Academic literature on the topic 'Tropospheric smog'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tropospheric smog.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tropospheric smog"

1

Madronich, S., M. Shao, S. R. Wilson, K. R. Solomon, J. D. Longstreth, and X. Y. Tang. "Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health." Photochemical & Photobiological Sciences 14, no. 1 (2015): 149–69. http://dx.doi.org/10.1039/c4pp90037e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hess, P., D. Kinnison, and Q. Tang. "Ensemble simulations of the role of the stratosphere in the attribution of tropospheric ozone variability." Atmospheric Chemistry and Physics Discussions 14, no. 14 (August 8, 2014): 20461–520. http://dx.doi.org/10.5194/acpd-14-20461-2014.

Full text
Abstract:
Abstract. Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, attribution of tropospheric interannual ozone variability to specific processes has proved difficult. Here we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953–2005 in the Northern Hemisphere (N.~H.) mid-latitudes using four ensemble simulations of the Free Running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are forced with observed time varying: (1) sea surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) Quasi-Biennial Oscillation (QBO); (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). Detailed representation of stratospheric chemistry is simulated including the ozone loss processes due to volcanic eruptions and polar stratospheric clouds. In the troposphere ozone production is represented by CH4-NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of the tropospheric chemistry, the FR WACCM simulations capture the measured N. H. background interannual tropospheric ozone variability in many locations to a surprising extent, suggesting the importance of external forcing in driving interannual ozone variability. The variability and trend in the simulated 1953–2005 tropospheric ozone record from 30–90° N at background surface measurement sites, 500 hPa measurement sites and in the area average is largely explained on interannual timescales by changes in the 150 hPa 30–90° N ozone flux and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30–90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 150 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30–90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30–90° N simulated downward residual velocity at 150 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30–90° N 150 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990–2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30–90° N. This identified mode of ozone variability shows strong stratosphere–troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Nino Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.
APA, Harvard, Vancouver, ISO, and other styles
3

Burghardt, Tomasz, Anton Pashkevich, and Lidia Żakowska. "Contribution of solvents from road marking paints to tropospheric ozone formation." Budownictwo i Architektura 15, no. 1 (April 1, 2016): 007–18. http://dx.doi.org/10.24358/bud-arch_16_151_01.

Full text
Abstract:
Solventborne road marking paints are meaningful sources of Volatile Organic Compounds (VOCs), which under solar irradiation affect formation of tropospheric ozone, a signif cant pulmonary irritant and a key pollutant responsible for smog formation. Influence of particular VOCs on ground-level ozone formation potential, quantified in Maximum Incremental Reactivities (MIR), were used to calculate potential contribution of solvents from road marking paints used in Poland to tropospheric ozone formation. Based on 2014 data, limited only to roads administered by General Directorate for National Roads and Motorways (GDDKiA), emissions of VOCs from road marking paints in Poland were about 494 838 kg, which could lead to production of up to 1 003 187 kg of ropospheric ozone. If aromatic-free solventborne paints based on ester solvents, such as are commonly used in Western Europe, were utilised, VOC emissions would not be lowered, but potentially formed ground-level ozone could be limited by 50-70%. Much better choice from the perspective of environmental protection would be the use of waterborne road marking paints like those mandated in Scandinavia – elimination of up to 82% of the emitted VOCs and up to 95% of the potentially formed tropospheric ozone could be achieved.
APA, Harvard, Vancouver, ISO, and other styles
4

Hess, P., D. Kinnison, and Q. Tang. "Ensemble simulations of the role of the stratosphere in the attribution of northern extratropical tropospheric ozone variability." Atmospheric Chemistry and Physics 15, no. 5 (March 4, 2015): 2341–65. http://dx.doi.org/10.5194/acp-15-2341-2015.

Full text
Abstract:
Abstract. Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4–NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953–2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30–90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30–90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30–90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere–troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño–Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.
APA, Harvard, Vancouver, ISO, and other styles
5

Asensio, María, María Antiñolo, Sergio Blázquez, José Albaladejo, and Elena Jiménez. "Evaluation of the daytime tropospheric loss of 2-methylbutanal." Atmospheric Chemistry and Physics 22, no. 4 (March 1, 2022): 2689–701. http://dx.doi.org/10.5194/acp-22-2689-2022.

Full text
Abstract:
Abstract. Saturated aldehydes, e.g. 2-methylbutanal (2 MB, CH3CH2CH(CH3)C(O)H), are emitted into the atmosphere by several biogenic sources. The first step in the daytime atmospheric degradation of 2 MB involves gas-phase reactions initiated by hydroxyl (OH) radicals, chlorine (Cl) atoms, and/or sunlight. In this work, we report the rate coefficients for the gas-phase reaction of 2 MB with OH (kOH) and Cl (kCl), together with the photolysis rate coefficient (J), in the ultraviolet solar actinic region in Valencia (Spain) at different times of the day. The temperature dependence of kOH was described in the 263–353 K range by the following Arrhenius expression: kOH(T)=(8.88±0.41)×10-12 exp[(331±14)/T] cm3 molec.−1 s−1. At 298 K, the reported kOH and kCl are (2.68±0.07)×10-11 and (2.16±0.32)×10-10 cm3 molec.−1 s−1, respectively. Identification and quantification of the gaseous products of the Cl reaction and those from the photodissociation of 2 MB were carried out in a smog chamber by different techniques (Fourier transform infrared spectroscopy, proton transfer time-of-flight mass spectrometry, and gas chromatography coupled to mass spectrometry). The formation and size distribution of secondary organic aerosols formed in the Cl reaction were monitored by a fast mobility particle sizer spectrometer. A discussion on the relative importance of the first step in the daytime atmospheric degradation of 2 MB is presented together with the impact of the degradation products in marine atmospheres.
APA, Harvard, Vancouver, ISO, and other styles
6

Quesada-Ruiz, Samuel, Jean-Luc Attié, William A. Lahoz, Rachid Abida, Philippe Ricaud, Laaziz El Amraoui, Régina Zbinden, et al. "Benefit of ozone observations from Sentinel-5P and future Sentinel-4 missions on tropospheric composition." Atmospheric Measurement Techniques 13, no. 1 (January 14, 2020): 131–52. http://dx.doi.org/10.5194/amt-13-131-2020.

Full text
Abstract:
Abstract. We present an observing simulated system experiment (OSSE) dedicated to evaluate the potential added value from the Sentinel-4 and the Sentinel-5P observations on tropospheric ozone composition. For this purpose, the ozone data of Sentinel-4 (Ultraviolet Visible Near-infrared) and Sentinel-5P (TROPOspheric Monitoring Instrument) on board a geostationary (GEO) and a low-Earth-orbit (LEO) platform, respectively, have been simulated using the DISAMAR inversion package for the summer 2003. To ensure the robustness of the results, the OSSE has been configured with conservative assumptions. We simulate the reality by combining two chemistry transport models (CTMs): the LOng Term Ozone Simulation – EURopean Operational Smog (LOTOS-EUROS) and the Transport Model version 5 (TM5). The assimilation system is based on a different CTM, the MOdèle de Chimie Atmosphérique à Grande Echelle (MOCAGE), combined with the 3-D variational technique. The background error covariance matrix does not evolve in time and its variance is proportional to the field values. The simulated data are formed of six eigenvectors to minimize the size of the dataset by removing the noise-dominated part of the observations. The results show that the satellite data clearly bring direct added value around 200 hPa for the whole assimilation period and for the whole European domain, while a likely indirect added value is identified but not for the whole period and domain at 500 hPa, and to a lower extent at 700 hPa. In addition, the ozone added value from Sentinel-5P (LEO) appears close to that from Sentinel-4 (GEO) in the free troposphere (200–500 hPa) in our OSSE. The outcome of our study is a result of the OSSE design and the choice within each of the components of the system.
APA, Harvard, Vancouver, ISO, and other styles
7

Skoulidou, Ioanna, Maria-Elissavet Koukouli, Astrid Manders, Arjo Segers, Dimitris Karagkiozidis, Myrto Gratsea, Dimitris Balis, et al. "Evaluation of the LOTOS-EUROS NO<sub>2</sub> simulations using ground-based measurements and S5P/TROPOMI observations over Greece." Atmospheric Chemistry and Physics 21, no. 7 (April 6, 2021): 5269–88. http://dx.doi.org/10.5194/acp-21-5269-2021.

Full text
Abstract:
Abstract. The evaluation of chemical transport models, CTMs, is essential for the assessment of their performance regarding the physical and chemical parameterizations used. While regional CTMs have been widely used and evaluated over Europe, their validation over Greece is limited. In this study, we investigate the performance of the Long Term Ozone Simulation European Operational Smog (LOTOS-EUROS) v2.2.001 regional chemical transport model in simulating nitrogen dioxide, NO2, over Greece from June to December 2018. In situ NO2 measurements obtained from 14 stations of the National Air Pollution Monitoring Network are compared with surface simulations over the two major cities of Greece, Athens and Thessaloniki. Overall the LOTOS-EUROS NO2 surface simulations compare very well to the in situ measurements showing a mild underestimation of the measurements with a mean relative bias of ∼-10 %, a high spatial correlation coefficient of 0.86 and an average temporal correlation of 0.52. The CTM underestimates the NO2 surface concentrations during daytime by ∼-50 ± 15 %, while it slightly overestimates during night-time ∼ 10 ± 35 %. Furthermore, the LOTOS-EUROS tropospheric NO2 columns are evaluated against ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) NO2 measurements in Athens and Thessaloniki. We report that the CTM tropospheric NO2 column simulations over both urban and rural locations represent the diurnal patterns and hourly levels for both summer and winter seasons satisfactorily. The relative biases range between ∼ −2 % and −35 %, depending on season and relative NO2 load observed. Finally, the CTM was assessed also against space-borne Sentinel-5 Precursor (S5P) carrying the Tropospheric Monitoring Instrument (TROPOMI) tropospheric NO2 observations. We conclude that LOTOS-EUROS simulates extremely well the tropospheric NO2 patterns over the region with very high spatial correlation of 0.82 on average, ranging between 0.66 and 0.95, with negative biases in the summer and positive in the winter. Updated emissions for the simulations and model improvements when extreme values of boundary layer height are encountered are further suggested.
APA, Harvard, Vancouver, ISO, and other styles
8

Bahlmann, Enno, Frank Keppler, Julian Wittmer, Markus Greule, Heinz Friedrich Schöler, Richard Seifert, and Cornelius Zetzsch. "Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes." Atmospheric Chemistry and Physics 19, no. 3 (February 8, 2019): 1703–19. http://dx.doi.org/10.5194/acp-19-1703-2019.

Full text
Abstract:
Abstract. Chloromethane (CH3Cl) is the most important natural input of reactive chlorine to the stratosphere, contributing about 16 % to stratospheric ozone depletion. Due to the phase-out of anthropogenic emissions of chlorofluorocarbons, CH3Cl will largely control future levels of stratospheric chlorine. The tropical rainforest is commonly assumed to be the strongest single CH3Cl source, contributing over half of the global annual emissions of about 4000 to 5000 Gg (1 Gg = 109 g). This source shows a characteristic carbon isotope fingerprint, making isotopic investigations a promising tool for improving its atmospheric budget. Applying carbon isotopes to better constrain the atmospheric budget of CH3Cl requires sound information on the kinetic isotope effects for the main sink processes: the reaction with OH and Cl in the troposphere. We conducted photochemical CH3Cl degradation experiments in a 3500 dm3 smog chamber to determine the carbon isotope effect (ε=k13C/k12C-1) for the reaction of CH3Cl with OH and Cl. For the reaction of CH3Cl with OH, we determined an ε value of (-11.2±0.8) ‰ (n=3) and for the reaction with Cl we found an ε value of (-10.2±0.5) ‰ (n=1), which is 5 to 6 times smaller than previously reported. Our smaller isotope effects are strongly supported by the lack of any significant seasonal covariation in previously reported tropospheric δ13C(CH3Cl) values with the OH-driven seasonal cycle in tropospheric mixing ratios. Applying these new values for the carbon isotope effect to the global CH3Cl budget using a simple two hemispheric box model, we derive a tropical rainforest CH3Cl source of (670±200) Gg a−1, which is considerably smaller than previous estimates. A revision of previous bottom-up estimates, using above-ground biomass instead of rainforest area, strongly supports this lower estimate. Finally, our results suggest a large unknown CH3Cl source of (1530±200) Gg a−1.
APA, Harvard, Vancouver, ISO, and other styles
9

Wallington, T. J., J. H. Seinfeld, and J. R. Barker. "100 Years of Progress in Gas-Phase Atmospheric Chemistry Research." Meteorological Monographs 59 (January 1, 2019): 10.1–10.52. http://dx.doi.org/10.1175/amsmonographs-d-18-0008.1.

Full text
Abstract:
Abstract Remarkable progress has occurred over the last 100 years in our understanding of atmospheric chemical composition, stratospheric and tropospheric chemistry, urban air pollution, acid rain, and the formation of airborne particles from gas-phase chemistry. Much of this progress was associated with the developing understanding of the formation and role of ozone and of the oxides of nitrogen, NO and NO2, in the stratosphere and troposphere. The chemistry of the stratosphere, emerging from the pioneering work of Chapman in 1931, was followed by the discovery of catalytic ozone cycles, ozone destruction by chlorofluorocarbons, and the polar ozone holes, work honored by the 1995 Nobel Prize in Chemistry awarded to Crutzen, Rowland, and Molina. Foundations for the modern understanding of tropospheric chemistry were laid in the 1950s and 1960s, stimulated by the eye-stinging smog in Los Angeles. The importance of the hydroxyl (OH) radical and its relationship to the oxides of nitrogen (NO and NO2) emerged. The chemical processes leading to acid rain were elucidated. The atmosphere contains an immense number of gas-phase organic compounds, a result of emissions from plants and animals, natural and anthropogenic combustion processes, emissions from oceans, and from the atmospheric oxidation of organics emitted into the atmosphere. Organic atmospheric particulate matter arises largely as gas-phase organic compounds undergo oxidation to yield low-volatility products that condense into the particle phase. A hundred years ago, quantitative theories of chemical reaction rates were nonexistent. Today, comprehensive computer codes are available for performing detailed calculations of chemical reaction rates and mechanisms for atmospheric reactions. Understanding the future role of atmospheric chemistry in climate change and, in turn, the impact of climate change on atmospheric chemistry, will be critical to developing effective policies to protect the planet.
APA, Harvard, Vancouver, ISO, and other styles
10

Eberhard, Jürg, Claudia MüLler, David W. Stocker, and J. Alistair Kerr. "The photo-oxidation of diethyl ether in smog chamber experiments simulating tropospheric conditions: Product studies and proposed mechanism." International Journal of Chemical Kinetics 25, no. 8 (August 1993): 639–49. http://dx.doi.org/10.1002/kin.550250805.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Tropospheric smog"

1

Cohan, Daniel Shepherd. "Photochemical Formation and Cost-Efficient Abatement of Ozone: High-Order Sensitivity Analysis." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-09152004-150617/unrestricted/cohan%5Fdaniel%5Fs%5F200412%5Fphd.pdf.

Full text
Abstract:
Thesis (Ph. D.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2005.
Russell, Armistead G., Committee Chair ; Chameides, William L., Committee Member ; Wang, Yuhang, Committee Member ; Noonan, Douglas, Committee Member ; Chang, Michael E., Committee Member. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Zhen. "Characterizing the photochemical environment over China." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43668.

Full text
Abstract:
The rapid rising anthropogenic emissions driven by economic growth over China documented by satellite observations and bottom-up inventories have led to severely degraded air quality, and also have been suggested to be linked to the recent upward trends of tropospheric O₃ over the regions downwind of China. Multi-scale modeling analyses facilitated by ground-level, aircraft and satellite observations have been conducted to understand the atmospheric chemistry over China. Analyses using a 1-D photochemical model constrained by measurements at Beijing in August of 2007 suggest that reactive aromatic VOCs are the major source (~75%) of peroxy acetyl nitrate (PAN). Detailed radical budget analyses reveal the very fast ROₓ (OH + HO₂ + RO₂) production, recycling and destruction driven by VOC oxidation and heterogeneous processes. Photoenhanced aerosol surface uptake of NO₂ is found to be the predominant source of nitrous acid (HONO) during daytime (~70%). 3-D regional modeling analyses of tropospheric vertical column densities of glyoxal (CHOCHO) from SCIAMACHY show that anthropogenic emissions of aromatic VOCs are substantially underestimated (by a factor of 5 - 6, regionally varied) over China. Such an underestimation is the main cause of a large missing source of CHOCHO over the region in current global models, and could also partly explain the underestimation of organic aerosols in previous modeling studies.
APA, Harvard, Vancouver, ISO, and other styles
3

Bell, Michelle Lee. "Analysis of air pollution and human health from historical and modern perspectives study of the public health impacts of the London 1952 smog, sensitivity analyses of ambient tropospheric ozone to precursor emissions and estimation of subsequent health effects /." Available to US Hopkins community, 2002. http://wwwlib.umi.com/dissertations/dlnow/3068118.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Tropospheric smog"

1

Fishman, Jack. Ozone, tropospheric. [Washington, D.C: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Siegenthaler, Reto. Bestimmung und Analyse troposphärischer Strahlungseffekte (Dunsteffekte) während Sommersmogphasen im Schweizer Mittelland mit Methoden der Fernerkundung. Bern: Universität Bern, Schweiz, Geographisches Institut, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Refrigerating and Air-Conditioning Engine American Society of Heating (Corporate Author), Donald J. Wuebbles (Editor), and M. Geshwiler (Editor), eds. The Ins & Outs of Ozone: Holes in the Sky, Smog in the Cities, Impurities in the Water. American Society of Heating, Refrigerating &, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

J, Wuebbles Donald, and American Society of Heating, Refrigerating and Air-Conditioning Engineers., eds. The ins and outs of ozone: Holes in the sky, smog in the cities, impurities in the water. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Tropospheric smog"

1

Behnke, Wolfgang, and Cornelius Zetzsch. "Heterogeneous Production of C1 Atoms under Simulated Tropospheric Conditions in a Smog Chamber." In Physico-Chemical Behaviour of Atmospheric Pollutants, 277–82. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0567-2_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sillman, S. "Tropospheric Ozone and Photochemical Smog." In Treatise on Geochemistry, 407–31. Elsevier, 2003. http://dx.doi.org/10.1016/b0-08-043751-6/09053-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sillman, S. "Tropospheric Ozone and Photochemical Smog." In Treatise on Geochemistry, 415–37. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-08-095975-7.00911-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography