Journal articles on the topic 'Tropospheric circulation Southern Hemisphere Mathematical models'

To see the other types of publications on this topic, follow the link: Tropospheric circulation Southern Hemisphere Mathematical models.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 40 journal articles for your research on the topic 'Tropospheric circulation Southern Hemisphere Mathematical models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Osman, Marisol, C. S. Vera, and F. J. Doblas-Reyes. "Predictability of the tropospheric circulation in the Southern Hemisphere from CHFP models." Climate Dynamics 46, no. 7-8 (June 18, 2015): 2423–34. http://dx.doi.org/10.1007/s00382-015-2710-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barnes, Elizabeth A., Susan Solomon, and Lorenzo M. Polvani. "Robust Wind and Precipitation Responses to the Mount Pinatubo Eruption, as Simulated in the CMIP5 Models." Journal of Climate 29, no. 13 (June 14, 2016): 4763–78. http://dx.doi.org/10.1175/jcli-d-15-0658.1.

Full text
Abstract:
Abstract The volcanic eruption of Mount Pinatubo in June 1991 is the largest terrestrial eruption since the beginning of the satellite era. Here, the monthly evolution of atmospheric temperature, zonal winds, and precipitation following the eruption in 14 CMIP5 models is analyzed and strong and robust stratospheric and tropospheric circulation responses are demonstrated in both hemispheres, with tropospheric anomalies maximizing in November 1991. The simulated Southern Hemisphere circulation response projects strongly onto the positive phase of the southern annular mode (SAM), while the Northern Hemisphere exhibits robust North Atlantic and North Pacific responses that differ significantly from that of the typical northern annular mode (NAM) pattern. In contrast, observations show a negative SAM following the eruption, and internal variability must be considered along with forced responses. Indeed, evidence is presented that the observed El Niño climate state during and after this eruption may oppose the eruption-forced positive SAM response, based on the El Niño–Southern Oscillation (ENSO) state and SAM response across the models. The results demonstrate that Pinatubo-like eruptions should be expected to force circulation anomalies across the globe and highlight that great care must be taken in diagnosing the forced response as it may not fall into typical seasonal averages or be guaranteed to project onto typical climate modes.
APA, Harvard, Vancouver, ISO, and other styles
3

Grewe, V. "The origin of ozone." Atmospheric Chemistry and Physics 6, no. 6 (May 10, 2006): 1495–511. http://dx.doi.org/10.5194/acp-6-1495-2006.

Full text
Abstract:
Abstract. Highest atmospheric ozone production rates can be found at around 30 km in the tropical stratosphere, leading to ozone mixing ratios of about 10 ppmv. Those stratospheric air masses are then transported to extra-tropical latitudes via the Brewer-Dobson circulation. This is considered the main mechanism to generate mid- and high latitude ozone. By applying the climate-chemistry models E39/C and MAECHAM4/CHEM, this view is investigated in more detail. The origin of ozone in the troposphere and stratosphere is analysed, by incorporating a diagnostics ("marked ozone origin tracers") into the models, which allows to identify the origin of ozone. In most regions the simulated local ozone concentration is dominated by local ozone production, i.e. less than 50% of the ozone at higher latitudes of the stratosphere is produced in the tropics, which conflicts with the idea that the tropics are the global source for stratospheric ozone. Although episodic stratospheric intrusions occur basically everywhere, the main ozone stratosphere-to-troposphere exchange is connected to exchange processes at the sub-tropical jet-stream. The simulated tropospheric influx of ozone amounts to 420 Tg per year, and originates in the Northern Hemisphere from the extra-tropical stratosphere, whereas in the Southern Hemisphere a re-circulation of tropical tropospheric ozone contributes most to the influx of ozone into the troposphere. In the model E39/C, the upper troposphere of both hemispheres is clearly dominated by tropical tropospheric ozone (40%–50%) except for northern summer hemisphere, where the tropospheric contribution (from the tropics as well as from the Northern Hemisphere) does not exceed 20%.
APA, Harvard, Vancouver, ISO, and other styles
4

Maleska, Sarah, Karen L. Smith, and John Virgin. "Impacts of Stratospheric Ozone Extremes on Arctic High Cloud." Journal of Climate 33, no. 20 (October 15, 2020): 8869–84. http://dx.doi.org/10.1175/jcli-d-19-0867.1.

Full text
Abstract:
AbstractStratospheric ozone depletion in the Antarctic is well known to cause changes in Southern Hemisphere tropospheric climate; however, because of its smaller magnitude in the Arctic, the effects of stratospheric ozone depletion on Northern Hemisphere tropospheric climate are not as obvious or well understood. Recent research using both global climate models and observational data has determined that the impact of ozone depletion on ozone extremes can affect interannual variability in tropospheric circulation in the Northern Hemisphere in spring. To further this work, we use a coupled chemistry–climate model to examine the difference in high cloud between years with anomalously low and high Arctic stratospheric ozone concentrations. We find that low ozone extremes during the late twentieth century, when ozone-depleting substances (ODS) emissions are higher, are related to a decrease in upper tropospheric stability and an increase in high cloud fraction, which may contribute to enhanced Arctic surface warming in spring through a positive longwave cloud radiative effect. A better understanding of how Arctic climate is affected by ODS emissions, ozone depletion, and ozone extremes will lead to improved predictions of Arctic climate and its associated feedbacks with atmospheric fields as ozone levels recover.
APA, Harvard, Vancouver, ISO, and other styles
5

Hua, Quan, and Mike Barbetti. "Review of Tropospheric Bomb 14C Data for Carbon Cycle Modeling and Age Calibration Purposes." Radiocarbon 46, no. 3 (2004): 1273–98. http://dx.doi.org/10.1017/s0033822200033142.

Full text
Abstract:
Comprehensive published radiocarbon data from selected atmospheric records, tree rings, and recent organic matter were analyzed and grouped into 4 different zones (three for the Northern Hemisphere and one for the whole Southern Hemisphere). These 14C data for the summer season of each hemisphere were employed to construct zonal, hemispheric, and global data sets for use in regional and global carbon model calculations including calibrating and comparing carbon cycle models. In addition, extended monthly atmospheric 14C data sets for 4 different zones were compiled for age calibration purposes. This is the first time these data sets were constructed to facilitate the dating of recent organic material using the bomb 14C curves. The distribution of bomb 14C reflects the major zones of atmospheric circulation.
APA, Harvard, Vancouver, ISO, and other styles
6

Garfinkel, Chaim I., Darryn W. Waugh, and Edwin P. Gerber. "The Effect of Tropospheric Jet Latitude on Coupling between the Stratospheric Polar Vortex and the Troposphere." Journal of Climate 26, no. 6 (March 15, 2013): 2077–95. http://dx.doi.org/10.1175/jcli-d-12-00301.1.

Full text
Abstract:
Abstract A dry general circulation model is used to investigate how coupling between the stratospheric polar vortex and the extratropical tropospheric circulation depends on the latitude of the tropospheric jet. The tropospheric response to an identical stratospheric vortex configuration is shown to be strongest for a jet centered near 40° and weaker for jets near either 30° or 50° by more than a factor of 3. Stratosphere-focused mechanisms based on stratospheric potential vorticity inversion, eddy phase speed, and planetary wave reflection, as well as arguments based on tropospheric eddy heat flux and zonal length scale, appear to be incapable of explaining the differences in the magnitude of the jet shift. In contrast, arguments based purely on tropospheric variability involving the strength of eddy–zonal mean flow feedbacks and jet persistence, and related changes in the synoptic eddy momentum flux, appear to explain this effect. The dependence of coupling between the stratospheric polar vortex and the troposphere on tropospheric jet latitude found here is consistent with 1) the observed variability in the North Atlantic and the North Pacific and 2) the trend in the Southern Hemisphere as projected by comprehensive models.
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Pu, Qiang Fu, and Dennis L. Hartmann. "Impact of Tropical SST on Stratospheric Planetary Waves in the Southern Hemisphere." Journal of Climate 25, no. 14 (July 15, 2012): 5030–46. http://dx.doi.org/10.1175/jcli-d-11-00378.1.

Full text
Abstract:
Abstract The impact of tropical sea surface temperature (SST) on stratospheric planetary waves in the Southern Hemisphere (SH) is investigated in austral spring using observed SST and reanalysis data for the past three decades. Maximum covariance analysis indicates that the tropical SST and the SH stratospheric planetary wave activity are primarily coupled through two modes. The leading two modes show the La Niña–like and the central-Pacific El Niño–like SST anomalies in their positive polarities, respectively, which each are related to enhanced stratospheric planetary wave activity. These two modes also introduce phase shifts to the stratospheric stationary planetary waves: a westward shift is seen for La Niña and an eastward shift for warm SST anomalies is seen in the central Pacific. The Eliassen–Palm fluxes associated with the two modes indicate that the anomalous stratospheric wave activity originates in the troposphere and propagates upward over the mid–high latitudes, so that the linkages between tropical SST and extratropical tropospheric circulation appear to play a key role. Furthermore, the observed circulation anomaly patterns for the two modes change rapidly from spring to summer, consistent with a sharp seasonal transition in the SH basic state. Similar SST and circulation anomaly patterns associated with the two modes are simulated in chemistry–climate models.
APA, Harvard, Vancouver, ISO, and other styles
8

Simpson, Isla R., Peter Hitchcock, Theodore G. Shepherd, and John F. Scinocca. "Southern Annular Mode Dynamics in Observations and Models. Part I: The Influence of Climatological Zonal Wind Biases in a Comprehensive GCM." Journal of Climate 26, no. 11 (May 31, 2013): 3953–67. http://dx.doi.org/10.1175/jcli-d-12-00348.1.

Full text
Abstract:
Abstract A common bias among global climate models (GCMs) is that they exhibit tropospheric southern annular mode (SAM) variability that is much too persistent in the Southern Hemisphere (SH) summertime. This is of concern for the ability to accurately predict future SH circulation changes, so it is important that it be understood and alleviated. In this two-part study, specifically targeted experiments with the Canadian Middle Atmosphere Model (CMAM) are used to improve understanding of the enhanced summertime SAM persistence. Given the ubiquity of this bias among comprehensive GCMs, it is likely that the results will be relevant for other climate models. Here, in Part I, the influence of climatological circulation biases on SAM variability is assessed, with a particular focus on two common biases that could enhance summertime SAM persistence: the too-late breakdown of the Antarctic stratospheric vortex and the equatorward bias in the SH tropospheric midlatitude jet. Four simulations are used to investigate the role of each of these biases in CMAM. Nudging and bias correcting procedures are used to systematically remove zonal-mean stratospheric variability and/or remove climatological zonal wind biases. The SAM time-scale bias is not alleviated by improving either the timing of the stratospheric vortex breakdown or the climatological jet structure. Even in the absence of stratospheric variability and with an improved climatological circulation, the model time scales are biased long. This points toward a bias in internal tropospheric dynamics that is not caused by the tropospheric jet structure bias. The underlying cause of this is examined in more detail in Part II of this study.
APA, Harvard, Vancouver, ISO, and other styles
9

Osman, Marisol, and Carolina S. Vera. "Predictability of Extratropical Upper-Tropospheric Circulation in the Southern Hemisphere by Its Main Modes of Variability." Journal of Climate 33, no. 4 (February 15, 2020): 1405–21. http://dx.doi.org/10.1175/jcli-d-19-0122.1.

Full text
Abstract:
AbstractThe predictability and forecast skill of the models participating in the Climate Historical Forecast Project (CHFP) database is assessed through evaluating the representation of the upper-tropospheric extratropical circulation in the Southern Hemisphere (SH) in winter and summer and its main modes of variability. In summer, the predictability of 200-hPa geopotential height anomalies mainly comes from the ability of the multimodel ensemble mean (MMEM) to forecast the first three modes of interannual variability with high fidelity. The MMEM can reproduce not only the spatial patterns of these modes but also their temporal evolution. On the other hand, in JJA only the second and fourth modes of variability are predictable by the MMEM. These seasonal differences in the performance of the MMEM seem to be related to the role that the sea surface temperature (SST) anomalies have in influencing the variability of each mode. Accordingly, modes that are strongly linked to tropical SST anomalies are better forecast by the MMEM and show less spread among models. The analysis of both 2-m temperature and precipitation anomalies in the SH associated with the predictable modes reveals that DJF predictable modes are accompanied by significant temperature anomalies. In particular, temperatures at polar (tropical) latitudes are significantly correlated with the first (second) mode. Furthermore, these links obtained with observations are also well forecast by the MMEM and can help to improve seasonal forecast of climate anomalies in those regions with low skill.
APA, Harvard, Vancouver, ISO, and other styles
10

Simpson, Isla R., Peter Hitchcock, Richard Seager, Yutian Wu, and Patrick Callaghan. "The Downward Influence of Uncertainty in the Northern Hemisphere Stratospheric Polar Vortex Response to Climate Change." Journal of Climate 31, no. 16 (July 13, 2018): 6371–91. http://dx.doi.org/10.1175/jcli-d-18-0041.1.

Full text
Abstract:
Abstract General circulation models display a wide range of future predicted changes in the Northern Hemisphere winter stratospheric polar vortex. The downward influence of this stratospheric uncertainty on the troposphere has previously been inferred from regression analyses across models and is thought to contribute to model spread in tropospheric circulation change. Here we complement such regression analyses with idealized experiments using one model where different changes in the zonal-mean stratospheric polar vortex are artificially imposed to mimic the extreme ends of polar vortex change simulated by models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The influence of the stratospheric vortex change on the tropospheric circulation in these experiments is quantitatively in agreement with the inferred downward influence from across-model regressions, indicating that such regressions depict a true downward influence of stratospheric vortex change on the troposphere below. With a relative weakening of the polar vortex comes a relative increase in Arctic sea level pressure (SLP), a decrease in zonal wind over the North Atlantic, drying over northern Europe, and wetting over southern Europe. The contribution of stratospheric vortex change to intermodel spread in these quantities is assessed in the CMIP5 models. The spread, as given by 4 times the across-model standard deviation, is reduced by roughly 10% on regressing out the contribution from stratospheric vortex change, while the difference between models on extreme ends of the distribution in terms of their stratospheric vortex change can reach up to 50% of the overall model spread for Arctic SLP and 20% of the overall spread in European precipitation.
APA, Harvard, Vancouver, ISO, and other styles
11

Grise, Kevin M., and Lorenzo M. Polvani. "Understanding the Time Scales of the Tropospheric Circulation Response to Abrupt CO2 Forcing in the Southern Hemisphere: Seasonality and the Role of the Stratosphere." Journal of Climate 30, no. 21 (November 2017): 8497–515. http://dx.doi.org/10.1175/jcli-d-16-0849.1.

Full text
Abstract:
This study examines the time scales of the Southern Hemisphere (SH) tropospheric circulation response to increasing atmospheric CO2 concentrations in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In response to an abrupt quadrupling of atmospheric CO2, the midlatitude jet stream and poleward edge of the Hadley circulation shift poleward on the time scale of the rising global-mean surface temperature during the summer and fall seasons but on a much more rapid time scale during the winter and spring seasons. The seasonally varying time scales of the SH circulation response are closely tied to the meridional temperature gradient in the upper troposphere–lower stratosphere and, in particular, to temperatures in the SH polar lower stratosphere. During summer and fall, SH polar lower-stratospheric temperatures cool on the time scale of warming global surface temperatures, as the lifting of the tropopause height with tropospheric warming is associated with cooling at lower-stratospheric levels. However, during winter and spring, SH polar lower-stratospheric temperatures cool primarily from fast time-scale radiative processes, contributing to the faster time-scale circulation response during these seasons. The poleward edge of the SH subtropical dry zone shifts poleward on the time scale of the rising global-mean surface temperature during all seasons in response to an abrupt quadrupling of atmospheric CO2. The dry zone edge initially follows the poleward shift in the Hadley cell edge but is then augmented by the action of eddy moisture fluxes in a warming climate. Consequently, with increasing atmospheric CO2 concentrations, key features of the tropospheric circulation response could emerge sooner than features more closely tied to rising global temperatures.
APA, Harvard, Vancouver, ISO, and other styles
12

Totz, Sonja, Alexey V. Eliseev, Stefan Petri, Michael Flechsig, Levke Caesar, Vladimir Petoukhov, and Dim Coumou. "The dynamical core of the Aeolus 1.0 statistical–dynamical atmosphere model: validation and parameter optimization." Geoscientific Model Development 11, no. 2 (February 22, 2018): 665–79. http://dx.doi.org/10.5194/gmd-11-665-2018.

Full text
Abstract:
Abstract. We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical–dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies. Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0. We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983–2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño–Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function. With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation. The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.
APA, Harvard, Vancouver, ISO, and other styles
13

Ivanciu, Ioana, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch. "Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion." Atmospheric Chemistry and Physics 21, no. 8 (April 19, 2021): 5777–806. http://dx.doi.org/10.5194/acp-21-5777-2021.

Full text
Abstract:
Abstract. The Antarctic ozone hole has led to substantial changes in the Southern Hemisphere atmospheric circulation, such as the strengthening and poleward shift of the midlatitude westerly jet. Ozone recovery during the twenty-first century is expected to continue to affect the jet's strength and position, leading to changes in the opposite direction compared to the twentieth century and competing with the effect of increasing greenhouse gases. Simulations of the Earth's past and future climate, such as those performed for the Coupled Model Intercomparison Project Phase 6 (CMIP6), require an accurate representation of these ozone effects. Climate models that use prescribed ozone fields lack the important feedbacks between ozone chemistry, radiative heating, dynamics, and transport. In addition, when the prescribed ozone field was not generated by the same model to which it is prescribed, the imposed ozone hole is inconsistent with the simulated dynamics. These limitations ultimately affect the climate response to ozone depletion. This study investigates the impact of prescribing the ozone field recommended for CMIP6 on the simulated effects of ozone depletion in the Southern Hemisphere. We employ a new state-of-the-art coupled climate model, Flexible Ocean Climate Infrastructure (FOCI), to compare simulations in which the CMIP6 ozone is prescribed with simulations in which the ozone chemistry is calculated interactively. At the same time, we compare the roles played by ozone depletion and by increasing concentrations of greenhouse gases in driving changes in the Southern Hemisphere atmospheric circulation using a series of historical sensitivity simulations. FOCI captures the known effects of ozone depletion, simulating an austral spring and summer intensification of the midlatitude westerly winds and of the Brewer–Dobson circulation in the Southern Hemisphere. Ozone depletion is the primary driver of these historical circulation changes in FOCI. The austral spring cooling of the polar cap in the lower stratosphere in response to ozone depletion is weaker in the simulations that prescribe the CMIP6 ozone field. We attribute this weaker response to a prescribed ozone hole that is different to the model dynamics and is not collocated with the simulated polar vortex, altering the strength and position of the planetary wavenumber one. As a result, the dynamical contribution to the ozone-induced austral spring lower-stratospheric cooling is suppressed, leading to a weaker cooling trend. Consequently, the intensification of the polar night jet is also weaker in the simulations with prescribed CMIP6 ozone. In contrast, the differences in the tropospheric westerly jet response to ozone depletion fall within the internal variability present in the model. The persistence of the Southern Annular Mode is shorter in the prescribed ozone chemistry simulations. The results obtained with the FOCI model suggest that climate models that prescribe the CMIP6 ozone field still simulate a weaker Southern Hemisphere stratospheric response to ozone depletion compared to models that calculate the ozone chemistry interactively.
APA, Harvard, Vancouver, ISO, and other styles
14

Byrne, Nicholas J., Theodore G. Shepherd, Tim Woollings, and R. Alan Plumb. "Nonstationarity in Southern Hemisphere Climate Variability Associated with the Seasonal Breakdown of the Stratospheric Polar Vortex." Journal of Climate 30, no. 18 (August 8, 2017): 7125–39. http://dx.doi.org/10.1175/jcli-d-17-0097.1.

Full text
Abstract:
Abstract Statistical models of climate generally regard climate variability as anomalies about a climatological seasonal cycle, which are treated as a stationary stochastic process plus a long-term seasonally dependent trend. However, the climate system has deterministic aspects apart from the climatological seasonal cycle and long-term trends, and the assumption of stationary statistics is only an approximation. The variability of the Southern Hemisphere zonal-mean circulation in the period encompassing late spring and summer is an important climate phenomenon and has been the subject of numerous studies. It is shown here, using reanalysis data, that this variability is rendered highly nonstationary by the organizing influence of the seasonal breakdown of the stratospheric polar vortex, which breaks time symmetry. It is argued that the zonal-mean tropospheric circulation variability during this period is best viewed as interannual variability in the transition between the springtime and summertime regimes induced by variability in the vortex breakdown. In particular, the apparent long-term poleward jet shift during the early-summer season can be more simply understood as a delay in the equatorward shift associated with this regime transition. The implications of such a perspective for various open questions are discussed.
APA, Harvard, Vancouver, ISO, and other styles
15

Ma, Jian, Shang-Ping Xie, and Yu Kosaka. "Mechanisms for Tropical Tropospheric Circulation Change in Response to Global Warming*." Journal of Climate 25, no. 8 (April 10, 2012): 2979–94. http://dx.doi.org/10.1175/jcli-d-11-00048.1.

Full text
Abstract:
Abstract The annual-mean tropospheric circulation change in global warming is studied by comparing the response of an atmospheric general circulation model (GCM) to a spatial-uniform sea surface temperature (SST) increase (SUSI) with the response of a coupled ocean–atmosphere GCM to increased greenhouse gas concentrations following the A1B scenario. In both simulations, tropospheric warming follows the moist adiabat in the tropics, and static stability increases globally in response to SST warming. A diagnostic framework is developed based on a linear baroclinic model (LBM) of the atmosphere. The mean advection of stratification change (MASC) by climatological vertical motion, often neglected in interannual variability, is an important thermodynamic term for global warming. Once MASC effect is included, LBM shows skills in reproducing GCM results by prescribing latent heating diagnosed from the GCMs. MASC acts to slow down the tropical circulation. This is most clear in the SUSI run where the Walker circulation slows down over the Pacific without any change in SST gradient. MASC is used to decelerate the Hadley circulation, but spatial patterns of SST warming play an important role. Specifically, the SST warming is greater in the Northern than Southern Hemisphere, an interhemispheric asymmetry that decelerates the Hadley cell north, but accelerates it south of the equator. The MASC and SST-pattern effects are on the same order of magnitude in our LBM simulations. The former is presumably comparable across GCMs, while SST warming patterns show variations among models in both shape and magnitude. Uncertainties in SST patterns account for intermodel variability in Hadley circulation response to global warming (especially on and south of the equator).
APA, Harvard, Vancouver, ISO, and other styles
16

Bergner, Nora, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo. "Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models." Atmospheric Chemistry and Physics 22, no. 21 (November 1, 2022): 13915–34. http://dx.doi.org/10.5194/acp-22-13915-2022.

Full text
Abstract:
Abstract. Extreme events in the stratospheric polar vortex can lead to changes in the tropospheric circulation and impact the surface climate on a wide range of timescales. The austral stratospheric vortex shows its largest variability in spring, and a weakened polar vortex is associated with changes in the spring to summer surface climate, including hot and dry extremes in Australia. However, the robustness and extent of the connection between polar vortex strength and surface climate on interannual timescales remain unclear. We assess this relationship by using reanalysis data and time-slice simulations from two chemistry-climate models (CCMs), building on previous work that is mainly based on observations. The CCMs show a similar downward propagation of anomalies in the polar vortex strength to the reanalysis data: a weak polar vortex is on average followed by a negative tropospheric Southern Annular Mode (SAM) in spring to summer, while a strong polar vortex is on average followed by a positive SAM. The signature in the surface climate following polar vortex weakenings is characterized by high surface pressure and warm temperature anomalies over Antarctica, the region where surface signals are most robust across all model and observational datasets. However, the tropospheric SAM response in the two CCMs considered is inconsistent with observations. In one CCM, the SAM is more negative compared to the reanalysis after weak polar vortex events, whereas in the other CCM, it is less negative. In addition, neither model reproduces all the regional changes in midlatitudes, such as the warm and dry anomalies over Australia. We find that these inconsistencies are linked to model biases in the basic state, such as the latitude of the eddy-driven jet and the persistence of the SAM. These results are largely corroborated by models that participated in the Chemistry-Climate Model Initiative (CCMI). Furthermore, bootstrapping of the data reveals sizable uncertainty in the magnitude of the surface signals in both models and observations due to internal variability. Our results demonstrate that anomalies of the austral stratospheric vortex have significant impacts on surface climate, although the ability of models to capture regional effects across the Southern Hemisphere is limited by biases in their representation of the stratospheric and tropospheric circulation.
APA, Harvard, Vancouver, ISO, and other styles
17

Barnes, Elizabeth A., Nicholas W. Barnes, and Lorenzo M. Polvani. "Delayed Southern Hemisphere Climate Change Induced by Stratospheric Ozone Recovery, as Projected by the CMIP5 Models." Journal of Climate 27, no. 2 (January 15, 2014): 852–67. http://dx.doi.org/10.1175/jcli-d-13-00246.1.

Full text
Abstract:
Abstract Stratospheric ozone is expected to recover by the end of this century because of the regulation of ozone-depleting substances by the Montreal Protocol. Targeted modeling studies have suggested that the climate response to ozone recovery will greatly oppose the climate response to rising greenhouse gas (GHG) emissions. However, the extent of this cancellation remains unclear since only a few such studies are available. Here, a much larger set of simulations performed for phase 5 of the Coupled Model Intercomparison Project is analyzed, which includes ozone recovery. It is shown that the closing of the ozone hole will cause a delay in summertime [December–February (DJF)] Southern Hemisphere climate change between now and 2045. Specifically, it is found that the position of the jet stream, the width of the subtropical dry zones, the seasonality of surface temperatures, and sea ice concentrations all exhibit significantly reduced summertime trends over the first half of the twenty-first century as a consequence of ozone recovery. After 2045, forcing from GHG emissions begins to dominate the climate response. Finally, comparing the relative influences of future GHG emissions and historic ozone depletion, it is found that the simulated DJF tropospheric circulation changes between 1965 and 2005 (driven primarily by ozone depletion) are larger than the projected changes in any future scenario over the entire twenty-first century.
APA, Harvard, Vancouver, ISO, and other styles
18

Shaw, Tiffany A., and William R. Boos. "The Tropospheric Response to Tropical and Subtropical Zonally Asymmetric Torques: Analytical and Idealized Numerical Model Results." Journal of the Atmospheric Sciences 69, no. 1 (January 1, 2012): 214–35. http://dx.doi.org/10.1175/jas-d-11-0139.1.

Full text
Abstract:
Abstract The tropospheric response to prescribed tropical and subtropical zonally asymmetric torques, which can be considered as idealizations of vertical momentum transfers by orographic gravity waves or convection, is investigated. The linear analytical Gill model response to westward upper-tropospheric torques is compared to the response to a midtropospheric heating, which is a familiar point of reference. The response to an equatorial torque projects onto a Kelvin wave response to the east that is of opposite sign to the response to the east of the heating at upper levels. In contrast, the torque and heating both produce Rossby gyres of the same sign to the west of the forcing and the zonal-mean streamfunction responses are identical. When the forcings are shifted into the Northern Hemisphere, the streamfunction responses have opposite signs: there is upwelling in the Southern (Northern) Hemisphere in response to the torque (heating). The nonlinear response to westward torques was explored in idealized general circulation model experiments. In the absence of a large-scale meridional temperature gradient, the response to an equatorial torque was confined to the tropics and was qualitatively similar to the linear solutions. When the torque was moved into the subtropics, the vorticity budget response was similar to a downward control–type balance in the zonal mean. In the presence of a meridional temperature gradient, the response to an equatorial torque involved a poleward shift of the midlatitude tropospheric jet and Ferrel cell. The response in midlatitudes was associated with a poleward shift of the regions of horizontal eddy momentum flux convergence, which coincided with a shift in the upper-tropospheric critical line for baroclinic waves. The shift in the critical line was caused (in part) by the zonal wind response to the prescribed torque, suggesting a possible cause of the response in midlatitudes. Overall, this hierarchy of analytical and numerical results highlights robust aspects of the response to tropical and subtropical zonally asymmetric torques and represents the first step toward understanding the response in fully comprehensive general circulation models.
APA, Harvard, Vancouver, ISO, and other styles
19

Kim, Seo-Yeon, and Seok-Woo Son. "Breakdown of the Linear Relationship between the Southern Hemisphere Hadley Cell Edge and Jet Latitude Changes in the Last Glacial Maximum." Journal of Climate 33, no. 13 (July 1, 2020): 5713–25. http://dx.doi.org/10.1175/jcli-d-19-0531.1.

Full text
Abstract:
AbstractA poleward displacement of the Hadley cell (HC) edge and the eddy-driven jet latitude has been observed in the Southern Hemisphere (SH) during the last few decades. This change is further projected to continue in the future, indicating coherent tropical and extratropical zonal-mean circulation changes from the present climate to a warm climate. Here we show that such a systematic change in the zonal-mean circulation change does not hold in a cold climate. By examining the Last Glacial Maximum (LGM), preindustrial (PI), and extended concentration pathway 4.5 (ECP4.5) scenarios archived for phase 3 of the Paleoclimate Modeling Intercomparison Project (PMIP3) and phase 5 of the Coupled Model Intercomparison Project (CMIP5), it is shown that while the annual-mean SH HC edge systematically shifts poleward from the LGM scenario to the PI scenario and then to the ECP4.5 scenario the annual-mean SH eddy-driven jet latitude does not. All models show a poleward jet shift from the PI scenario to the ECP4.5 scenario, but over one-half of the models exhibit no trend or even an equatorward jet shift from the LGM scenario to the PI scenario. This decoupling between the HC edge and jet latitude changes is most pronounced in SH winter when the Antarctic surface cooling in the LGM scenario is comparable to or larger than the tropical upper-tropospheric cooling. This result indicates that polar amplification could play a crucial role in driving the decoupling of the tropical and midlatitude zonal-mean circulation in the SH in a cold climate.
APA, Harvard, Vancouver, ISO, and other styles
20

Cariolle, D., and H. Teyssèdre. "A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations." Atmospheric Chemistry and Physics Discussions 7, no. 1 (January 31, 2007): 1655–97. http://dx.doi.org/10.5194/acpd-7-1655-2007.

Full text
Abstract:
Abstract. This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory works. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the resolution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000–2004. Overall, the results show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small. The model also reproduces fairly well the polar ozone variability, with notably the formation of "ozone holes" in the southern hemisphere with amplitudes and seasonal evolutions that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone contents inside the polar vortex of the southern hemisphere over longer periods in spring time. It is concluded that for the study of climatic scenarios or the assimilation of ozone data, the present parameterization gives an interesting alternative to the introduction of detailed and computationally costly chemical schemes into general circulation models.
APA, Harvard, Vancouver, ISO, and other styles
21

Cariolle, D., and H. Teyssèdre. "A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations." Atmospheric Chemistry and Physics 7, no. 9 (May 2, 2007): 2183–96. http://dx.doi.org/10.5194/acp-7-2183-2007.

Full text
Abstract:
Abstract. This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2-D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory work. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the solution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000–2004. Overall, the results from the two versions show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small, of the order of 10%. The model also reproduces fairly well the polar ozone variability, notably the formation of "ozone holes" in the Southern Hemisphere with amplitudes and a seasonal evolution that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone content inside the polar vortex of the Southern Hemisphere over longer periods in spring time. It is concluded that for the study of climate scenarios or the assimilation of ozone data, the present parameterization gives a valuable alternative to the introduction of detailed and computationally costly chemical schemes into general circulation models.
APA, Harvard, Vancouver, ISO, and other styles
22

Garfinkel, Chaim I., Luke D. Oman, Elizabeth A. Barnes, Darryn W. Waugh, Margaret H. Hurwitz, and Andrea M. Molod. "Connections between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air–Sea Roughness." Journal of the Atmospheric Sciences 70, no. 7 (July 1, 2013): 2137–51. http://dx.doi.org/10.1175/jas-d-12-0242.1.

Full text
Abstract:
Abstract A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air–sea interface, in which surface roughness is increased for moderate wind speeds (4–20 m s−1), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upward wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in midwinter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry–climate models use a similar scheme for their surface-layer momentum exchange and have similar biases in the stratosphere, the authors expect that results from GEOSCCM may be relevant for other climate models.
APA, Harvard, Vancouver, ISO, and other styles
23

Iglesias-Suarez, F., P. J. Young, and O. Wild. "Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble." Atmospheric Chemistry and Physics Discussions 15, no. 17 (September 15, 2015): 25175–229. http://dx.doi.org/10.5194/acpd-15-25175-2015.

Full text
Abstract:
Abstract. Stratospheric ozone and associated climate impacts in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) simulations are evaluated in the recent past (1980–2000), and examined in the long-term (1850–2100) using the Representative Concentration Pathways low and high emission scenarios (RCP2.6 and RCP8.5, respectively) for the period 2000–2100. ACCMIP multi-model mean total column ozone (TCO) trends compare favourably, within uncertainty estimates, against observations. Particularly good agreement is seen in the Antarctic austral spring (−11.9 % dec−1 compared to observed ~ −13.8 ± 11 % dec−1), although larger deviations are found in the Arctic's boreal spring (−2.1 % dec−1 compared to observed ~ −5.3 ± 3 % dec−1). The simulated ozone hole has cooled the lower stratosphere during austral spring in the last few decades (−2.2 K dec−1). This cooling results in Southern Hemisphere summertime tropospheric circulation changes captured by an increase in the Southern Annular Mode (SAM) index (1.27 hPa dec−1). In the future, the interplay between the ozone hole recovery and greenhouse gases (GHGs) concentrations may result in the SAM index returning to pre-ozone hole levels or even with a more positive phase from around the second half of the century (−0.4 and 0.3 hPa dec−1 for the RCP2.6 and RCP8.5, respectively). By 2100, stratospheric ozone sensitivity to GHG concentrations is greatest in the Arctic and Northern Hemisphere midlatitudes (37.7 and 16.1 DU difference between the RCP2.6 and RCP8.5, respectively), and smallest over the tropics and Antarctica continent (2.5 and 8.1 DU respectively). Future TCO changes in the tropics are mainly determined by the upper stratospheric ozone sensitivity to GHG concentrations, due to a large compensation between tropospheric and lower stratospheric column ozone changes in the two RCP scenarios. These results demonstrate how changes in stratospheric ozone are tightly linked to climate and show the benefit of including the processes interactively in climate models.
APA, Harvard, Vancouver, ISO, and other styles
24

Michaelis, Allison C., Gary M. Lackmann, and Walter A. Robinson. "Evaluation of a unique approach to high-resolution climate modeling using the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 5.1." Geoscientific Model Development 12, no. 8 (August 26, 2019): 3725–43. http://dx.doi.org/10.5194/gmd-12-3725-2019.

Full text
Abstract:
Abstract. We present multi-seasonal simulations representative of present-day and future environments using the global Model for Prediction Across Scales – Atmosphere (MPAS-A) version 5.1 with high resolution (15 km) throughout the Northern Hemisphere. We select 10 simulation years with varying phases of El Niño–Southern Oscillation (ENSO) and integrate each for 14.5 months. We use analyzed sea surface temperature (SST) patterns for present-day simulations. For the future climate simulations, we alter present-day SSTs by applying monthly-averaged temperature changes derived from a 20-member ensemble of Coupled Model Intercomparison Project phase 5 (CMIP5) general circulation models (GCMs) following the Representative Concentration Pathway (RCP) 8.5 emissions scenario. Daily sea ice fields, obtained from the monthly-averaged CMIP5 ensemble mean sea ice, are used for present-day and future simulations. The present-day simulations provide a reasonable reproduction of large-scale atmospheric features in the Northern Hemisphere such as the wintertime midlatitude storm tracks, upper-tropospheric jets, and maritime sea-level pressure features as well as annual precipitation patterns across the tropics. The simulations also adequately represent tropical cyclone (TC) characteristics such as strength, spatial distribution, and seasonal cycles for most Northern Hemisphere basins. These results demonstrate the applicability of these model simulations for future studies examining climate change effects on various Northern Hemisphere phenomena, and, more generally, the utility of MPAS-A for studying climate change at spatial scales generally unachievable in GCMs.
APA, Harvard, Vancouver, ISO, and other styles
25

Lembo, Valerio, Isabella Bordi, and Antonio Speranza. "Annual and semiannual cycles of midlatitude near-surface temperature and tropospheric baroclinicity: reanalysis data and AOGCM simulations." Earth System Dynamics 8, no. 2 (April 20, 2017): 295–312. http://dx.doi.org/10.5194/esd-8-295-2017.

Full text
Abstract:
Abstract. Seasonal variability in near-surface air temperature and baroclinicity from the ECMWF ERA-Interim (ERAI) reanalysis and six coupled atmosphere–ocean general circulation models (AOGCMs) participating in the Coupled Model Intercomparison Project phase 3 and 5 (CMIP3 and CMIP5) are examined. In particular, the annual and semiannual cycles of hemispherically averaged fields are studied using spectral analysis. The aim is to assess the ability of coupled general circulation models to properly reproduce the observed amplitude and phase of these cycles, and investigate the relationship between near-surface temperature and baroclinicity (coherency and relative phase) in such frequency bands. The overall results of power spectra agree in displaying a statistically significant peak at the annual frequency in the zonally averaged fields of both hemispheres. The semiannual peak, instead, shows less power and in the NH seems to have a more regional character, as is observed in the North Pacific Ocean region. Results of bivariate analysis for such a region and Southern Hemisphere midlatitudes show some discrepancies between ERAI and model data, as well as among models, especially for the semiannual frequency. Specifically, (i) the coherency at the annual and semiannual frequency observed in the reanalysis data is well represented by models in both hemispheres, and (ii) at the annual frequency, estimates of the relative phase between near-surface temperature and baroclinicity are bounded between about ±15° around an average value of 220° (i.e., approximately 1-month phase shift), while at the semiannual frequency model phases show a wider dispersion in both hemispheres with larger errors in the estimates, denoting increased uncertainty and some disagreement among models. The most recent CMIP climate models (CMIP5) show several improvements when compared with CMIP3, but a degree of discrepancy still persists though masked by the large errors characterizing the semiannual frequency. These findings contribute to better characterizing the cyclic response of current global atmosphere–ocean models to the external (solar) forcing that is of interest for seasonal forecasts.
APA, Harvard, Vancouver, ISO, and other styles
26

Po-Chedley, Stephen, Kyle C. Armour, Cecilia M. Bitz, Mark D. Zelinka, Benjamin D. Santer, and Qiang Fu. "Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks." Journal of Climate 31, no. 8 (March 23, 2018): 3187–206. http://dx.doi.org/10.1175/jcli-d-17-0674.1.

Full text
Abstract:
Abstract Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterized using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. As a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Feng, Yury V. Vikhliaev, Paul A. Newman, Steven Pawson, Judith Perlwitz, Darryn W. Waugh, and Anne R. Douglass. "Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5)." Journal of Climate 29, no. 9 (April 19, 2016): 3199–218. http://dx.doi.org/10.1175/jcli-d-15-0572.1.

Full text
Abstract:
Abstract Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer’s evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. This study investigates the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960–2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model’s climatology is evaluated using observations and reanalysis. Comparison of the 1979–2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November–January. It enhances stratosphere–troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean meridional overturning circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.
APA, Harvard, Vancouver, ISO, and other styles
28

Iglesias-Suarez, F., P. J. Young, and O. Wild. "Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble." Atmospheric Chemistry and Physics 16, no. 1 (January 18, 2016): 343–63. http://dx.doi.org/10.5194/acp-16-343-2016.

Full text
Abstract:
Abstract. Stratospheric ozone and associated climate impacts in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) simulations are evaluated in the recent past (1980–2000), and examined in the long-term (1850–2100) using the Representative Concentration Pathways (RCPs) low- and high-emission scenarios (RCP2.6 and RCP8.5, respectively) for the period 2000–2100. ACCMIP multi-model mean total column ozone (TCO) trends compare favourably, within uncertainty estimates, against observations. Particularly good agreement is seen in the Antarctic austral spring (−11.9 % dec−1 compared to observed ∼ −13.9 ± 10.4 % dec−1), although larger deviations are found in the Arctic's boreal spring (−2.1 % dec−1 compared to observed ∼ −5.3 ± 3.3 % dec−1). The simulated ozone hole has cooled the lower stratosphere during austral spring in the last few decades (−2.2 K dec−1). This cooling results in Southern Hemisphere summertime tropospheric circulation changes captured by an increase in the Southern Annular Mode (SAM) index (1.3 hPa dec−1). In the future, the interplay between the ozone hole recovery and greenhouse gases (GHGs) concentrations may result in the SAM index returning to pre-ozone hole levels or even with a more positive phase from around the second half of the century (−0.4 and 0.3 hPa dec−1 for the RCP2.6 and RCP8.5, respectively). By 2100, stratospheric ozone sensitivity to GHG concentrations is greatest in the Arctic and Northern Hemisphere midlatitudes (37.7 and 16.1 DU difference between the RCP2.6 and RCP8.5, respectively), and smallest over the tropics and Antarctica continent (2.5 and 8.1 DU respectively). Future TCO changes in the tropics are mainly determined by the upper stratospheric ozone sensitivity to GHG concentrations, due to a large compensation between tropospheric and lower stratospheric column ozone changes in the two RCP scenarios. These results demonstrate how changes in stratospheric ozone are tightly linked to climate and show the benefit of including the processes interactively in climate models.
APA, Harvard, Vancouver, ISO, and other styles
29

Ruddiman, William F., and John E. Kutzbach. "Late Cenozoic plateau uplift and climate change." Transactions of the Royal Society of Edinburgh: Earth Sciences 81, no. 4 (1990): 301–14. http://dx.doi.org/10.1017/s0263593300020812.

Full text
Abstract:
ABSTRACTSensitivity experiments with general circulation models show that uplift of plateau and mountain regions in Southern Asia and the American west during the late Cenozoic was an important factor in the evolution of Northern Hemisphere climate. The climatic trends simulated in the uplift experiments agree in direction with most trends observed in the geological record, including the tendencies toward greater regional differentiation of climate, and particularly the fragmentation into wetter and drier climatic patterns at middle latitudes. These climatic trends result from (1) increased orographic diversion of the mid-latitude westerlies, and (2) increased summer heating and winter cooling over the plateaus, which enhances seasonally reversing (monsoonal) changes in wind directions.Most previous hypotheses addressing the physical impact of orography on climate have focused on mountain ranges and have stressed relatively local responses such as upslope precipitation maxima, cooling of mountain crests due to lapse-rate effects on rising terrain, and lee-side rainshadow effects. In contrast, our results emphasise the importance of large-scale plateau orography. By redirecting the basic directions of wind flow both at surface and upper-tropospheric levels, these rising plateaux cause far-reaching climatic changes that extend across the continents as well as over the oceans.
APA, Harvard, Vancouver, ISO, and other styles
30

Gerber, Edwin P., and Patrick Martineau. "Quantifying the variability of the annular modes: reanalysis uncertainty vs. sampling uncertainty." Atmospheric Chemistry and Physics 18, no. 23 (December 4, 2018): 17099–117. http://dx.doi.org/10.5194/acp-18-17099-2018.

Full text
Abstract:
Abstract. The annular modes characterize the dominant variability of the extratropical circulation in each hemisphere, quantifying vacillations in the position of the tropospheric jet streams and the strength of the stratospheric polar vortices. Their representation in all available reanalysis products is assessed. Reanalysis uncertainty associated with limitations in the ability to constrain the circulation with available observations, i.e., the inter-reanalysis spread, is contrasted with sampling uncertainty associated with the finite length of the reanalysis records. It is shown that the annular modes are extremely consistent across all modern reanalyses during the satellite era (ca. 1979 onward). Consequently, uncertainty in annular mode variability, e.g., the coupling between the stratosphere and troposphere and the variation in the amplitude and timescale of jet variations throughout the annual cycle, is dominated by sampling uncertainty. Comparison of reanalyses based on conventional (i.e., nonsatellite) or surface observations alone with those using all available observations indicates that there is limited ability to characterize the Southern Annular Mode (SAM) in the presatellite era. Notably, prior to 1979, surface-input reanalyses better capture the SAM at near-surface levels than full-input reanalyses. For the Northern Annular Mode, however, there is evidence that conventional observations are sufficient, at least from 1958 onward. The addition of 2 additional decades of records substantially reduces sampling uncertainty in several key measures of annular mode variability, demonstrating the value of more historic reanalyses. Implications for the assessment of atmospheric models and the strength of coupling between the surface and upper atmosphere are discussed.
APA, Harvard, Vancouver, ISO, and other styles
31

Steil, B., M. Dameris, C. Brühl, P. J. Crutzen, V. Grewe, M. Ponater, and R. Sausen. "Development of a chemistry module for GCMs: first results of a multiannual integration." Annales Geophysicae 16, no. 2 (February 28, 1998): 205–28. http://dx.doi.org/10.1007/s00585-998-0205-8.

Full text
Abstract:
Abstract. The comprehensive chemistry module CHEM has been developed for application in general circulation models (GCMs) describing tropospheric and stratospheric chemistry, including photochemical reactions and heterogeneous reactions on sulphate aerosols and polar stratospheric clouds. It has been coupled to the spectral atmospheric GCM ECHAM3. The model configuration used in the current study has been run in an "off-line" mode, i.e. the calculated chemical species do not affect the radiative forcing of the dynamic fields. First results of a 15-year model integration indicate that the model ECHAM3/CHEM runs are numerically efficient and stable, i.e. that no model drift can be detected in dynamic and chemical parameters. The model reproduces the main features regarding ozone, in particular intra- and interannual variability. The ozone columns are somewhat higher than observed (approximately 10%), while the amplitude of the annual cycle is in agreement with observations. A comparison with HALOE data reveals, however, a serious model deficiency regarding lower-stratosphere dynamics at high latitudes. Contrary to what is concluded by observations, the lower stratosphere is characterized by slight upward motions in the polar regions, so that some of the mentioned good agreements must be considered as fortuitous. Nevertheless, ECHAM3/CHEM well describes the chemical processes leading to ozone reduction. It has been shown that the mean fraction of the northern hemisphere, which is covered by polar stratospheric clouds (PSCs) as well as the temporal appearance of PSCs in the model, is in fair agreement with observations. The model results show an activation of chlorine inside the polar vortex which is stronger in the southern than in the northern winter hemisphere, yielding an ozone hole over the Antarctic; this hole, however, is also caused to a substantial degree by the dynamics. Interhemispheric differences concerning reformation of chlorine reservoir species HCl and ClONO2 in spring have also been well reproduced by the model.Key words. Atmospheric composition and structure · Middle atmosphere · Meteorology and atmospheric dynamics · Climatology · General circulation
APA, Harvard, Vancouver, ISO, and other styles
32

Choi, Hyun-Deok, Hongyu Liu, James H. Crawford, David B. Considine, Dale J. Allen, Bryan N. Duncan, Larry W. Horowitz, et al. "Global O<sub>3</sub>–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions." Atmospheric Chemistry and Physics 17, no. 13 (July 11, 2017): 8429–52. http://dx.doi.org/10.5194/acp-17-8429-2017.

Full text
Abstract:
Abstract. We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618 hPa) ozone–carbon monoxide (O3–CO) correlations determined by the measurements from the Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July–August). The model is driven by three meteorological data sets (finite-volume General Circulation Model (fvGCM) with sea surface temperature for 1995, Goddard Earth Observing System Data Assimilation System Version 4 (GEOS-4 DAS) for 2005, and Modern-Era Retrospective Analysis for Research and Applications (MERRA) for 2005), allowing us to examine the sensitivity of model O3–CO correlations to input meteorological data. Model simulations of radionuclide tracers (222Rn, 210Pb, and 7Be) are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O3 values are evaluated with climatological profiles from ozonesonde measurements and satellite tropospheric O3 columns. Despite the fact that the three simulations show significantly different global and regional distributions of O3 and CO concentrations, they show similar patterns of O3–CO correlations on a global scale. All model simulations sampled along the TES orbit track capture the observed positive O3–CO correlations in the Northern Hemisphere midlatitude continental outflow and the Southern Hemisphere subtropics. While all simulations show strong negative correlations over the Tibetan Plateau, northern Africa, the subtropical eastern North Pacific, and the Caribbean, TES O3 and CO concentrations at 618 hPa only show weak negative correlations over much narrower areas (i.e., the Tibetan Plateau and northern Africa). Discrepancies in regional O3–CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To understand how various emissions drive global O3–CO correlation patterns, we examine the sensitivity of GMI/MERRA model-calculated O3 and CO concentrations and their correlations to emission types (fossil fuel, biomass burning, biogenic, and lightning NOx emissions). Fossil fuel and biomass burning emissions are mainly responsible for the strong positive O3–CO correlations over continental outflow regions in both hemispheres. Biogenic emissions have a relatively smaller impact on O3–CO correlations than other emissions but are largely responsible for the negative correlations over the tropical eastern Pacific, reflecting the fact that O3 is consumed and CO generated during the atmospheric oxidation process of isoprene under low-NOx conditions. We find that lightning NOx emissions degrade both positive correlations at mid- and high latitudes and negative correlations in the tropics because ozone production downwind of lightning NOx emissions is not directly related to the emission and transport of CO. Our study concludes that O3–CO correlations may be used effectively to constrain the sources of regional tropospheric O3 in global 3-D models, especially for those regions where convective transport of pollution plays an important role.
APA, Harvard, Vancouver, ISO, and other styles
33

Cagnazzo, Chiara, and Elisa Manzini. "Impact of the Stratosphere on the Winter Tropospheric Teleconnections between ENSO and the North Atlantic and European Region." Journal of Climate 22, no. 5 (March 1, 2009): 1223–38. http://dx.doi.org/10.1175/2008jcli2549.1.

Full text
Abstract:
Abstract The possible role of stratospheric variability on the tropospheric teleconnection between El Niño–Southern Oscillation (ENSO) and the North Atlantic and European (NAE) region is addressed by comparing results from two ensembles of simulations performed with an atmosphere general circulation model fully resolving the stratosphere (with the top at 0.01 hPa) and its low-top version (with the top at 10 hPa). Both ensembles of simulations consist of nine members, covering the 1980–99 period and are forced with prescribed observed sea surface temperatures. It is found that both models capture the sensitivity of the averaged polar winter lower stratosphere to ENSO in the Northern Hemisphere, although with a reduced amplitude for the low-top model. In late winter and spring, the ENSO response at the surface is instead different in the two models. A large-scale coherent pattern in sea level pressure, with high pressures over the Arctic and low pressures over western and central Europe and the North Pacific, is found in the February–March mean of the high-top model. In the low-top model, the Arctic high pressure and the western and central Europe low pressure are very much reduced. The high-top minus low-top model difference in the ENSO temperature and precipitation anomalies is that North Europe is colder and the Northern Atlantic storm track is shifted southward in the high-top model. In addition, it has been found that major sudden stratospheric warming events are virtually lacking in the low-top model, while their frequency of occurrence is broadly realistic in the high-top model. Given that this is a major difference in the dynamical behavior of the stratosphere of the two models and that these events are favored by ENSO, it is concluded that the occurrence of sudden stratospheric warming events affects the reported differences in the tropospheric ENSO–NAE teleconnection. Given that the essence of the high-top minus low-top model difference is a more annular (or zonal) pattern of the anomaly in sea level pressure, relatively larger over the Arctic and the NAE regions, this interpretation is consistent with the observational evidence that sudden stratospheric warmings play a role in giving rise to persistent Arctic Oscillation anomalies at the surface.
APA, Harvard, Vancouver, ISO, and other styles
34

Schmidt, A., K. S. Carslaw, G. W. Mann, B. M. Wilson, T. J. Breider, S. J. Pickering, and T. Thordarson. "The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei." Atmospheric Chemistry and Physics Discussions 10, no. 2 (February 5, 2010): 3189–228. http://dx.doi.org/10.5194/acpd-10-3189-2010.

Full text
Abstract:
Abstract. The 1783–1784 AD Laki flood lava eruption commenced on 8 June 1783 and released 122 Tg of sulphur dioxide gas over the course of 8 months into the upper troposphere and lower stratosphere above Iceland. Previous studies have examined the impact of the Laki eruption on sulphate aerosol and climate using general circulation models. Here, we study the impact on aerosol microphysical processes, including the nucleation of new particles and their growth to cloud condensation nuclei (CCN) using a comprehensive Global Model of Aerosol Processes (GLOMAP). Total particle concentrations in the free troposphere increase by a factor ~16 over large parts of the Northern Hemisphere in the 3 months following the onset of the eruption. Particle concentrations in the boundary layer increase by a factor 2 to 5 in regions as far away as North America, the Middle East and Asia due to long-range transport of nucleated particles. CCN concentrations (at 0.22% supersaturation) increase by a factor 65 in the upper troposphere with maximum changes in 3-month zonal mean concentrations of ~1400 cm−3 at high northern latitudes. 3-month zonal mean CCN concentrations in the boundary layer at the latitude of the eruption increase by up to a factor 26, and averaged over the Northern Hemisphere, the eruption caused a factor 4 increase in CCN concentrations at low-level cloud altitude. The simulations show that the Laki eruption would have completely dominated as a source of CCN in the pre-industrial atmosphere. The model also suggests an impact of the eruption in the Southern Hemisphere, where CCN concentrations are increased by up to a factor 1.4 at 20° S. Our model simulations suggest that the impact of an equivalent wintertime eruption on upper tropospheric CCN concentrations is only about one-third of that of a summertime eruption. The simulations show that the microphysical processes leading to the growth of particles to CCN sizes are fundamentally different after an eruption when compared to the unperturbed atmosphere, underlining the importance of using a fully coupled microphysics model when studying long-lasting, high-latitude eruptions.
APA, Harvard, Vancouver, ISO, and other styles
35

Schmidt, A., K. S. Carslaw, G. W. Mann, M. Wilson, T. J. Breider, S. J. Pickering, and T. Thordarson. "The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei." Atmospheric Chemistry and Physics 10, no. 13 (July 5, 2010): 6025–41. http://dx.doi.org/10.5194/acp-10-6025-2010.

Full text
Abstract:
Abstract. The 1783–1784 AD Laki flood lava eruption commenced on 8 June 1783 and released 122 Tg of sulphur dioxide gas over the course of 8 months into the upper troposphere and lower stratosphere above Iceland. Previous studies have examined the impact of the Laki eruption on sulphate aerosol and climate using general circulation models. Here, we study the impact on aerosol microphysical processes, including the nucleation of new particles and their growth to cloud condensation nuclei (CCN) using a comprehensive Global Model of Aerosol Processes (GLOMAP). Total particle concentrations in the free troposphere increase by a factor ~16 over large parts of the Northern Hemisphere in the 3 months following the onset of the eruption. Particle concentrations in the boundary layer increase by a factor 2 to 5 in regions as far away as North America, the Middle East and Asia due to long-range transport of nucleated particles. CCN concentrations (at 0.22% supersaturation) increase by a factor 65 in the upper troposphere with maximum changes in 3-month zonal mean concentrations of ~1400 cm−3 at high northern latitudes. 3-month zonal mean CCN concentrations in the boundary layer at the latitude of the eruption increase by up to a factor 26, and averaged over the Northern Hemisphere, the eruption caused a factor 4 increase in CCN concentrations at low-level cloud altitude. The simulations show that the Laki eruption would have completely dominated as a source of CCN in the pre-industrial atmosphere. The model also suggests an impact of the eruption in the Southern Hemisphere, where CCN concentrations are increased by up to a factor 1.4 at 20° S. Our model simulations suggest that the impact of an equivalent wintertime eruption on upper tropospheric CCN concentrations is only about one-third of that of a summertime eruption. The simulations show that the microphysical processes leading to the growth of particles to CCN sizes are fundamentally different after an eruption when compared to the unperturbed atmosphere, underlining the importance of using a fully coupled microphysics model when studying long-lasting, high-latitude eruptions.
APA, Harvard, Vancouver, ISO, and other styles
36

Wenzel, Sabrina, Veronika Eyring, Edwin P. Gerber, and Alexey Yu Karpechko. "Constraining Future Summer Austral Jet Stream Positions in the CMIP5 Ensemble by Process-Oriented Multiple Diagnostic Regression*." Journal of Climate 29, no. 2 (January 11, 2016): 673–87. http://dx.doi.org/10.1175/jcli-d-15-0412.1.

Full text
Abstract:
Abstract Stratospheric ozone recovery and increasing greenhouse gases are anticipated to have a large impact on the Southern Hemisphere extratropical circulation, shifting the jet stream and associated storm tracks. Models participating in phase 5 of the Coupled Model Intercomparison Project poorly simulate the austral jet, with a mean equatorward bias and 10° latitude spread in their historical climatologies, and project a wide range of future trends in response to anthropogenic forcing in the representative concentration pathway (RCP) scenarios. Here, the question is addressed whether the unweighted multimodel mean (uMMM) austral jet projection of the RCP4.5 scenario can be improved by applying a process-oriented multiple diagnostic ensemble regression (MDER). MDER links future projections of the jet position to processes relevant to its simulation under present-day conditions. MDER is first targeted to constrain near-term (2015–34) projections of the austral jet position and selects the historical jet position as the most important of 20 diagnostics. The method essentially recognizes the equatorward bias in the past jet position and provides a bias correction of about 1.5° latitude southward to future projections. When the target horizon is extended to midcentury (2040–59), the method also recognizes that lower-stratospheric temperature trends over Antarctica, a proxy for the intensity of ozone depletion, provide additional information that can be used to reduce uncertainty in the ensemble mean projection. MDER does not substantially alter the uMMM long-term position in jet position but reduces the uncertainty in the ensemble mean projection. This result suggests that accurate observational constraints on upper-tropospheric and lower-stratospheric temperature trends are needed to constrain projections of the austral jet position.
APA, Harvard, Vancouver, ISO, and other styles
37

Horowitz, Hannah M., Daniel J. Jacob, Yanxu Zhang, Theodore S. Dibble, Franz Slemr, Helen M. Amos, Johan A. Schmidt, Elizabeth S. Corbitt, Eloïse A. Marais, and Elsie M. Sunderland. "A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget." Atmospheric Chemistry and Physics 17, no. 10 (May 29, 2017): 6353–71. http://dx.doi.org/10.5194/acp-17-6353-2017.

Full text
Abstract:
Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0 ∕ HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere–ocean Hg0 ∕ HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the ∼ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0 + HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII–organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM–ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0–30 %). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO2 and HO2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80 % of HgII deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for HgII reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO2 and NO2 for second-stage HgBr oxidation.
APA, Harvard, Vancouver, ISO, and other styles
38

Monge-Sanz, B. M., M. P. Chipperfield, A. Untch, J. J. Morcrette, A. Rap, and A. J. Simmons. "On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing." Atmospheric Chemistry and Physics Discussions 12, no. 1 (January 6, 2012): 479–523. http://dx.doi.org/10.5194/acpd-12-479-2012.

Full text
Abstract:
Abstract. A new linear parameterisation for stratospheric methane (CoMeCAT) has been developed and tested. The scheme is derived from a 3-D full chemistry transport model (CTM) and tested within the same chemistry model itself, as well as in an independent general circulation model (GCM). The new CH4/H2O scheme is suitable for any global model and here is shown to provide realistic profiles in the 3-D TOMCAT/SLIMCAT CTM and in the ECMWF (European Centre for Medium-Range Weather Forecasts) GCM. Simulation results from the new stratospheric scheme are in good agreement with the full-chemistry CTM CH4 field and with observations from the Halogen Occultation Experiment (HALOE). The CH4 scheme has also been used to derive a source for stratospheric water. Stratospheric water increments obtained in this way within the CTM produce vertical and latitudinal H2O variation in fair agreement with satellite observations. Stratospheric H2O distributions in the ECMWF GCM present realistic overall features although concentrations are lower than in the CTM run (up to 0.5 ppmv lower above 10 hPa). The potential of the new CoMeCAT scheme for evaluating long-term transport within the ECMWF model is exploited to assess the impacts of nudging the free running GCM to ERA-40 and ERA-Interim reanalyses. In this case, the nudged GCM shows similar transport patterns to the CTM forced by the corresponding reanalysis data, ERA-Interim producing better results than ERA-40. The impact that the new methane description has in the GCM radiation scheme is also explored. Compared to the default CH4 climatology used by the ECMWF model, CoMeCAT produces up to 2 K cooling in the tropical lower stratosphere. The effect of using the CoMeCAT scheme for radiative forcing (RF) calculations has been investigated using the off-line Edwards-Slingo (E-S) radiative transfer model. Compared to the use of a tropospheric global 3-D CH4 value, the CoMeCAT distributions produce an overall decrease in the annual mean net RF, with the largest decrease found over the Southern Hemisphere high latitudes. The effect of the new CH4 stratospheric distribution on these RF calculations is of up to 30 mW m−2, i.e. the same order of magnitude, and opposite sign, as the inclusion of aircraft contrails formation in the radiative model.
APA, Harvard, Vancouver, ISO, and other styles
39

Cao, Jian, Haikun Zhao, Bin Wang, and Liguang Wu. "Hemisphere-asymmetric tropical cyclones response to anthropogenic aerosol forcing." Nature Communications 12, no. 1 (November 22, 2021). http://dx.doi.org/10.1038/s41467-021-27030-z.

Full text
Abstract:
AbstractHow anthropogenic forcing could change tropical cyclones (TCs) is a keen societal concern owing to its significant socio-economic impacts. However, a global picture of the anthropogenic aerosol effect on TCs has not yet emerged. Here we show that anthropogenic aerosol emission can reduce northern hemisphere (NH) TCs but increase southern hemisphere (SH) TCs primarily through altering vertical wind shear and mid-tropospheric upward motion in the TC formation zones. These circulation changes are driven by anthropogenic aerosol-induced NH-cooler-than-SH and NH-increased versus SH-decreased meridional (equator to mid-latitudes) temperature gradients. The cooler NH produces a low-level southward cross-equatorial transport of moist static energy, weakening the NH ascent in the TC formation zones; meanwhile, the increased meridional temperature gradients strengthen vertical wind shear, reducing NH TC genesis. The opposite is true for the SH. The results may help to constrain the models’ uncertainty in the future TC projection. Reduction of anthropogenic aerosol emission may increase the NH TCs threat.
APA, Harvard, Vancouver, ISO, and other styles
40

Ha, Pham Thanh, Hoang Danh Huy, Pham Quang Nam, Jack Katzfey, John McGregor, Nguyen Kim Chi, Tran Quang Duc, Nguyen Manh Linh, and Phan Van Tan. "Implementation of Tropical Cyclone Detection Scheme to CCAM model for Seasonel Tropical Cyclone Prediction over the Vietnam East Sea." VNU Journal of Science: Earth and Environmental Sciences, July 12, 2019. http://dx.doi.org/10.25073/2588-1094/vnuees.4384.

Full text
Abstract:
Abstract: This study has selected a vortex tracking algorithm scheme for simulating the activity of tropical cyclone in the Vietnam East Sea by CCAM model. The results show that the CCAM model is able to simulate well the large scale in each month through a reasonable description of the movement rules of the tropical cyclone in the study area. Then, this vortex tracking algorithm scheme was applied to test the seasonal forecast with the outputs of the CCAM model with a resolution of 20km for September 2018 and October 2018. The obtaining results are forecasted quite closely in terms of both quantity and high potential occurrence areas of the tropical cyclone when compared with reality. In particular, for October 2018, although the activity area of ​​the tropical cyclone - YUTU is significantly different from the multi-year average activity position, the seasonal forecast results are obtained from the 120 members of the CCAM model captured this difference. This suggests that it is possible to apply the CCAM model in combination with the selected vortex tracking algorithm scheme for the seasonal forecast of the tropical cyclone over the Vietnam East Sea region in the future. Keywords: Vortex tracking algorithm scheme, Tropical storm, Tropical cyclone, The Vietnam East Sea. References [1] Đinh Văn Ưu, Đánh giá quy luật biến động dài hạn và xu thế biến đổi số lượng bão và áp thấp nhiệt đới trên khu vực Tây Thái Bình Dương, Biển Đông và ven biển Việt Nam, Tạp chí khoa học Đại học Quốc gia Hà Nội, Khoa học Tự nhiên và Công nghệ 25 3S (2009) 542-550.[2] J.C.L. Chan, J.E. Shi, K.S. Liu, Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific,Weather Forecast 16 (2001) 491-498.[3] S.J. Camargo, A.G. Barnston, Experimental seasonal dynamical forecasts of tropical cyclone activity at IRI, Weather Forecasting 24 (2009) 472-491.[4] P.J. Klotzbach, W.M. Gray, Twenty-five years of Atlantic basin seasonal hurricane forecasts (1984−2008), Geophys Res Lett. 36: L09711 (2009). https://doi.org/10.1029/2009GL037580.[5] G.A. Vecchi, M. Zhao, H. Wang, G. Villarini and others, Statistical-dynamical predictions of seasonal North Atlantic hurricane activity, Mon Weather Rev. 139 (2011) 1070-1082.[6] M.M. Lu, C.T. Lee, B. Wang, Seasonal prediction of accumulated tropical cyclone kinetic energy around Taiwan and the sources of the predictability, Int J Climatol. 33 (2013) 2846-285.[7] P.J. Klotzbach, Revised prediction of seasonal Atlantic basin tropical cyclone activity from 1 August, Weather Forecast 22 (2007) 937-949.[8] F. Vitart, A. Leroy, M.C. Wheeler, A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere, Mon Weather Rev. 138 (2010) 3671-3682.[9] A.Y. Yeung, J.C. Chan, Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific, Clim Dyn. 39 (2012) 783-794.[10] S.J. Camargo SJ, A.G. Barnston, P.J. Klotzbach, C.W. Landsea, Seasonal tropical cyclone forecasts, WMO Bull. 56 (2007) 297-309.[11] J.C.L. Chan, J.E. Shi, C.M. Lam, Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea, Wea Forecast. 13 (1998) 997-1004.[12] F. Vitart, T.N. Stockdale, Seasonal forecasting of tropical storms using coupled GCM integrations, Mon Weather Rev. 129 (2001) 2521-253.[13] F. Vitart, J.L. Anderson, W.F. Stern, Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations, J Clim. 10 (1997) 745-76.[14] S. Yokoi, Y.N. Takayabu, J.C.L Chan, Tropical cyclone genesis frequency over the western North Pacific simulated in mediumresolution coupled general circulation models, Clim Dyn. 33 (2009) 665-683.[15] W.A. Landman, A. Seth, S.J. Camargo, The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the Southwestern Indian Ocean, J Clim. 18 (2005) 1263-1274.[16] Bengtsson, L. H. Bottger, and M. Kanamitsu, Simulation of hurricane-type vortices in a general circulation model, Tellus. 34 (1982) 440-457.[17] Bengtsson, M. Botzet, and M. Esch, Hurricane-type vortices in a general circulation model, Tellus. 47A (1995) 175-196.[18] K. Walsh Objective Detection of Tropical Cyclones in High-Resolution Analyses, Mon. Wea. Rev. 125 (1997) 1767-1779.[19] K. Walsh., and I. G. Watterson, Tropical Cyclone-like Vortices in a Limited Area Model: Comparison with Observed Climatology, J. Climate. 10 (1997) 2204-2259.[20] K.C. Nguyen, K.J.E. Walsh, Interannual, decadal, and transient greenhouse simulation of tropical cyclone-like vortices in a regional climate model of the South Pacific, J Clim 14 (2001) 3043-3054.[21] S.J. Camargo and S. E. Zebiak, Improving the Detection and Tracking of Tropical Cyclones in Atmospheric General Circulation Models, Wea. Forecasting 17 (2002) 1152-1162.[22] J.L. McGregor, C-CAM: Geometric aspects and dynamical formulation. CSIRO Atmospheric Research Technical Paper, No. 70 (2005).[23] J.L. McGregor and M.R. Dix, The CSIRO conformal-cubic atmospheric GCM. In: Hodnett PF (ed) IUTAM symposium on advances in mathematical modelling of atmosphere and ocean dynamics. Kluwer, Dordrecht (2001) 197-202.[24] J.L. McGregor and M.R. Dix, An updated description of the Conformal-Cubic Atmospheric Model. In: Hamilton K, Ohfuchi W(eds) High resolution simulation of the atmosphere and ocean, Springer, New York, (2008) 51-76.[25] M.D. Schwarzkopf and V. Ramaswamy, Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: a GCM experiment, J Geophys Res. 104 (1999) 9467-9488.[26] L.D. Rotstayn, A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: description and evaluation of the microphysical processes, Q J R Meteorol Soc. 123 (1997) 1227-1282.[27] L.D. Rotstayn and Lohmann U, Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme, J Geo Res. 27 (2002).[28] J.L. McGregor, H.B. Gordon, I.G. Watterson, M.R. Dix and L.D. Rotstayn, The CSIRO 9-level atmospheric general circulation model. CSIRO Division of Atmospheric Research Technical Paper, No. 26 (1993).[29] J.L. McGregor, A new convection scheme using a simple clo-sure. In: current issues in the parameterization of convection, BMRC Res Rep. 93 (2003) 33-36.[30] F. Schmidt, Variable fine mesh in spectral global model, Beitraege zur Physik der Atmosphaere. 50 (1977) 211-217.[31] P.V. Tan, T. T. Long, B. H. Hai, and C. Kieu, Seasonal forecasting of tropical cyclone activity in the coastal region of Vietnam using RegCM4.2, Clim. Res. 62 (2015) 115-129. https://doi.org/10. 3354/cr01267.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography