Academic literature on the topic 'Troubles vestibulaires'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Troubles vestibulaires.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Troubles vestibulaires"
Amortila, Muriel, and Alain Bauwens. "Troubles vestibulaires et orthoptie." Revue Francophone d'Orthoptie 14, no. 2 (April 2021): 53–54. http://dx.doi.org/10.1016/j.rfo.2021.04.007.
Full textAmortila, Muriel. "Orthoptie et troubles vestibulaires." Revue Francophone d'Orthoptie 10, no. 3-4 (December 2017): 132–33. http://dx.doi.org/10.1016/j.rfo.2017.09.009.
Full textDellavalle, Pascale. "Psychomotricité auprès des enfants sourds présentant une atteinte vestibulaire." Contraste N° 59, no. 1 (March 26, 2024): 53–66. http://dx.doi.org/10.3917/cont.059.0053.
Full textGaymard, Bertrand. "Conséquences oculomotrices des troubles vestibulaires centraux." Revue Francophone d'Orthoptie 10, no. 3-4 (December 2017): 139–44. http://dx.doi.org/10.1016/j.rfo.2017.09.001.
Full textAmortila, Muriel. "Orthoptie et troubles Vestibulaires – Mme H." Revue Francophone d'Orthoptie 10, no. 3-4 (December 2017): 159–62. http://dx.doi.org/10.1016/j.rfo.2017.09.003.
Full textMaisonneuve, Catherine. "Troubles vestibulaires : vers des médicaments plus efficaces ?" Kinésithérapie, la Revue 10, no. 103 (July 2010): 4. http://dx.doi.org/10.1016/s1779-0123(10)74864-6.
Full textBerta, É., C. A. Righini, E. Chamorey, J. Villa, I. Atallah, É. Reyt, A. Coffre, and S. Schmerber. "Nausées et troubles vestibulaires lors de la radiothérapie conformationnelle avec modulation d’intensité de la tête et du cou." Cancer/Radiothérapie 20, no. 4 (June 2016): 255–60. http://dx.doi.org/10.1016/j.canrad.2016.01.012.
Full textLopez, Christophe, and Maya Elzière. "Illusions de sortie de corps dans les pathologies vestibulaires. Étude prospective chez 210 patients consultant pour des troubles de l’équilibre et des vertiges." Neurophysiologie Clinique 47, no. 5-6 (December 2017): 343–44. http://dx.doi.org/10.1016/j.neucli.2017.10.019.
Full textReynard, P., H. Thai-Van, and E. Ionescu. "Trouble de l'équilibre d'origine vestibulaire de l'enfant." Perfectionnement en Pédiatrie 2 (June 2019): S57—S59. http://dx.doi.org/10.1016/s2588-932x(19)30192-5.
Full textTran Ba Huy, Patrice, MM Tran ba huy, Chouard, Legent, Chays, Maison-Neuve, and Yelnik. "La rééducation vestibulaire des vertiges et troubles de l’équilibre chroniques." Bulletin de l'Académie Nationale de Médecine 190, no. 8 (November 2006): 1791–802. http://dx.doi.org/10.1016/s0001-4079(19)33176-0.
Full textDissertations / Theses on the topic "Troubles vestibulaires"
Lahlou, Ghizlène. "Thérapie génique translationnelle des surdités et troubles vestibulaires d'origine génétique." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS090.pdf.
Full textDeafness and vestibular disorders are frequent pathologies, and sources of disability and impaired quality of life. Deafness is the most common sensory disorder in humans, and 1 child is born deaf for every 700 births. Currently, there is no cure for these disorders. A promising therapeutic alternative is gene therapy using rAAV, and numerous preclinical studies have provided proof of its efficacy in the treatment of deafness and vestibular disorders of genetic origin. However, many challenges remain to be overcome before considering application in humans. In this work, we sought to identify the key steps to be taken for a clinical application of gene therapy for 2 human genetic causes of deafness, USH1G syndrome and DFNB9 deafness. We used the corresponding mouse models for this, as well as studies in non-human primates and an in vitro human vestibular organ explant model. We were able to show that the therapeutic window was a major factor to take into account in a translational objective. The stage of maturation of the inner ear greatly influences the effectiveness of therapy, especially when the pathology involves developmental abnormalities such as in USH1 syndrome. However, we were able to provide evidence of an extension of the therapeutic window in Ush1g-/- mice, and to show that viral gene therapy performed at a mature stage allowed vestibular function to be restored to a level close to normal, and to a lesser extent a restauration of hearing function. In DFNB9 deafness for which there is no developmental abnormality, we were able to show that gene therapy allowed a complete restoration of hearing, and laid the foundations for a future therapy in humans
Gustave-Dit-Duflo, Sylvie. "Adaptation et restauration des fonctions vestibulaires : Analyses comportementale et cellulaire après lésion ou stimulation vestibulaire chez l'animal." Montpellier 2, 1998. http://www.theses.fr/1998MON20128.
Full textLopez, Christophe. "Restauration des fonctions vestibulaires chez l'homme : corrélats moteurs, oculomoteurs et perceptifs." Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11060.
Full textThe vestibular system is involved in body stabilization and orientation, gaze stabilization, and spatial representation. Therefore, lesions of the vestibular system lead to drastic impairment of these functions. Effects of unilateral vestibular loss on Menière's patients were investigated by manipulating dynamic and static visual cues. Recovery time-course was analyzed up to one year. Behavioral approaches in patients showed asymmetry of motor (body orientation), oculomotor (torsional optokinetic nystagmus) and perceptive (subjective visual vertical) functions in the presence of dynamic visual references, that remained uncompensated long after vestibular loss. In addition, our results pointed to a reweighting of dynamic and static visual references after unilateral vestibular loss, and evidenced idiosyncratic adaptive mechanisms. These studies demonstrated that vestibular compensation involves high level adaptive processes based on the selection of spatial reference frames. Functional magnetic resonance imaging study allowed us to determine the cortical correlates of visual vertical judgment in healthy humans. They are a part of a multimodal cortical network involved in the representation of the egocentric, allocentric, and gravitational reference frames. It also overlaps regions related to control of body orientation in space
Parietti-Winkler, Cécile. "Modalités de compensation de la fonction d'équilibration après déafférentation vestibulaire unilatérale aiguë." Nancy 1, 2006. http://docnum.univ-lorraine.fr/public/SCD_T_2006_0173_PARIETTI-WINKLER.pdf.
Full textPostural control is a multidetermined system based on central integration of visual, somesthesic and vestibular peripheral information. This complex integration permits a context-specific motor response to maintain equilibrium. Damage to any of these balance regulation systems influences the common output of the postural system resulting in postural instability. In case of vestibular lesion, as acoustic neuroma and its surgical removal, initial vertigo and gaze and postural control disturbances occur, corresponding to unilateral vestibular deafferentation (uVD). After uVD, a process called vestibular compensation leads to decrease of symptoms and improvement of global balance functions. A prospective study aimed to assess the differential contribution of sensory inputs to the regulation of posture during the recovery process after acoustic neuroma removal. Twenty-seven patients with acoustic neuroma underwent vestibular and posturographic testings, shortly before and eight days, one month and three months after surgical removal of the tumour. This study showed, immediately after vestibular deafferentation, deterioration in postural performances. In quiet stance, postural performances were altered, especially in eyes closed conditions and in sensory challenged situations. One month, and more particularly three months after surgery, restoration and even improvement of balance performances occurred, associated with a lower number of falls, development of more appropriate sensorimotor strategies and better resolution of sensorial conflicts. Balance disturbances and movement situations followed the same time-course. The time-course of the perturbation and the recovery of postural control was similar to the changes occurring in vestibular function. The three modalities of postural control regulation are perturbed just after surgical removal of acoustic neuroma, wich alters the compensation gradually developed during growth of neuroma. UVD leads to perturbations in head positions detection and its displacements relative to trunk, but also interferes with the somatosensory and visual pathways. The time-course implementation of central adaptive mechanisms, characterized by substitution by other sensory afferences and new behavioural strategies, leads to a recovery of balance control with an improvement of balance performance of all the modalities of postural control
Emptoz, Alice. "Restauration, par thérapie génique, de l'audition et de l'équilibre chez des souris modèles de surdités et troubles vestibulaires humains." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066192.
Full textHearing loss is one of the most common human sensory deficits affecting over 360 millions people worldwide. In France, over one child out of 700 suffers from profound deafness at birth, and 1/1000 will be affected by hearing impairment prior to adulthood. The early-onset forms of severe, nonsyndromic deafness are mostly genetic in origin. Deafness can be associated with vestibular impairments which can complicate daily simple tasks. In most cases, hearing and vestibular impairments are due to defects in, respectively, the cochlea, the hearing organ, and the vestibule, the balance organ.In front of the non-existence of curative treatment, gene transfer technology is an alternative therapeutic approach to rescue hereditary deafness and vestibular impairments. The aim of my project is the use of viral gene therapy to restore hearing and balance in mice established as model for human deafness (DFNB9, DFNB59, Usher syndrome type IG and 3A). Our results provide a proof-of-principle that in vivo intracochlear delivery of therapeutic genes using adeno-associated virus can restore the structure and the function of inner ear sensory hair cells, at the mecano-sensitive apparatus and at the synapse. Thus, we restore significantly the hearing, and completely the vestibular impairment. This project open the way to new methods for restoring hearing in patients with genetic forms of deafness
Emptoz, Alice. "Restauration, par thérapie génique, de l'audition et de l'équilibre chez des souris modèles de surdités et troubles vestibulaires humains." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066192.
Full textHearing loss is one of the most common human sensory deficits affecting over 360 millions people worldwide. In France, over one child out of 700 suffers from profound deafness at birth, and 1/1000 will be affected by hearing impairment prior to adulthood. The early-onset forms of severe, nonsyndromic deafness are mostly genetic in origin. Deafness can be associated with vestibular impairments which can complicate daily simple tasks. In most cases, hearing and vestibular impairments are due to defects in, respectively, the cochlea, the hearing organ, and the vestibule, the balance organ.In front of the non-existence of curative treatment, gene transfer technology is an alternative therapeutic approach to rescue hereditary deafness and vestibular impairments. The aim of my project is the use of viral gene therapy to restore hearing and balance in mice established as model for human deafness (DFNB9, DFNB59, Usher syndrome type IG and 3A). Our results provide a proof-of-principle that in vivo intracochlear delivery of therapeutic genes using adeno-associated virus can restore the structure and the function of inner ear sensory hair cells, at the mecano-sensitive apparatus and at the synapse. Thus, we restore significantly the hearing, and completely the vestibular impairment. This project open the way to new methods for restoring hearing in patients with genetic forms of deafness
Calvet, Charlotte. "Synaptopathies auditives et vestibulaires : de la physiologie moléculaire à la thérapie génique." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS195.
Full textHearing loss is the most common sensory deficit, affecting more than 466 million people worldwide. In France, one in 1,000 children is born with severe to profound deafness, Hearing loss is often associated with balance impairments. Currently, there is no curative treatment available, however the possibility of gene therapy is a promising alternative treatment for deafness and vestibular disorders of genetic origin. Gene therapy studies in mouse models particularly rely on the use of adeno-associated viruses (AAVs) for gene delivery. In this thesis, we used AAVs for both gene therapy of hearing loss and vestibular disorders and to study physiological gene function. Specifically, we looked at three proteins whose dysfunction leads to neurosensory impairment: OTOFERLINE, SNAP-25 and SANS.Our results obtained in mice show that it is possible to restore the structure and function of inner ear sensory hair cells, at the synaptic and stereociliary levels, by in vivo transfer of therapeutic genes contained in an AAV. The use of AAV expressing Snap-25 demonstrated the role of this protein in both the survival and exocytosis of inner hair cells. Thus, we restored hearing and balance in different models of auditory and vestibular synaptopathies. This project opens up new perspectives for the treatment of genetic forms of deafness and vestibular disorders in humans
Zennou-Azogui, Yoh'i. "Compensation vestibulaire : substitution visuelle dans le noyau de Deiters chez le chat éveillé : période sensible et rôle de l'activité visuomotrice." Aix-Marseille 1, 1993. http://www.theses.fr/1993AIX11051.
Full textParietti-Winkler, Cécile Perrin Philippe. "Modalités de compensation de la fonction d'équilibration après déafférentation vestibulaire unilatérale aigue." [S.l.] : [s.n.], 2006. http://www.scd.uhp-nancy.fr/docnum/SCD_T_2006_0173_PARIETTI-WINKLER.pdf.
Full textChiarovano, Elodie. "Instabilité posturale chez les séniors : dysfonction vestibulaire périphérique ou centrale ?" Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB006.
Full textPostural instability is common in seniors and can lead to falls which seniors are a major problem for Public Health. Epidemiological studies clearly show the magnitude of this problem: one in three people aged than more 70 years will fall in a year. This is caused by multiple factors including: musculoskeletal, visual, cognition, vestibular… The present study concerns the effect of age on the vestibular peripheral receptors function and on the perception of rotation from horizontal canal inputs (central vestibular processing and vestibular cortical projection). The aim is to try to understand the vestibular mechanisms involved in postural instability and mobility with age. At the peripheral level, the horizontal canal function was assessed using caloric test and video-Head Impulse Test. Otolith function (saccular and utricular) was assessed using vestibular evoked myogenic potentials recorded at cervical level (sacculo-spinal pathways) and at ocular level (utriculo-ocular pathways). At the central level, perception of motion from vestibular horizontal canal inputs was studied after caloric stimulation with warm water using a subjective perceptual score (presence or absence of rotatory vertigo). Finally, postural equilibrium was assessed with the Sensory Organization Test on the Equitest machine and also with a new system developed in collaboration with Prof. Curthoys (Sydney) using a Wii Balance Board, a foam rubber pad and a virtual reality headset (Oculus Rift DK2). Results showed decreased ocular responses induced by caloric stimulation after 70 years of age but healthy horizontal gain of the vestibulo-ocular reflex assessed by video-head impulse testing. The otolithic (saccular and utricular) function is impaired with age for all the stimuli used (air or bone conducted). Perception of motion induced by caloric stimulation (vestibular horizontal canal inputs) allowed us to show for the first time that some seniors are unable to feel the induced rotatory vertigo even with normal ocular responses (peak of the slow phase eye velocity higher than 15°/s). We defined two types of seniors: one senior group having a normal feeling of vertigo and one senior ‘neglect’ group who did not feel any sensation of rotation from horizontal canal inputs. The comparison of these two age-matched groups showed no difference in horizontal canal function, or otolithic function. The majority of the ‘neglect’ seniors with an absence of perception exhibited falls or a decreased score in conditions 5 and 6 during the Equitest. Moreover, their DHI scores were higher, showing the handicap induced by postural instability in these seniors. In conclusion, postural instability and falls in seniors may result from central vestibular impairment (inadequate central processing). A prospective study is needed to determine whether the increase perceptual threshold of rotation could be a good predictor of fall risk in seniors
Book chapters on the topic "Troubles vestibulaires"
Bury, Véronique. "Les bébés trop calmes. Incidences sensori-motrices sur le plan vestibulaire chez les enfants avec troubles du spectre autistique." In Des troubles sensoriels aux stratégies thérapeutiques, 245–47. Érès, 2021. http://dx.doi.org/10.3917/eres.amy.2021.01.0245.
Full text