Academic literature on the topic 'Tropospheric planetary waves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tropospheric planetary waves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tropospheric planetary waves"

1

Grise, Kevin M., and David W. J. Thompson. "On the Signatures of Equatorial and Extratropical Wave Forcing in Tropical Tropopause Layer Temperatures." Journal of the Atmospheric Sciences 70, no. 4 (2013): 1084–102. http://dx.doi.org/10.1175/jas-d-12-0163.1.

Full text
Abstract:
Abstract Temperatures in the tropical tropopause layer (TTL) play an important role in stratosphere–troposphere exchange and in the formation and maintenance of thin cirrus clouds. Many previous studies have examined the contributions of extratropical and equatorial waves to the TTL using coarse-vertical-resolution satellite and reanalysis data. In this study, the authors provide new insight into the role of extratropical and equatorial waves in the TTL using high-vertical-resolution GPS radio occultation data. The results examine the influence of four different wave forcings on the TTL: extra
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Lantao, Walter A. Robinson, and Gang Chen. "The Role of Planetary Waves in the Downward Influence of Stratospheric Final Warming Events." Journal of the Atmospheric Sciences 68, no. 12 (2011): 2826–43. http://dx.doi.org/10.1175/jas-d-11-014.1.

Full text
Abstract:
Abstract Stratospheric final warming events are simulated in an idealized atmospheric model by imposing a winter-to-summer transition in radiative equilibrium temperature only in the stratosphere. Large ensembles of events are simulated with different strengths of topographic forcing. It is found that the dates of final warmings become earlier and their downward influence on the troposphere becomes stronger for greater topographic amplitudes. This result is similar to observed differences between the downward influence of the final warming in the Northern and Southern Hemispheres. The mechanis
APA, Harvard, Vancouver, ISO, and other styles
3

Niranjan Kumar, K., D. V. Phanikumar, T. B. M. J. Ouarda, M. Rajeevan, M. Naja, and K. K. Shukla. "Modulation of surface meteorological parameters by extratropical planetary-scale Rossby waves." Annales Geophysicae 34, no. 1 (2016): 123–32. http://dx.doi.org/10.5194/angeo-34-123-2016.

Full text
Abstract:
Abstract. This study examines the link between upper-tropospheric planetary-scale Rossby waves and surface meteorological parameters based on the observations made in association with the Ganges Valley Aerosol Experiment (GVAX) campaign at an extratropical site at Aryabhatta Research Institute of Observational Sciences, Nainital (29.45° N, 79.5° E) during November–December 2011. The spectral analysis of the tropospheric wind field from radiosonde measurements indicates a predominance power of around 8 days in the upper troposphere during the observational period. An analysis of the 200 hPa mer
APA, Harvard, Vancouver, ISO, and other styles
4

Nikulin, G., and F. Lott. "On the time-scales of the downward propagation and of the tropospheric planetary wave response to the stratospheric circulation." Annales Geophysicae 28, no. 2 (2010): 339–51. http://dx.doi.org/10.5194/angeo-28-339-2010.

Full text
Abstract:
Abstract. Three datasets (the NCEP-NCAR reanalysis, the ERA-40 reanalysis and the LMDz-GCM), are used to analyze the relationships between large-scale dynamics of the stratosphere and the tropospheric planetary waves during the Northern Hemisphere (NH) winter. First, a cross-spectral analysis clarifies the time scales at which downward propagation of stratospheric anomalies occurs in the low-frequency band (that is at periods longer than 50 days). At these periods the strength of the polar vortex, measured by the 20-hPa Northern Annular Mode (NAM) index and the wave activity flux, measured by
APA, Harvard, Vancouver, ISO, and other styles
5

Duffy, Dean G. "Transient Stratospheric Planetary Waves Generated by Tropospheric Forcing." Journal of the Atmospheric Sciences 52, no. 17 (1995): 3109–28. http://dx.doi.org/10.1175/1520-0469(1995)052<3109:tspwgb>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Gang, and Lantao Sun. "Mechanisms of the Tropical Upwelling Branch of the Brewer–Dobson Circulation: The Role of Extratropical Waves." Journal of the Atmospheric Sciences 68, no. 12 (2011): 2878–92. http://dx.doi.org/10.1175/jas-d-11-044.1.

Full text
Abstract:
Abstract The role of extratropical waves in the tropical upwelling branch of the Brewer–Dobson circulation is investigated in an idealized model of the stratosphere and troposphere. To simulate different stratospheric seasonal cycles of planetary waves in the two hemispheres, seasonally varying radiative heating is imposed only in the stratosphere, and surface topographic forcing is prescribed only in the Northern Hemisphere (NH). A zonally symmetric version of the same model is used to diagnose the effects of different wavenumbers and different regions of the total forcing on tropical stratos
APA, Harvard, Vancouver, ISO, and other styles
7

Perlwitz, Judith, and Nili Harnik. "Downward Coupling between the Stratosphere and Troposphere: The Relative Roles of Wave and Zonal Mean Processes*." Journal of Climate 17, no. 24 (2004): 4902–9. http://dx.doi.org/10.1175/jcli-3247.1.

Full text
Abstract:
Abstract Wave and zonal mean features of the downward dynamic coupling between the stratosphere and troposphere are compared by applying a time-lagged singular value decomposition analysis to Northern Hemisphere height fields decomposed into zonal mean and its deviations. It is found that both zonal and wave components contribute to the downward interaction, with zonal wave 1 (due to reflection) dominating on the short time scale (up to 12 days) and the zonal mean (due to wave–mean-flow interaction) dominating on the longer time scale. It is further shown that the two processes dominate during
APA, Harvard, Vancouver, ISO, and other styles
8

Takaya, Koutarou, and Hisashi Nakamura. "Interannual Variability of the East Asian Winter Monsoon and Related Modulations of the Planetary Waves." Journal of Climate 26, no. 23 (2013): 9445–61. http://dx.doi.org/10.1175/jcli-d-12-00842.1.

Full text
Abstract:
Interannual variability of the East Asian winter monsoon is investigated through composite analysis applied to observational data for 50 recent years. Although the monsoon activity itself is confined into the lower troposphere, its midwinter variability tends to accompany upper-tropospheric geopotential height anomalies similar to the Eurasian (EU) and western Pacific (WP) teleconnection patterns. The “EU-like” pattern is characterized by a wavy signature over the Eurasian continent and the North Atlantic, with surface temperature anomalies over the Far East and North America. In the “WP-like”
APA, Harvard, Vancouver, ISO, and other styles
9

Xie, Jincai, Jinggao Hu, Haiming Xu, Shuai Liu, and Huan He. "Dynamic Diagnosis of Stratospheric Sudden Warming Event in the Boreal Winter of 2018 and Its Possible Impact on Weather over North America." Atmosphere 11, no. 5 (2020): 438. http://dx.doi.org/10.3390/atmos11050438.

Full text
Abstract:
In the winter of 2018, a major stratospheric sudden warming (SSW) event occurred in the Northern Hemisphere. This study performs a dynamic diagnosis on this 2018 SSW event and analyzes its possible impact on the weather over North America. The result shows that the ridge over Alaska in the mid-troposphere and the trough over the northeastern North America are the prominent tropospheric precursory signals before the occurrence of this SSW event. The signals appear 10 days before the SSW, which greatly enhances the propagation of the planetary wavenumber 2 from the troposphere to the extratropic
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Quanliang, Luyang Xu, and Hongke Cai. "Impact of Stratospheric Sudden Warming on East Asian Winter Monsoons." Advances in Meteorology 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/640912.

Full text
Abstract:
Fifty-two Stratospheric sudden warming (SSW) events that occurred from 1957 to 2002 were analyzed based on the 40-year European Centre for Medium-Range Weather Forecasts Reanalysis dataset. Those that could descent to the troposphere were composited to investigate their impacts on the East Asian winter monsoon (EAWM). It reveals that when the SSW occurs, the Arctic Oscillation (AO) and the North Pacific Oscillation (NPO) are both in the negative phase and that the tropospheric circulation is quite wave-like. The Siberian high and the Aleutian low are both strengthened, leading to an increased
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!