8) reveal both an ancient divergence in metazoan isotypes and structural constraints for beta-tubulin function." Molecular and Cellular Biology 7, no. 6 (June 1987): 2231–42. http://dx.doi.org/10.1128/mcb.7.6.2231-2242.1987.

Full text
Abstract:
The genomic DNA sequence and deduced amino acid sequence are presented for three Drosophila melanogaster beta-tubulins: a developmentally regulated isoform beta 3-tubulin, the wild-type testis-specific isoform beta 2-tubulin, and an ethyl methanesulfonate-induced assembly-defective mutation of the testis isoform, B2t8. The testis-specific beta 2-tubulin is highly homologous to the major vertebrate beta-tubulins, but beta 3-tubulin is considerably diverged. Comparison of the amino acid sequences of the two Drosophila isoforms to those of other beta-tubulins indicates that these two proteins are representative of an ancient sequence divergence event which at least preceded the split between lines leading to vertebrates and invertebrates. The intron/exon structures of the genes for beta 2- and beta 3-tubulin are not the same. The structure of the gene for the variant beta 3-tubulin isoform, but not that of the testis-specific beta 2-tubulin gene, is similar to that of vertebrate beta-tubulins. The mutation B2t8 in the gene for the testis-specific beta 2-tubulin defines a single amino acid residue required for normal assembly function of beta-tubulin. The sequence of the B2t8 gene is identical to that of the wild-type gene except for a single nucleotide change resulting in the substitution of lysine for glutamic acid at residue 288. This position falls at the junction between two major structural domains of the beta-tubulin molecule. Although this hinge region is relatively variable in sequence among different beta-tubulins, the residue corresponding to glu 288 of Drosophila beta 2-tubulin is highly conserved as an acidic amino acid not only in all other beta-tubulins but in alpha-tubulins as well.
APA, Harvard, Vancouver, ISO, and other styles
9

Rudolph, J. E., M. Kimble, H. D. Hoyle, M. A. Subler, and E. C. Raff. "Three Drosophila beta-tubulin sequences: a developmentally regulated isoform (beta 3), the testis-specific isoform (beta 2), and an assembly-defective mutation of the testis-specific isoform (B2t8) reveal both an ancient divergence in metazoan isotypes and structural constraints for beta-tubulin function." Molecular and Cellular Biology 7, no. 6 (June 1987): 2231–42. http://dx.doi.org/10.1128/mcb.7.6.2231.

Full text
Abstract:
The genomic DNA sequence and deduced amino acid sequence are presented for three Drosophila melanogaster beta-tubulins: a developmentally regulated isoform beta 3-tubulin, the wild-type testis-specific isoform beta 2-tubulin, and an ethyl methanesulfonate-induced assembly-defective mutation of the testis isoform, B2t8. The testis-specific beta 2-tubulin is highly homologous to the major vertebrate beta-tubulins, but beta 3-tubulin is considerably diverged. Comparison of the amino acid sequences of the two Drosophila isoforms to those of other beta-tubulins indicates that these two proteins are representative of an ancient sequence divergence event which at least preceded the split between lines leading to vertebrates and invertebrates. The intron/exon structures of the genes for beta 2- and beta 3-tubulin are not the same. The structure of the gene for the variant beta 3-tubulin isoform, but not that of the testis-specific beta 2-tubulin gene, is similar to that of vertebrate beta-tubulins. The mutation B2t8 in the gene for the testis-specific beta 2-tubulin defines a single amino acid residue required for normal assembly function of beta-tubulin. The sequence of the B2t8 gene is identical to that of the wild-type gene except for a single nucleotide change resulting in the substitution of lysine for glutamic acid at residue 288. This position falls at the junction between two major structural domains of the beta-tubulin molecule. Although this hinge region is relatively variable in sequence among different beta-tubulins, the residue corresponding to glu 288 of Drosophila beta 2-tubulin is highly conserved as an acidic amino acid not only in all other beta-tubulins but in alpha-tubulins as well.
APA, Harvard, Vancouver, ISO, and other styles
10

Chu, Chih-Wen, Fajian Hou, Junmei Zhang, Lilian Phu, Alex V. Loktev, Donald S. Kirkpatrick, Peter K. Jackson, Yingming Zhao, and Hui Zou. "A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation." Molecular Biology of the Cell 22, no. 4 (February 15, 2011): 448–56. http://dx.doi.org/10.1091/mbc.e10-03-0203.

Full text
Abstract:
Dynamic instability is a critical property of microtubules (MTs). By regulating the rate of tubulin polymerization and depolymerization, cells organize the MT cytoskeleton to accommodate their specific functions. Among many processes, posttranslational modifications of tubulin are implicated in regulating MT functions. Here we report a novel tubulin acetylation catalyzed by acetyltransferase San at lysine 252 (K252) of β-tubulin. This acetylation, which is also detected in vivo, is added to soluble tubulin heterodimers but not tubulins in MTs. The acetylation-mimicking K252A/Q mutants were incorporated into the MT cytoskeleton in HeLa cells without causing any obvious MT defect. However, after cold-induced catastrophe, MT regrowth is accelerated in San-siRNA cells while the incorporation of acetylation-mimicking mutant tubulins is severely impeded. K252 of β-tubulin localizes at the interface of α-/β-tubulins and interacts with the phosphate group of the α-tubulin-bound GTP. We propose that the acetylation slows down tubulin incorporation into MTs by neutralizing the positive charge on K252 and allowing tubulin heterodimers to adopt a conformation that disfavors tubulin incorporation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Tubulin"

1

Nacoulma, Aminata. "Reprogrammation métabolique induite dans les tissus hyperplasiques formés chez le tabac infecté par Rhodococcus fascians: aspects fondamentaux et applications." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209429.

Full text
Abstract:
Les pathosystèmes, plante-bactérie, aboutissent souvent au niveau de la plante à de profondes reprogrammations tant au niveau de la morphogenèse que du métabolome. Dans le cas de l’interaction plante-Rhodococcus fascians, une bactérie phytopathogène, il se développe au niveau du site d’infection, une structure morphologique particulière nommée « galle feuillée ».

Au sein de cette hyperplasie, les altérations métaboliques induites concernent non seulement les produits du métabolisme primaire mais également le métabolisme secondaire et plus particulièrement des composés qui interviennent dans les mécanismes de défense ou qui affectent la prolifération cellulaire végétale.

Dans le cadre de notre travail de thèse, nous nous sommes fixé deux objectifs principaux qui sont de caractériser les altérations métaboliques au niveau des tissus hyperplasiques de tabac mais aussi de rechercher des applications potentielles du point de vue thérapeutique de cette interaction.

L’approche métabolomique globale basée sur une analyse comparative des spectres 1H-RMN d’extraits bruts de tissus infectés et de tissus non-infectés couplée à des analyses statistiques de données multivariées (ACP, OPLS-DA) a été utilisé pour l’étude de la reprogrammation métabolique. Le résultat indique une accumulation de composés phénoliques et des métabolites de la famille des diterpènes dans les tissus de la galle feuillée.

Les activités biologiques des extraits de la galle feuillée ont ensuite été évaluées, notamment des activités antioxydantes (DPPH, FRAP), anti-inflammatoire (15-LOX) et antiproliférative (MTT). Il ressort de cette analyse une augmentation du potentiel réducteur et anti-radicalaire des extraits de la galle feuillée, une activité inhibitrice de la lipoxygénase ainsi qu'une activité antiproliférative sur lignées tumorales humaines, comparée à la plante non infectée.

L’étude des composés affectant la prolifération des cellules cancéreuses humaines a aboutit à la mise en évidence d’un mélange de molécules (F3.1.1) appartenant au groupe des incensoles (cembrènoïdes). Ces composés ralentissent la durée de la division cellulaire, affectent la taille des cellules et induisent des anomalies de la karyokinèse et de la cytokinèse des cellules de glioblastome U373. La dynamique tubuline/microtubule est identifiée comme étant la cible des cembrènoïdes (F3.1.1). L’effet des ces composés est original comparé aux anti-tubulines usuels tel que la colchicine et le paclitaxel. Le mécanisme d’action des incensoles est unique et donc prometteur du fait que la dynamique des microtubules reste une cible de choix dans le traitement des cellules cancéreuses.


Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
2

Mackeh, Rafah. "Mécanisme de l’hyperacétylation de la tubuline en réponse aux stress." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA114852.

Full text
Abstract:
Au-delà de sa présence sur les microtubules stables, l'acétylation de l’-tubuline peut être augmentée après exposition des cellules aux UV ou après une carence en nutriments, phénomène que l’on appelle « hyperacétylation ». Cependant, le mécanisme d’induction de cette hyperacétylation est encore inconnu. Dans cette étude, nous montrons que l’hyperacétylation de la tubuline est une réponse générale aux stress cellulaire, et nous avons cherché à caractériser cette réponse, à identifier la voie de signalisation activée par le stress et conduisant à cette réponse, et à étudier la signification biologique de ce phénomène rapide et réversible. Nous avons trouvé que MEC-17/-TAT1, l’acétyltransférease majeure de l’ tubuline, est une enzyme nécessaire à l’induction de l’hyperacétylation en réponse aux stress, et qu'elle est régulée, à l’état basal par une autre acétyltransférase appelée p300. Au cours du stress, nous montrons que l'augmentation de la production des espèces réactives de l'oxygène (ROS), conduit à l'activation de la kinase « AMP-activated protein kinase (AMPK) », qui, à son tour provoque la phosphorylation de MEC-17, et probablement son activation. Enfin, nous montrons que l’hyperacétylation de la tubuline induite par le stress, participe à la survie des cellules dans des conditions de stress et à l'induction de l'autophagie de survie
Beyond its presence in stable microtubules, -tubulin acetylation can be boosted after UV exposure or after nutrient deprivation but the mechanisms of this hyperacetylation are still unknown. In this study, we show that tubulin hyperacetylation is a general cell stress response, and aimed to characterize this response, to identify the stress-activated signaling pathway leading to its induction and the biological significance of this rapid and reversible phenomenon. We found that the major tubulin acetyltransferase MEC-17/-TAT1 is the main enzyme required for mediating tubulin hyperacetylation upon stress, and that it is regulated under normal conditions by the acetyltransferase p300. Upon stress, we show that the increased production of reactive oxygen species (ROS), leads to the activation of AMP-activated protein kinase (AMPK), which in turn mediates MEC-17 phosphorylation, and probably its subsequent activation. Finally, we show that tubulin hyperacetylation induced upon stress participate in cell survival under stress conditions and in the induction of protective autophagy
APA, Harvard, Vancouver, ISO, and other styles
3

Cao, Luyan. "bases structurales de la motilité des kinésines." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS267/document.

Full text
Abstract:
Les kinésines sont des protéines moteur liées au cytosquelette de microtubules. Elles convertissent l’énergie provenant de l’hydrolyse de l’ATP en un travail mécanique. Leur fonction typique est de se déplacer le long du microtubule pour véhiculer des charges. La plupart des kinésines sont des dimères. Elles comprennent un domaine moteur, qui porte à la fois les sites de liaison du nucléotide et du microtubule, un domaine intermédiaire de dimérisation et une partie dite « queue » qui confère la spécificité des charges à transporter. Mon objectif est d’établir le mécanisme moléculaire à la base de la motilité, avec un intérêt particulier pour la détermination des variations structurales du domaine moteur de la kinésine le long de son cycle mécano-chimique. Au cours de ma thèse, mon objet d’étude principal a été la kinésine-1 humaine, encore appelée kinésine conventionnelle.J’ai étudié plus particulièrement deux aspects du cycle mécano-chimique de la kinésine-1, en combinant des approches de biologie structurale et l’étude de mutants. Les deux aspects concernent l’étude de la fixation de la kinésine-ADP au microtubule, conduisant à l’éjection du nucléotide et à une liaison forte de la kinésine au microtubule. Dans un premier temps, j’ai déterminé la structure du domaine moteur de la kinésine-1, dépourvue de nucléotide, et sous forme d’un complexe avec la tubuline. La tubuline est la protéine constitutive des microtubules. Cette structure était la donnée principale qui nous manquait dans le cycle structural de la kinésine. En comparant cette structure avec celle de la kinésine dans un état ATP, on peut rendre compte des changements de conformation de la kinésine selon le mouvement de trois sous-domaines du domaine moteur. Cette analyse explique notamment le lien entre la fixation de l’ATP et l’ouverture d’une poche hydrophobe distante de 28 Å du site du nucléotide. Cette cavité va accommoder le premier résidu du neck linker, conduisant à la stabilisation de ce peptide situé en partie C-terminale du domaine moteur. En s’ordonnant, le neck linker va faire avancer la charge ainsi que l’autre domaine moteur de la kinésine dimérique. Il lie ainsi la fixation de l’ATP au mouvement. L’étude de l’effet de mutations du neck linker montre aussi comment, réciproquement, le neck linker bloque la kinésine dans la conformation active pour l’hydrolyse de l’ATP. Ceci diminue la probabilité que l’ATP soit hydrolysé avant que l’étape mécanique se soit produite; cet aspect est essentiel pour rendre compte de la processivité de la kinésine-1.Ces données structurales suggèrent également comment la fixation de la kinésine-ADP au microtubule accélère l’éjection de l’ADP. Pour étudier cet aspect plus en détail, j’ai étudié l’effet de mutations sur la vitesse de largage de l’ADP. L’idée était de mimer à l’aide de mutations la fixation au microtubule. J’ai identifié ainsi deux séries de mutants qui présentent une vitesse accélérée de largage spontané de l’ADP, ce qui suggère deux voies pour interférer avec la fixation du nucléotide. J’ai ensuite déterminé la structure de deux de ces mutants dépourvus de nucléotide, ainsi que celle de la kinésine de départ également dans une forme apo, obtenue par digestion de l’ADP. En absence de microtubule, la kinésine dépourvue de nucléotide adopte une conformation soit à l’image de celle de la kinésine-ADP, ou proche de celle de la kinésine-apo liée à la tubuline. Dans un contexte naturel, seule la deuxième conformation est compatible avec la fixation au microtubule. L’ensemble de ces résultats suggère que le microtubule accélère l’éjection du nucléotide par un double mécanisme : en interférant avec la liaison du magnésium et en déstabilisant le motif P-loop de liaison du nucléotide
Kinesins are a family of microtubule-interacting motor proteins that convert the chemical energy from ATP hydrolysis into mechanical work. Many kinesins are motile, walking along microtubules to fulfill different functions. Most kinesins are dimers, the monomer comprising a motor domain, a dimerizing stalk domain, and a tail domain. The motor domain contains both the nucleotide-binding site and the microtubule-binding site. I am interested in the molecular mechanism of kinesin's motility. In particular I want to establish the structural variations of the kinesin motor domain along with the mechanochemical cycle of this motor protein. During my thesis, I have focused my work on the human kinesin-1, also named conventional kinesin, which is the best characterized kinesin.I have studied two aspects of the kinesin mechanochemical cycle, by combining structural and mutational approaches. Both aspects rely on the binding of ADP-kinesin to a microtubule, which leads to the release of the nucleotide and to a tight kinesin-microtubule association. First I determined the crystal structure of nucleotide-free kinesin-1 motor domain in complex with a tubulin heterodimer, which is the building block of microtubule. This structure represented the main missing piece of the structural cycle of kinesin. Three subdomains in the kinesin motor domain can be identified through the comparison of my structure with ATP-analog kinesin-1-tubulin structure. The relative movements of these subdomains explain how ATP binding to apo-kinesin bound to microtubule triggers the opening of a hydrophobic cavity, 28 Å distant from the nucleotide-binding site. This cavity accommodates the first residue of the “neck linker”, a short peptide that is C-terminal to the motor domain, allowing the neck linker to dock on the motor domain. The docking of the neck linker is proposed to trigger the mechanical step, i.e. the displacement of the cargo and the stepping of the dimeric kinesin. By studying mutants of the neck linker, I have shown that, reciprocally, this peptide locks kinesin in the ATP state, which is also the conformation efficient for ATP hydrolysis. Doing so, it prevents the motor domain from switching back to the apo-state. It prevents also an untimely hydrolysis of ATP, before the mechanical step has occurred. These features are required for movement and processivity.Second, these structural data also suggest how the binding of ADP-kinesin to tubulin enhances nucleotide release from kinesin. To further study this step of the kinesin cycle, I studied the effect of kinesin-1 mutations. These mutations were designed in isolated kinesin to mimic the state when kinesin is bound to a microtubule. I identified two groups of mutations leading to a high spontaneous ADP dissociation rate, suggesting that there are two ways to interfere with ADP binding. Then I determined the crystal structures of the apo form of two mutants as well as that of the nucleotide-depleted wild type kinesin. It showed that apo-kinesin adopts either and ADP-like conformation or a tubulin-bound apo-like one. In the natural context, the second one is stabilized upon microtubule binding. Overall, the mutational and structural data suggest that microtubules accelerate ADP dissociation in kinesin by two main paths, by interfering with magnesium binding and by destabilizing the nucleotide-binding P-loop motif
APA, Harvard, Vancouver, ISO, and other styles
4

Bladh, Håkan. "Structure-activity studies of novel colchicine analogs synthesis, conformation and tublin binding /." Lund : Lund University, 1998. http://books.google.com/books?id=1sBqAAAAMAAJ.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Francisco, Samuel Nuno Furtado da Conceição. "Toxoplasma gondii Tubulin Cofactor B plays a key role in host cell invasion and replication." Doctoral thesis, Universidade de Lisboa, Faculdade de Medicina Vterinária, 2020. http://hdl.handle.net/10400.5/20149.

Full text
Abstract:
Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas
Tubulin cofactors participate in the folding, dimerization, and dissociation pathways of the tubulin dimer, being implicated in the control of tubulin proteostasis and consequently in the control of microtubule (MT) dynamics in vivo. We hypothesise that these proteins have a role in the regulation of MT cytoskeleton dynamics during Toxoplasma gondii host cell invasion. In this context, we characterized the Tubulin cofactor B (TBCB) in T. gondii. TBCB is a CAPGly domain-containing protein that together with TBCE, interact with and dissociate the tubulin dimer. The TBCB sub-cellular localization in T. gondii was studied using an in-house anti-TBCB serum. T. gondii lines overexpressing TBCB were obtained by random integration as well as TBCB conditional knockout lines by CRISPR/Cas9 system. TBCB transgenic clones were characterized by growing assays (plaque, invasion, replication and egress assays), western blot analysis and fluorescence microscopy (standard, confocal and super-resolution). TBCB showed a polarized localization, at the anterior region of the parasite, under the conoid and in close association with polar ring and subpellicular MTs. It did not present a clear co-localization with the apical complex secretory vesicles, although the interaction with rhoptries and micronemes cannot be excluded. TBCB overexpression lines showed a significant decrease in the capacity to form plaques, attributable to a proportional reduction in the capacity to invade. No differences were observed in replication and egress assays. The TgTBCB knockout line, showed a complete depletion of the protein and a viability no longer than a week. These lines showed a strong reduction in their capacity to invade the host cell and in their replication rate. In the absence of TBCB, cells have an altered axis of division resulting in abnormal division. Some parasites show the loss of the correct division axis and some parasites have four daughter cells forming inside instead of two. TBCB is a polarity marker in T. gondii and is involved in the invasion and replication processes. Its apical localization, together with TBCB mammalian partners already described (MT associated proteins) and the invasion phenotypes, suggest that TBCB can be involved in the intracellular traffic of secretory vesicles depending on MTs. Importantly, TBCB is an essential protein, constituting a good target for new control strategies.
RESUMO - O Cofactor B da Tubulina de Toxoplasma gondii tem um papel central na invasão da célula hospedeira e na replicação - Os parasitas protozoários pertencentes ao Filo Apicomplexa são agentes patogénicos responsáveis por um vasto leque de doenças. Apesar da grande biodiversidade deste filo, os mecanismos moleculares adjacentes ao processo de invasão das células hospedeiras parecem ser conservados entre as diferentes espécies. O processo de invasão das células hospedeiras tem gerado grande interesse em vários grupos, incluindo o nosso, visto ser um importante alvo para o delineamento de estratégias médicas profilácticas e terapêuticas. Assim, nos últimos anos o nosso grupo tem vindo a interessar-se pelo estudo e compreensão do envolvimento do citoesqueleto de microtúbulos, tanto do parasita como da célula hospedeira, no processo de invasão. Os nossos resultados anteriores em Besnoitia besnoiti mostraram que este parasita, aquando da interação com a célula hospedeira, sofre alterações dramáticas na sua forma e superfície, acompanhadas pela remodelação de estruturas específicas de microtúbulos (MTs), nomeadamente os MTs subpeliculares. Estas alterações foram evidenciadas através de uma marcação distinta da tubulina na zona posterior do parasita. Para além disso, o citoesqueleto de MTs da célula hospedeira também responde à entrada do parasita, resultados que, posteriormente, foram também obtidos em Toxoplasma gondii. Estudos anteriores em T. gondii demonstraram que os MTs subpeliculares são muito estáveis. Esta estabilidade está possivelmente relacionada com modificações pós-traducionais (MPT) da tubulina, uma vez que, ao contrário dos vertebrados, estes organismos possuem uma família multigénica de α- e β-tubulinas composta por um número reduzido de membros. As MPTs referidas parecem modelar a interação dos MTs com as proteínas que lhes estão associadas. Mais ainda, em T. gondii, foram descritas proteínas que cobrem os MTs, num padrão complexo e definido, e que são importantes para a estabilidade dos mesmos. Deste modo, as proteínas que interagem com os MTs podem desempenhar um papel crucial na regulação do citoesqueleto do parasita aquando da invasão da célula hospedeira. Outras proteínas importantes para a regulação da dinâmica do citoesqueleto de MTs são os cofactores da tubulina, os quais participam nas vias de “folding”, dimerização e dissociação do dímero de tubulina. Estes cofatores controlam a proteostase da tubulina, através do controlo da “pool” de tubulina solúvel, participando na regulação da dinâmica dos MTs in vivo. Consequentemente, estas proteínas são candidatas a desempenhar um papel crucial nas modificações observadas no citoesqueleto de MTs do parasita aquando da invasão da célula hospedeira. Neste contexto o nosso objetivo principal foi avaliar e caracterizar o papel do Cofator B da Tubulina (TBCB de “Tubulin-binding cofactor B”) em T. gondii. Esta é uma proteína relativamente pequena que possui um domínio CAP-Gly na sua extremidade C-terminal e um domínio semelhante à ubiquitina (UBL de “ubiquitin-like”) na extremidade N-terminal. Em conjugação com o Cofactor E da tubulina (TBCE de “Tubulin binding cofactor E”), o TBCB dissocia o dímero de tubulina, controlando desta forma a “pool” de tubulina solúvel disponível na célula e consequentemente a dinâmica do citoesqueleto de MTs. A escolha do parasita protozoário T. gondii como modelo biológico deve-se ao facto de o mesmo possuir um genoma totalmente sequenciado e bem anotado, juntamente com o vasto conjunto de ferramentas disponíveis para a sua manipulação genética. Neste trabalho identificámos o gene do Tbcb em T. gondii, analisámos os níveis de expressão por RT-PCR durante o processo de invasão da célula hospedeira e de replicação, estudámos a localização intracelular do TgTBCB usando um anticorpo produzido no nosso laboratório e recorrendo a microscopia confocal e de super resolução, examinámos o fenótipo de TBCB em excesso (sobre-expressão por integração ao acaso) e de ausência do TBCB (deleção do gene utilizando o sistema CRISPR/Cas9). Nestes dois últimos casos foram criadas e selecionadas linhas transgénicas de parasitas, as quais foram analisadas em ensaios de crescimento (formação de pacas, invasão, replicação e egresso) bem como por western blot e por microscopia de fluorescência. Da análise dos níveis da expressão do Tbcb de T. gondii durante o processo de invasão e de replicação do parasita na célula hospedeira, notámos uma diminuição significativa dos níveis de expressão às 4 horas após a invasão da célula hospedeira, à qual se seguiu uma fase de recuperação desses níveis. Quanto à localização sub-celular do TgTBCB, observámos que em T. gondii esta proteína tem uma localização polarizada, estando localizada essencialmente no polo anterior, junto do conoide, podendo, por vezes, ser também observada uma marcação menos abundante no polo posterior. Constatámos ainda que o TgTBCB co-localiza parcialmente com as proteínas 2 e 3 das micronemas e com a tubulina glutamilada. Foi ainda possível constatar que na região apical o TBCB em T. gondii parece co-alinhar com os MTs subpeliculares, MTs que afunilam para estarem ancorados ao anel polar. Desta forma, o TBCB também parece estar junto ou imediatamente abaixo ao anel polar apical. Observámos que o excesso de TgTBCB causa uma queda acentuada na capacidade de formar placas de lise em tapetes celulares, a qual foi acompanhada de forma proporcional por uma diminuição notória dos níveis de invasão de células pelos parasitas. Curiosamente, não verificámos qualquer alteração na replicação ou no egresso dos mesmos. Em relação à deleção do gene Tbcb do parasita, 72 horas após a indução da CRISPR/Cas9 comprovámos a completa ausência de TgTBCB por western blot. Observámos também que a viabilidade dos parasitas sem TgTBCB não supera uma semana e que após a indução da deleção do gene, os parasitas demonstraram uma enorme redução na capacidade de invasão e também de replicação. Isto é, os poucos parasitas que conseguiam invadir as células hospedeiras apresentavam enormes problemas na replicação. Por western blot, nos extratos proteicos insolúveis, notámos uma diminuição nos níveis de a-tubulina, tubulina acetilada e poliglutamilada. Estes resultados também foram confirmados por imunofluorescência. Constatámos ainda que os parasitas sem TgTBCB apresentavam vários problemas de divisão, entre eles a alteração do eixo de divisão, a perda do controlo da divisão e a formação de células com morfologia arredondada, compatível com a perda de polaridade. Por microscopia eletrónica observámos também a perda de polaridade dos parasitas bem como a presença de núcleos de dimensões muito superiores ao normal ou dois núcleos dentro da célula, sem que a divisão celular tivesse sido concluída. Concluindo, o TgTBCB é uma proteína com uma localização polar, sendo observada no polo anterior abaixo do conoide e junto ao anel apical polar, acompanhado os MTs subpeliculares na região apical. A sua co-localização parcial com as proteínas das micronemas e com os MTs subpeliculares, bem como os seus parceiros já descritos em células de mamífero (proteínas de ligação aos MTs), juntamente com o fenótipo de invasão, sugerem que esta proteína em T. gondii poderá estar envolvida no tráfego vesicular ao longo dos MTs subpeliculares. A sobre-expressão do TgTBCB demonstrou a importância desta proteína no processo de invasão e a sua deleção provou que é essencial quer para a invasão quer para a replicação do parasita, visto que na ausência de TgTBCB há um comprometimento irreversível do citoesqueleto de MTs do parasita, levando à morte em menos de uma semana. Este fenótipo, aparentemente, está associado à diminuição dos MTs subpeliculares bem como à impossibilidade de formar novos MTs nas células filhas. Em suma, o TgTBCB é uma proteína essencial em T. gondii, podendo constituir um novo potencial alvo para novas estratégias de controlo e tratamento do parasita.
N/A
APA, Harvard, Vancouver, ISO, and other styles
6

Imboden, Martin Alex. "Tubulin genes of Trypanosoma brucei /." [S.l : s.n.], 1987. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deshpande, Amit. "α-Tubulin nitrotyrosination affects cell growth and is regulated by tubulin tyrosine ligase like 12." Strasbourg, 2009. https://publication-theses.unistra.fr/restreint/theses_doctorat/2009/DESHPANDE_Amit_2009.pdf.

Full text
Abstract:
Les microtubules sont un élément important du cytosquelette et de réaliser une variété de fonctions essentielles. La diversité fonctionnelle des microtubules provient de différentes diverses - et-tubuline isotypes qui sont exprimés dans la cellule, et une vaste gamme de réversibles modifications post-traductionnelles. tyrosination Tubulin est l'un de ces modifications exécutées par la tubuline tyrosine ligase (TTL). TTL est le membre fondateur du 14 tyrosine ligase membres tubuline comme (TTLL) de la famille. Wasylyk laboratoire a trouvé TTLL12 être exprimés de manière différentielle dans la tête et du cou et le cancer de la prostate. L'analyse fonctionnelle sur TTLL12 révélé qu'il peut réguler nitrotyrosination tubuline. Nitrotyrosine - un analogue structural de la tyrosine est présent dans les cellules dans des conditions pathologiques et est incorporé sur le α-tubuline ce qui entrave le fonctionnement normal des microtubules. nitrotyrosination Tubulin est préjudiciable à la croissance des cellules. Nous montrons que la surexpression de TTLL12 conduit à diminuer en α-tubuline nitrotyrosination et vice versa. Nous montrons que nitrotyrosination α-tubuline affecte la croissance cellulaire dans les A549 et cellules HEp-2. On voit aussi que TTLL12 peut modifier α-tubuline nitrotyrosination et affecter la croissance des cellules Hep-2 et des cellules DU145. Ainsi TTLL12 pourrait jouer un rôle important dans la régulation de la croissance cellulaire ou la survie des cellules dans les tumeurs avec des niveaux accrus de nitrotyrosine. Nous avons développé une analyse à haut débit de trouver des composés qui peuvent augmenter nitrotyrosination tubuline par TTLL12, TTL ou d'autres mécanismes. Le criblage d'une bibliothèque de 10000 composés donné lieu à deux tubes potentiels qui ont augmenté nitrotyrosination tubuline. Des études plus approfondies de ces visites sur la croissance cellulaire en présence de nitrotyrosine et mécanisme d'action est en cours
Microtubules are an important component of the cytoskeleton and carry out a variety of essential functions. Functional diversity of microtubules comes from various different - and -tubulin isotypes that are expressed within the cell, and an extensive array of reversible post-translational modifications. Tubulin tyrosination is one of such modifications executed by tubulin tyrosine ligase (TTL). TTL is the founding member of 14 member tubulin tyrosine ligase like (TTLL) family. Wasylyk’s laboratory found TTLL12 to be differentially expressed in head and neck cancer and prostate cancer. Functional analysis on TTLL12 revealed that it can regulate tubulin nitrotyrosination. Nitrotyrosine - a structural analogue of tyrosine is present in cells in pathological conditions and is incorporated on the α-tubulin thus hampering the normal functioning of microtubules. Tubulin nitrotyrosination is detrimental to cell growth. We show that over expression of TTLL12 leads to decrease in α-tubulin nitrotyrosination and vice versa. We show that α-tubulin nitrotyrosination affects cell growth in A549 and HEp-2 cells. We further show that TTLL12 can alter α-tubulin nitrotyrosination and affect the cell growth in HEp-2 and DU145 cells. Thus TTLL12 could play an important role in the regulation of cell growth or cell survival in tumors with increased levels of nitrotyrosine. We developed a high throughput assay to find compounds which can increase tubulin nitrotyrosination via TTLL12, TTL or other mechanisms. Screening a library of 10000 compounds resulted in two potential hits which increased tubulin nitrotyrosination. Further investigations of these hits on cell growth in the presence of nitrotyrosine and mechanism of action is in progress
APA, Harvard, Vancouver, ISO, and other styles
8

Karamtzioti, Paraskevi 1990. "Tubulin modifications in human gametes : from the oocytes spindle to the sperm flagellum : Characterization of tubulin post translational modifications in female meiosis and sperm pathologies." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/670643.

Full text
Abstract:
This thesis aimed to characterize the tubulin PTM profile of human oocytes and spermatozoa. Tubulin rich structures play critical roles in the cellular behavior of human gametes. Mutations in tubulin or related proteins can affect oocyte maturation and flagellum motility. We first focused on tubulin post-translational modifications (PTMs) in the oocyte spindle and sperm flagellum. We characterized the PTM spindle profile of MII oocytes cultured in vitro and matured in vivo, and compared PTM enzyme transcript levels with two additional groups: GV and failed to mature oocytes. Further determination of the transcripts’ translational fate was performed using the cytoplasmic polyadenylation element code with verification experiments on Xenopus oocytes. Additionally, we sought to deteremine the pattern and levels of tubulin PTMs along the sperm tail and correlate these profiles with pathologies like asthenozoospermia and teratozoospermia.
Esta tesis tuvo como objetivo caracterizar el perfil de PTM de los microtúbulos de ovocitos y espermatozoides humanos. Las estructuras ricas en tubulina juegan un papel fundamental en el comportamiento celular de los gametos humanos. Las mutaciones en la tubulina o proteínas relacionadas pueden afectar la maduración de los ovocitos y la motilidad del flagelo. En primer lugar, nos centramos en las modificaciones posteriores a la traducción (PTM) de la tubulina en el huso del ovocito y el flagelo del esperma. Caracterizamos el perfil de PTM del huso en ovocitos de MII cultivados in vitro y madurados in vivo, y comparamos los niveles de transcripción de PTM enzimas con dos grupos adicionales: GV y ovocitos que no maduraron. Además se estudió la regulación de la transcripción de los RNA mensajeros por el código del elemento de poliadenilación citoplásmica con experimentos en oocitos de Xenopus. Además, investigamos el patrón y los niveles de PTM de tubulina a lo largo de la cola del esperma y su correlacioón potencial con patologías como la astenozoospermia y la teratozoospermia.
APA, Harvard, Vancouver, ISO, and other styles
9

Paul, E. C. A. "The biology of tubulin in Physarum." Thesis, University of Kent, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Doll, John M. 1976. "Catalysis of tubulin heterodimerization in vivo." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32259.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2004.
Includes bibliographical references.
The heterodimerization of α- and β-tubulin represents a critical early step in microtubule morphogenesis. In vitro studies have defined a pathway that mediates the incorporation of monomeric tubulin polypeptides into heterodimer. The components of this pathway, tubulin cofactors, are dispensable for growth in Saccharomyces cerevisiae under laboratory conditions. Yet, these proteins are required for survival under conditions of stress or in the presence of a weakened tubulin heterodimer. This finding suggests cofactors may function in vivo to promote reformation of dissociated tubulin heterodimer. In order to carry out this activity, cofactors are thought to facilitate the association of tubulin monomers without likewise promoting the dissociation of tubulin heterodimer. However, the mechanism of cofactor activity in vivo and the method by which these proteins achieve vectorial catalysis of heterodimerization has remained obscure. In this study, we present evidence that several endogenous tubulin cofactors associate with one another in vivo and bind tubulin monomer under conditions of stress. We also provide physical and genetic data suggesting that Cin4p, an ARF family GTPase, associates with the tubulin cofactor Cin1 p (cofactor D) and promotes tubulin heterodimerization by modulating Cin1 p's association with β-tubulin. Through site-directed mutagenesis, we conclude that Cin4p GTPase activity is important for these functions. These data support a model in which the production of tubulin heterodimer via a putative cofactor complex is coupled to nucleotide hydrolysis by a small GTPase. The linkage of these reactions could serve to impart directionality to the activity of tubulin cofactors, allowing them to selectively promote tubulin heterodimerization without also catalyzing heterodimer dissociation.
by John M. Doll.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Tubulin"

1

service), SpringerLink (Online, ed. Tubulin-binding agents: Synthetic, structural and mechanistic insights. Berlin: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carlomagno, Teresa, ed. Tubulin-Binding Agents. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-69039-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yamauchi, Wei. Tubulin: Structure, functions, and roles in disease. Hauppauge, N.Y: Nova Science, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Read, M. Tubulin in the erythrocytic stages of phasmodium falciparum. Manchester: UMIST, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leyland, Steven. A unique tubulin antiserum inhibits poleward chromosome movement in anaphase. Ottawa: National Library of Canada, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pape, Michaela. Charakterisierung des [beta]-Tubulin-Gens der kleinen Strongyliden des Pferdes. [S.l.]: [s.n.], 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lamb, Jeremy Charles. Fluorescent derivatives of tubulin as probes for the analysis of microtubule dynamics. Norwich: University of East Anglia, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Poetsch, Bettina. Zur Expression und Funktion von Aktin und Tubulin in der Photomorphogenese von Physarum polycephalum. Gauting bei München: Intemann, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaluzienski, Mark Henry. Changes in rat skeletal muscle phenotype following colchicine disruption of motor axonal tubulin. Sudbury, Ont: Laurentian University, Behavioural Neuroscience Program, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A, Cross R., and Kendrick-Jones J, eds. Motor proteins: A volume based on the EMBO Workshop, Cambridge, September 1990. Cambridge [England]: Company of Biologists, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Tubulin"

1

Yariv, Joseph. "Tubulin." In The Discreet Charm of Protein Binding Sites, 19–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24996-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carlier, Marie-France, and Dominique Pantaloni. "Tubulin as a G-Protein: Regulation of Tubulin-Tubulin Interactions by GTP Hydrolysis." In The Guanine — Nucleotide Binding Proteins, 379–84. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-2037-2_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stephens, R. E. "Ciliary Membrane Tubulin." In Ciliary and Flagellar Membranes, 217–40. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0515-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amos, Linda A., and W. Bradshaw Amos. "Properties of Tubulin." In Molecules of the Cytoskeleton, 117–41. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21739-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stearns, Tim. "The Tubulin Superfamily." In Centrosomes in Development and Disease, 17–25. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603808.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Young, David H. "Anti-tubulin Agents." In Fungicide Resistance in Plant Pathogens, 93–103. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55642-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schomburg, Dietmar, and Dörte Stephan. "Tubulin N-acetyltransferase." In Enzyme Handbook 11, 1111–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61030-1_240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sebastian de Bono, Johann, Anthony W. Tolcher, and Eric K. Rowinsky. "Tubulin-Targeting Drugs." In Current Cancer Therapeutics, 95–108. London: Current Medicine Group, 2001. http://dx.doi.org/10.1007/978-1-4613-1099-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Miñana, Maria-Dolores, Vicente Felipo, and Santiago Grisolía. "Hyperammonemia Induces Brain Tubulin." In Advances in Experimental Medicine and Biology, 65–80. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5826-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Breviario, Diego. "Tubulin Genes and Promotors." In Plant Microtubules, 137–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-22300-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Tubulin"

1

Deriu, Marco A., Søren Enemark, Emiliano Votta, Franco M. Montevecchi, Alberto Redaelli, and Monica Soncini. "Bottom-Up Mesoscale Model of Microtubule." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176115.

Full text
Abstract:
Microtubules (MTs) are fundamental structural elements in the cytoskeleton of all eukaryotic cells. The MTs are hollow cylinder-shaped biopolymers with inner and outer diameter of about 18 and 30 nm respectively and length ranging from 1 to 10 μm. They are constituted by αβ-tubulins arranged in protofilaments with head-to-tail motif. The protofilaments bind together laterally along the MT’s long axis with a slight shift generating a spiral with a pitch of 2, 3 or 4 monomers’ length [1]. The building-block of the MT, αβ-tubulin, is a hetero-dimer made of two globular monomers, α- and β-tubulin. α- and β-tubulin monomers consists of about 450 residues and shows a high degree of similarity from the primary to the tertiary structure level. However, one important difference is that the α-monomer binds a GTP molecule while the β-monomer binds a GDP molecule [2].
APA, Harvard, Vancouver, ISO, and other styles
2

Deriu, Marco A., Monica Soncini, Mario Orsi, Mishal Patel, Jonathan W. Essex, Franco M. Montevecchi, and Alberto Redaelli. "Elastic Network Normal Mode Analysis for Microtubule Mechanics." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206618.

Full text
Abstract:
The cellular microtubules MTs are hollow cylinder-shaped biopolymers with inner and outer diameter of about 17 and 25 nm and length ranging from 1 to 10 μm. They are constituted by αβ-tubulins arranged in protofilaments with a head-to-tail motif [1]. The protofilaments bind together laterally along the MT’s long axis with a slight shift generating a spiral with a pitch of 2, 3 or 4 monomers’ length (Fig.1a). The building-block of the MT, the αβ-tubulin, is a hetero-dimer made of two globular monomers, α- and β-tubulin, each of them consisting of about 450 residues with high degree of sequence similarity from the primary to the tertiary structure level [1].
APA, Harvard, Vancouver, ISO, and other styles
3

Sheldon, Kely L., and Dan L. Sackett. "Abstract 3044: The ability of tubulin to close mitochondrial VDAC pores depends on beta tubulin isotype." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Chia-Ping H., and Susan B. Horwitz. "Abstract 664: Polymerization of human βIII-tubulin is distinct from βI-tubulin in a cell-free system." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ringel, Israel, Varda Gottfried, Lila Levdansky, James W. Winkelman, and Sol Kimel. "Photodynamic activity of porphines on tubulin assembly." In BiOS Europe '95, edited by Benjamin Ehrenberg, Giulio Jori, and Johan Moan. SPIE, 1996. http://dx.doi.org/10.1117/12.230982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sackett, Dan L., and Adrian Begaye. "Abstract 1219: Tubulin binding to mitochondrial VDAC: A new regulator of oxidative metabolism and apoptosis? A new role for tubulin." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tamura, Daisuke, Tokuzo Arao, Tomoyuki Nagai, Hiroyasu Kaneda, Kanae Kudo, Keiichi Aomatsu, Kazuko Sakai, et al. "Slug Increases Sensitivity To Tubulin Binding Agents Via The Downregulation Of Beta III And IVa-Tubulin In Lung Cancer Cells." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Enemark, So̸ren, Marco A. Deriu, and Monica Soncini. "Mechanical Properties of Tubulin Molecules by Molecular Dynamics Simulations." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95674.

Full text
Abstract:
The basic unit in microtubules is αβ-tubulin, a hetero-dimer consisting of an α- and a β-tubulin monomer. The mechanical characteristics of the dimer as well as of the individual monomers may be used to obtain new insight into the microtubule tensile properties. In the present work we evaluate the elastic constants of each of the monomers and the interaction force between them by means of molecular dynamics simulations. Molecular models of α-, β-, and αβ-tubulin were developed starting from the 1TUB.pdb structure from the RSCB database. Simulations were carried out in a solvated environment using explicit water molecules. In order to measure the monomers’ elastic constants, simulations were performed by mimicking experiments carried out with atomic force microscopy. A different approach was used to determine the interaction force between the α- and β-monomers using 8 different monomer configurations based on different inter-monomer distances. The obtained results show an elastic constant value for α-tubulin of 3.4–3.9 N/m, while for the β-tubulin the elastic constant was measured to be 1.8–2.4 N/m. The maximum interaction force between the monomers was estimated to be 11.2 nN. In perspective, these outcomes will allow exchanging atomic level description with key mechanical features enabling microtubule characterisation by continuum mechanics approach.
APA, Harvard, Vancouver, ISO, and other styles
9

Viel, A., S. Deschamps, H. Phillippe, H. Denis, and M. le Maire. "Ise EF−1α associated with tubulin in X.laevis oocytes." In The living cell in four dimensions. AIP, 1991. http://dx.doi.org/10.1063/1.40585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peyrot, V., C. Briand, and J. M. Andreu. "Limited proteolysis of tubulin by subtilisin induces ring formation." In The living cell in four dimensions. AIP, 1991. http://dx.doi.org/10.1063/1.40597.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Tubulin"

1

Banerjee, Asok. Characterization of Tubulin Isoforms in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada393136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Banerjee, Asok. Characterization of Tubulin Isoforms in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada381325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, KyoungLang, and Gunda I. Georg. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada443679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Banerjee, Asok. Characterization of Tubulin Isoforms in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada395082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Kyounglang, and AGunda I. Georg. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada432471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ramadas, Vidya. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada416994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Luduena, Richard. Nuclear Tubulin: A Novel for Breast Cancer Chemotherapy. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada392981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, KyoungLang, and Gunda I. Georg. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada474734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Susan M. Wick. Growth and development of maize that contains mutant tubulin genes. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/826290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Luduena, Richard F. The Role of Nuclear Beta II-Tubulin in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada405620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography