To see the other types of publications on this topic, follow the link: Tropospheric aerosols.

Journal articles on the topic 'Tropospheric aerosols'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tropospheric aerosols.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Voulgarakis, A., D. T. Shindell, and G. Faluvegi. "Linkages between ozone-depleting substances, tropospheric oxidation and aerosols." Atmospheric Chemistry and Physics 13, no. 9 (May 14, 2013): 4907–16. http://dx.doi.org/10.5194/acp-13-4907-2013.

Full text
Abstract:
Abstract. Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (−22.6 mW m−2 for CFCs and −6.7 mW m−2 for N2O) and sulfate aerosols (−3.0 mW m−2 for CFCs and +6.5 mW m−2 for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.
APA, Harvard, Vancouver, ISO, and other styles
2

Voulgarakis, A., D. T. Shindell, and G. Faluvegi. "Linkages between ozone depleting substances, tropospheric oxidation and aerosols." Atmospheric Chemistry and Physics Discussions 12, no. 9 (September 26, 2012): 25551–72. http://dx.doi.org/10.5194/acpd-12-25551-2012.

Full text
Abstract:
Abstract. Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric Ozone Depleting Substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The historical radiative forcing of CFCs through their indirect effects on methane (−22.6 mW m−2) and sulfate aerosols (−3.0 mW m−2) discussed here is non-negligible when compared to known historical CFC forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.
APA, Harvard, Vancouver, ISO, and other styles
3

Mahajan, Salil, Katherine J. Evans, John E. Truesdale, James J. Hack, and Jean-François Lamarque. "Interannual Tropospheric Aerosol Variability in the Late Twentieth Century and Its Impact on Tropical Atlantic and West African Climate by Direct and Semidirect Effects." Journal of Climate 25, no. 23 (December 1, 2012): 8031–56. http://dx.doi.org/10.1175/jcli-d-12-00029.1.

Full text
Abstract:
Abstract A new high-resolution global tropospheric aerosol dataset with monthly resolution is generated using version 4 of the Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the period 1961–2000 to identify tropospheric aerosol-induced interannual climate variations. The surface emissions dataset is constructed from phase 5 of the Coupled Model Intercomparison Project (CMIP5) decadal-resolution surface emissions dataset to include reanalysis of tropospheric chemical composition [40-yr Reanalysis of Tropospheric Chemical Composition (RETRO)] wildfire monthly emissions data. A four-member ensemble run is conducted using the spectral configuration of CAM4, forced with the new tropospheric aerosol dataset and prescribed with observed sea surface temperature, sea ice, and greenhouse gases. CAM4 only simulates the direct and semidirect effects of aerosols on the climate. The simulations reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the interannual time scales. Regression analyses over tropical Atlantic and Africa suggest that increasing dust aerosols can cool the North African landmass and shift convection southward from West Africa into the Gulf of Guinea in the spring season. Further, it is found that carbonaceous aerosols emanating from the southwestern African savannas can significantly cool the region and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic Ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present-day aerosols can cool the tropical North Atlantic and shift the intertropical convergence zone southward and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.
APA, Harvard, Vancouver, ISO, and other styles
4

Renard, J. B., S. N. Tripathi, M. Michael, A. Rawal, G. Berthet, M. Fullekrug, R. G. Harrison, C. Robert, M. Tagger, and B. Gaubicher. "In situ detection of electrified aerosols in the upper troposphere and stratosphere." Atmospheric Chemistry and Physics 13, no. 22 (November 18, 2013): 11187–94. http://dx.doi.org/10.5194/acp-13-11187-2013.

Full text
Abstract:
Abstract. Electrified aerosols have been observed in the lower troposphere and in the mesosphere, but have never been detected in the stratosphere and upper troposphere. We present measurements of aerosols obtained during a balloon flight to an altitude of ~ 24 km. The measurements were performed with an improved version of the Stratospheric and Tropospheric Aerosol Counter (STAC) aerosol counter dedicated to the search for charged aerosols. It is found that most of the aerosols are charged in the upper troposphere for altitudes below 10 km and in the stratosphere for altitudes above 20 km. Conversely, the aerosols seem to be uncharged between 10 km and 20 km. Model calculations are used to quantify the electrification of the aerosols with a stratospheric aerosol-ion model. The percentages of charged aerosols obtained with model calculations are in excellent agreement with the observations below 10 km and above 20 km. However, the model cannot reproduce the absence of electrification found in the lower stratosphere, as the processes leading to neutralisation in this altitude range are unknown. The presence of sporadic transient layers of electrified aerosol in the upper troposphere and in the stratosphere could have significant implications for sprite formation.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Yan-Lin, Kimitaka Kawamura, Ping Qing Fu, Suresh K. R. Boreddy, Tomomi Watanabe, Shiro Hatakeyama, Akinori Takami, and Wei Wang. "Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China." Atmospheric Chemistry and Physics 16, no. 10 (May 25, 2016): 6407–19. http://dx.doi.org/10.5194/acp-16-6407-2016.

Full text
Abstract:
Abstract. Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4–20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of ∼ 2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.
APA, Harvard, Vancouver, ISO, and other styles
6

Chimot, J., T. Vlemmix, J. P. Veefkind, J. F. de Haan, and P. F. Levelt. "Impact of aerosols on the OMI tropospheric NO<sub>2</sub> retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model?" Atmospheric Measurement Techniques Discussions 8, no. 8 (August 10, 2015): 8385–437. http://dx.doi.org/10.5194/amtd-8-8385-2015.

Full text
Abstract:
Abstract. The Ozone Monitoring Instrument (OMI) instrument has provided daily global measurements of tropospheric NO2 for more than a decade. Numerous studies have drawn attention to the complexities related to measurements of tropospheric NO2 in the presence of aerosols. Fine particles affect the OMI spectral measurements and the length of the average light path followed by the photons. However, they are not explicitly taken into account in the current OMI tropospheric NO2 retrieval chain. Instead, the operational OMI O2-O2 cloud retrieval algorithm is applied both to cloudy scenes and to cloud free scenes with aerosols present. This paper describes in detail the complex interplay between the spectral effects of aerosols, the OMI O2-O2 cloud retrieval algorithm and the impact on the accuracy of the tropospheric NO2 retrievals through the computed Air Mass Factor (AMF) over cloud-free scenes. Collocated OMI NO2 and MODIS Aqua aerosol products are analysed over East China, in industrialized area. In addition, aerosol effects on the tropospheric NO2 AMF and the retrieval of OMI cloud parameters are simulated. Both the observation-based and the simulation-based approach demonstrate that the retrieved cloud fraction linearly increases with increasing Aerosol Optical Thickness (AOT), but the magnitude of this increase depends on the aerosol properties and surface albedo. This increase is induced by the additional scattering effects of aerosols which enhance the scene brightness. The decreasing effective cloud pressure with increasing AOT represents primarily the absorbing effects of aerosols. The study cases show that the actual aerosol correction based on the implemented OMI cloud model results in biases between −20 and −40 % for the DOMINO tropospheric NO2 product in cases of high aerosol pollution (AOT ≥ 0.6) and elevated particles. On the contrary, when aerosols are relatively close to the surface or mixed with NO2, aerosol correction based on the cloud model results in overestimation of the DOMINO tropospheric NO2 product, between 10 and 20 %. These numbers are in line with comparison studies between ground-based and OMI tropospheric NO2 measurements under conditions with high aerosol pollution and elevated particles. This highlights the need to implement an improved aerosol correction in the computation of tropospheric NO2 AMFs.
APA, Harvard, Vancouver, ISO, and other styles
7

du Preez, D. Jean, Hassan Bencherif, Thierry Portafaix, Kévin Lamy, and Caradee Yael Wright. "Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season." Atmosphere 12, no. 2 (January 20, 2021): 132. http://dx.doi.org/10.3390/atmos12020132.

Full text
Abstract:
Biomass burning has an impact on atmospheric composition as well as human health and wellbeing. In South Africa, the biomass burning season extends from July to October and affects the aerosol loading and tropospheric ozone concentrations which in turn impact solar ultraviolet radiation (UVR) levels at the surface. Using ground-based observations of aerosols, tropospheric ozone and solar UVR (as well as modelled solar UVR) we investigated the impact of aerosols and tropospheric ozone on solar UVR in August, September, and October over Pretoria. Aerosol optical depth (AOD) and tropospheric ozone reached a peak between September and October each year. On clear-sky days, the average relative difference between the modelled and observed solar Ultraviolet Index (UVI) levels (a standard indicator of surface UVR) at solar noon was 7%. Using modelled UVR—which included and excluded the effects of aerosols and tropospheric ozone from biomass burning—aerosols had a larger radiative effect compared to tropospheric ozone on UVI levels during the biomass burning season. Excluding only aerosols resulted in a 10% difference between the modelled and observed UVI, while excluding only tropospheric ozone resulted in a difference of −2%. Further understanding of the radiative effect of aerosols and trace gases, particularly in regions that are affected by emissions from biomass burning, is considered important for future research.
APA, Harvard, Vancouver, ISO, and other styles
8

Rotstayn, Leon D., Emily L. Plymin, Mark A. Collier, Olivier Boucher, Jean-Louis Dufresne, Jing-Jia Luo, Knut von Salzen, et al. "Declining Aerosols in CMIP5 Projections: Effects on Atmospheric Temperature Structure and Midlatitude Jets." Journal of Climate 27, no. 18 (September 10, 2014): 6960–77. http://dx.doi.org/10.1175/jcli-d-14-00258.1.

Full text
Abstract:
Abstract The effects of declining anthropogenic aerosols in representative concentration pathway 4.5 (RCP4.5) are assessed in four models from phase 5 the Coupled Model Intercomparison Project (CMIP5), with a focus on annual, zonal-mean atmospheric temperature structure and zonal winds. For each model, the effect of declining aerosols is diagnosed from the difference between a projection forced by RCP4.5 for 2006–2100 and another that has identical forcing, except that anthropogenic aerosols are fixed at early twenty-first-century levels. The response to declining aerosols is interpreted in terms of the meridional structure of aerosol radiative forcing, which peaks near 40°N and vanishes at the South Pole. Increasing greenhouse gases cause amplified warming in the tropical upper troposphere and strengthening midlatitude jets in both hemispheres. However, for declining aerosols the vertically averaged tropospheric temperature response peaks near 40°N, rather than in the tropics. This implies that for declining aerosols the tropospheric meridional temperature gradient generally increases in the Southern Hemisphere (SH), but in the Northern Hemisphere (NH) it decreases in the tropics and subtropics. Consistent with thermal wind balance, the NH jet then strengthens on its poleward side and weakens on its equatorward side, whereas the SH jet strengthens more than the NH jet. The asymmetric response of the jets is thus consistent with the meridional structure of aerosol radiative forcing and the associated tropospheric warming: in the NH the latitude of maximum warming is roughly collocated with the jet, whereas in the SH warming is strongest in the tropics and weakest at high latitudes.
APA, Harvard, Vancouver, ISO, and other styles
9

Mulena, Gabriela C., Salvador E. Puliafito, and Susan G. Lakkis. "Application of Tropospheric Sulfate Aerosol Emissions to Mitigate Meteorological Phenomena with Extremely High Daily Temperatures." Environmental and Climate Technologies 23, no. 1 (January 1, 2019): 14–40. http://dx.doi.org/10.2478/rtuect-2019-0002.

Full text
Abstract:
Abstract This research examined whether tropospheric sulfate ion aerosols (SO42−) might be applied at a regional scale to mitigate meteorological phenomena with extremely high daily temperatures. The specific objectives of this work were: 1) to model the behaviour of SO42−aerosols in the troposphere and their influence on surface temperature and incident solar radiation, at a regional scale, using an appropriate online coupled mesoscale meteorology and chemistry model; 2) to determine the main engineering design parameters using tropospheric SO42−aerosols in order to artificially reduce the temperature and incoming radiation at surface during events of extremely high daily temperatures, and 3) to evaluate a preliminary technical proposal for the injection of regionally engineered tropospheric SO42−aerosols based on the integral anti-hail system of the Province of Mendoza. In order to accomplish these objectives, we used the Weather Research & Forecasting Model coupled with Chemistry (WRF/Chem) to model and evaluate the behaviour of tropospheric SO42−over the Province of Mendoza (Argentina) (PMA) on a clear sky day during a heat wave event occurred in January 2012. In addition, using WRF/Chem, we evaluated the potential reductions on surface temperature and incident shortwave radiation around the metropolitan area of Great Mendoza, PMA, based on an artificially designed aerosol layer and on observed meteorological parameters. The results demonstrated the ability of WRF/Chem to represent the behaviour of tropospheric SO42− aerosols at a regional scale and suggested that the inclusion of these aerosols in the atmosphere causes changes in the surface energy balance and, therefore, in the surface temperature and the regional atmospheric circulation. However, it became evident that, given the high rate of injection and the large amount of mass required for its practical implementation by means of the technology currently used by the anti-hail program, it is inefficient and energetically costly.
APA, Harvard, Vancouver, ISO, and other styles
10

Chimot, J., T. Vlemmix, J. P. Veefkind, J. F. de Haan, and P. F. Levelt. "Impact of aerosols on the OMI tropospheric NO<sub>2</sub> retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model?" Atmospheric Measurement Techniques 9, no. 2 (February 5, 2016): 359–82. http://dx.doi.org/10.5194/amt-9-359-2016.

Full text
Abstract:
Abstract. The Ozone Monitoring Instrument (OMI) has provided daily global measurements of tropospheric NO2 for more than a decade. Numerous studies have drawn attention to the complexities related to measurements of tropospheric NO2 in the presence of aerosols. Fine particles affect the OMI spectral measurements and the length of the average light path followed by the photons. However, they are not explicitly taken into account in the current operational OMI tropospheric NO2 retrieval chain (DOMINO – Derivation of OMI tropospheric NO2) product. Instead, the operational OMI O2 − O2 cloud retrieval algorithm is applied both to cloudy and to cloud-free scenes (i.e. clear sky) dominated by the presence of aerosols. This paper describes in detail the complex interplay between the spectral effects of aerosols in the satellite observation and the associated response of the OMI O2 − O2 cloud retrieval algorithm. Then, it evaluates the impact on the accuracy of the tropospheric NO2 retrievals through the computed Air Mass Factor (AMF) with a focus on cloud-free scenes. For that purpose, collocated OMI NO2 and MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua aerosol products are analysed over the strongly industrialized East China area. In addition, aerosol effects on the tropospheric NO2 AMF and the retrieval of OMI cloud parameters are simulated. Both the observation-based and the simulation-based approach demonstrate that the retrieved cloud fraction increases with increasing Aerosol Optical Thickness (AOT), but the magnitude of this increase depends on the aerosol properties and surface albedo. This increase is induced by the additional scattering effects of aerosols which enhance the scene brightness. The decreasing effective cloud pressure with increasing AOT primarily represents the shielding effects of the O2 − O2 column located below the aerosol layers. The study cases show that the aerosol correction based on the implemented OMI cloud model results in biases between −20 and −40 % for the DOMINO tropospheric NO2 product in cases of high aerosol pollution (AOT ≥ 0.6) at elevated altitude. These biases result from a combination of the cloud model error, used in the presence of aerosols, and the limitations of the current OMI cloud Look-Up-Table (LUT). A new LUT with a higher sampling must be designed to remove the complex behaviour between these biases and AOT. In contrast, when aerosols are relatively close to the surface or mixed with NO2, aerosol correction based on the cloud model results in an overestimation of the DOMINO tropospheric NO2 column, between 10 and 20 %. These numbers are in line with comparison studies between ground-based and OMI tropospheric NO2 measurements in the presence of high aerosol pollution and particles located at higher altitudes. This highlights the need to implement an improved aerosol correction in the computation of tropospheric NO2 AMFs.
APA, Harvard, Vancouver, ISO, and other styles
11

Castellanos, P., K. F. Boersma, O. Torres, and J. F. de Haan. "OMI tropospheric NO<sub>2</sub> air mass factors over South America: effects of biomass burning aerosols." Atmospheric Measurement Techniques 8, no. 9 (September 18, 2015): 3831–49. http://dx.doi.org/10.5194/amt-8-3831-2015.

Full text
Abstract:
Abstract. Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2–O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006–2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3 %, respectively, which was the case for the majority of the pixels considered in our study; 70 % had cloud radiance fraction below 30 %, and 50 % had effective cloud pressure greater than 800 hPa. Pixels with effective cloud radiance fraction greater than 30 % or effective cloud pressure less than 800 hPa corresponded with stronger shielding in the implicit aerosol correction approach because the assumption of an opaque effective cloud underestimates the altitude-resolved AMF; tropospheric AMFs were on average 30–50 % larger when aerosol parameters were included, and for individual pixels tropospheric AMFs can differ by more than a factor of 2. The observation-based approach to correcting tropospheric AMF calculations for aerosol effects presented in this paper depicts a promising strategy for a globally consistent aerosol correction scheme for clear-sky pixels.
APA, Harvard, Vancouver, ISO, and other styles
12

Castellanos, P., K. F. Boersma, O. Torres, and J. F. de Haan. "OMI tropospheric NO<sub>2</sub> air mass factors over South America: effects of biomass burning aerosols." Atmospheric Measurement Techniques Discussions 8, no. 3 (March 12, 2015): 2683–733. http://dx.doi.org/10.5194/amtd-8-2683-2015.

Full text
Abstract:
Abstract. Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2–O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006–2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3%, respectively, which was the case for the majority of the pixels considered in our study. Pixels with effective cloud radiance fraction greater than 30% or effective cloud pressure less than 800 hPa corresponded with stronger shielding in the implicit aerosol correction approach because the assumption of a opaque effective cloud underestimates the altitude resolved AMF; tropospheric AMFs were on average 30–50% larger when aerosol parameters were included, and for individual pixels tropospheric AMFs can differ by more than a factor of two. The observation-based approach to correcting tropospheric AMF calculations for aerosol effects presented in this paper depicts a promising strategy for a globally consistent aerosol correction scheme for clear sky pixels.
APA, Harvard, Vancouver, ISO, and other styles
13

Pandis, Spyros N., Anthony S. Wexler, and John H. Seinfeld. "Dynamics of Tropospheric Aerosols." Journal of Physical Chemistry 99, no. 24 (June 1995): 9646–59. http://dx.doi.org/10.1021/j100024a003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Persad, Geeta G., Yi Ming, and V. Ramaswamy. "Tropical Tropospheric-Only Responses to Absorbing Aerosols." Journal of Climate 25, no. 7 (March 28, 2012): 2471–80. http://dx.doi.org/10.1175/jcli-d-11-00122.1.

Full text
Abstract:
Abstract Absorbing aerosols affect the earth’s climate through direct radiative heating of the troposphere. This study analyzes the tropical tropospheric-only response to a globally uniform increase in black carbon, simulated with an atmospheric general circulation model, to gain insight into the interactions that determine the radiative flux perturbation. Over the convective regions, heating in the free troposphere hinders the vertical development of deep cumulus clouds, resulting in the detrainment of more cloudy air into the large-scale environment and stronger cloud reflection. A different mechanism operates over the subsidence regions, where heating near the boundary layer top causes a substantial reduction in low cloud amount thermodynamically by decreasing relative humidity and dynamically by lowering cloud top. These findings, which align well with previous general circulation model and large-eddy simulation calculations for black carbon, provide physically based explanations for the main characteristics of the tropical tropospheric adjustment. The implications for quantifying the climate perturbation posed by absorbing aerosols are discussed.
APA, Harvard, Vancouver, ISO, and other styles
15

Riuttanen, Laura, Marja Bister, Veli-Matti Kerminen, Viju O. John, Anu-Maija Sundström, Miikka Dal Maso, Jouni Räisänen, et al. "Observational evidence for aerosols increasing upper tropospheric humidity." Atmospheric Chemistry and Physics 16, no. 22 (November 17, 2016): 14331–42. http://dx.doi.org/10.5194/acp-16-14331-2016.

Full text
Abstract:
Abstract. Aerosol–cloud interactions are the largest source of uncertainty in the radiative forcing of the global climate. A phenomenon not included in the estimates of the total net forcing is the potential increase in upper tropospheric humidity (UTH) by anthropogenic aerosols via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause of this result, indicating relevance for the global climate. In tropical moist air such an UTH increase leads to a regional radiative effect of 0.5 ± 0.4 W m−2. We conclude that the effect of aerosols on UTH should be included in future studies of anthropogenic climate change and climate sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
16

Tilmes, S., J. F. Lamarque, L. K. Emmons, D. E. Kinnison, P. L. Ma, X. Liu, S. Ghan, et al. "Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2)." Geoscientific Model Development 8, no. 5 (May 13, 2015): 1395–426. http://dx.doi.org/10.5194/gmd-8-1395-2015.

Full text
Abstract:
Abstract. The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. The main focus of this paper is to compare the performance of configurations with internally derived "free running" (FR) meteorology and "specified dynamics" (SD) against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We focus on the representation of aerosols and chemistry. All model configurations reproduce tropospheric ozone for most regions based on in situ and satellite observations. However, shortcomings exist in the representation of ozone precursors and aerosols. Tropospheric ozone in all model configurations agrees for the most part with ozonesondes and satellite observations in the tropics and the Northern Hemisphere within the variability of the observations. Southern hemispheric tropospheric ozone is consistently underestimated by up to 25%. Differences in convection and stratosphere to troposphere exchange processes are mostly responsible for differences in ozone in the different model configurations. Carbon monoxide (CO) and other volatile organic compounds are largely underestimated in Northern Hemisphere mid-latitudes based on satellite and aircraft observations. Nitrogen oxides (NOx) are biased low in the free tropical troposphere, whereas peroxyacetyl nitrate (PAN) is overestimated in particular in high northern latitudes. The present-day methane lifetime estimates are compared among the different model configurations. These range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem and are therefore underestimated compared to observational estimations. We find that differences in tropospheric aerosol surface area between CAM4 and CAM5 play an important role in controlling the burden of the tropical tropospheric hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of NOx from lightning explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss but also by transport and mixing. For future studies, we recommend the use of CAM5-chem configurations, due to improved aerosol description and inclusion of aerosol–cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.
APA, Harvard, Vancouver, ISO, and other styles
17

Bister, M., and M. Kulmala. "Anthropogenic aerosols may have increased upper tropospheric humidity in the 20th century." Atmospheric Chemistry and Physics Discussions 10, no. 10 (October 11, 2010): 23381–402. http://dx.doi.org/10.5194/acpd-10-23381-2010.

Full text
Abstract:
Abstract. Recent simulations of deep convection with a spectral microphysics cloud model show that an increase in aerosol concentration can have a significant effect on the nature of convection with more ice precipitation and less warm rain in polluted air. The cloud lifetime and the area covered by cloud anvils of deep convection are also larger in polluted air. Therefore, it is possible that the increase of anthropogenic aerosols in most of the 20th century has increased humidity and perhaps also cloudiness in the mid- to upper troposphere. Satellite data of upper tropospheric relative humidity in 1979–1997 and observed changes in cloudiness support this hypothesis. As changes in the upper tropospheric humidity strongly affect longwave radiation, it is possible that anthropogenic aerosols have had a significant warming effect in addition to their other known effects on radiation.
APA, Harvard, Vancouver, ISO, and other styles
18

Bister, M., and M. Kulmala. "Anthropogenic aerosols may have increased upper tropospheric humidity in the 20th century." Atmospheric Chemistry and Physics 11, no. 9 (May 13, 2011): 4577–86. http://dx.doi.org/10.5194/acp-11-4577-2011.

Full text
Abstract:
Abstract. Recent simulations of deep convection with a spectral microphysics cloud model show that an increase in aerosol concentration can have a significant effect on the nature of convection with more ice precipitation and less warm rain in polluted air. The cloud lifetime and the area covered by cloud anvils of deep convection are also larger for polluted air. Therefore, it is possible that the increase of anthropogenic aerosols in most of the 20th century has increased humidity and perhaps also cloudiness in the mid- to upper troposphere. Satellite data of upper tropospheric relative humidity in 1979–1997 and observed changes in cloudiness support this hypothesis. As changes in upper tropospheric humidity strongly affect longwave radiation, it is possible that anthropogenic aerosols have had a significant warming effect in addition to their other known effects on radiation.
APA, Harvard, Vancouver, ISO, and other styles
19

Ekman, A. M. L., C. Wang, J. Wilson, and J. Ström. "Explicit simulations of aerosol physics in a cloud-resolving model: a sensitivity study based on an observed convective cloud." Atmospheric Chemistry and Physics 4, no. 3 (May 18, 2004): 773–91. http://dx.doi.org/10.5194/acp-4-773-2004.

Full text
Abstract:
Abstract. The role of convection in introducing aerosols and promoting the formation of new particles to the upper troposphere has been examined using a cloud-resolving model coupled with an interactive explicit aerosol module. A baseline simulation suggests good agreement in the upper troposphere between modeled and observed results including concentrations of aerosols in different size ranges, mole fractions of key chemical species, and concentrations of ice particles. In addition, a set of 34 sensitivity simulations has been carried out to investigate the sensitivity of modeled results to the treatment of various aerosol physical and chemical processes in the model. The size distribution of aerosols is proved to be an important factor in determining the aerosols' fate within the convective cloud. Nucleation mode aerosols (here defined by 0≤d≤5.84 nm) are quickly transferred to the larger modes as they grow through coagulation of aerosols and condensation of H2SO4. Accumulation mode aerosols (here defined by d≥31.0 nm) are almost completely removed by nucleation (activation of cloud droplets) and impact scavenging. However, a substantial part (up to 10% of the boundary layer concentration) of the Aitken mode aerosol population (here defined by 5.84 nm≤d≤31.0 nm) reaches the top of the cloud and the free troposphere. These particles may continually survive in the upper troposphere, or over time form ice crystals, both that could impact on the atmospheric radiative budget. The sensitivity simulations performed indicate that critical processes in the model causing a substantial change in the upper tropospheric number concentration of Aitken mode aerosols are coagulation of aerosols, condensation of H2SO4, nucleation scavenging, nucleation of aerosols and the transfer of aerosol mass and number between different aerosol bins. In particular, for aerosols in the Aitken mode to grow to CCN size, coagulation of aerosols appears to be more important than condensation of H2SO4. Less important processes are dry deposition, impact scavenging and the initial vertical distribution and concentration of aerosols. It is interesting to note that in order to sustain a vigorous storm cloud, the supply of CCN must be continuous over a considerably long time period of the simulation. Hence, the treatment of the growth of particles is in general much more important than the initial aerosol concentration itself.
APA, Harvard, Vancouver, ISO, and other styles
20

Vernier, J. P., J. P. Pommereau, L. W. Thomason, J. Pelon, A. Garnier, T. Deshler, J. Jumelet, and J. K. Nielsen. "Overshooting of clean tropospheric air in the tropical lower stratosphere as seen by the CALIPSO lidar." Atmospheric Chemistry and Physics Discussions 11, no. 1 (January 6, 2011): 163–92. http://dx.doi.org/10.5194/acpd-11-163-2011.

Full text
Abstract:
Abstract. The evolution of aerosols in the tropical upper troposphere/lower stratosphere between June 2006 and October 2009 is examined using the observations of the space borne CALIOP lidar aboard the CALIPSO satellite. Superimposed on several volcanic plumes and soot from an extreme biomass-burning event in 2009, the measurements reveal the existence of fast cleansing episodes of the lower stratosphere to altitudes as high as 20 km. The cleansing of the full 14–20 km layer takes place within 1–4 months. Its coincidence with the maximum of convective activity in the southern tropics, suggests that the cleansing is the result of a large number of overshooting towers, injecting aerosol-poor tropospheric air into the lower stratosphere. The enhancements of aerosols at the tropopause level during the NH summer may be due to the same transport process but associated with intense sources of aerosols at the surface. Since, the tropospheric air flux derived from CALIOP observations during North Hemisphere winter is 5–20 times larger than the slow ascent by radiative heating usually assumed, the observations suggest that convective overshooting is a major contributor to troposphere-to-stratosphere transport with concommitant implications to the Tropical Tropopause Layer top height, chemistry and thermal structure.
APA, Harvard, Vancouver, ISO, and other styles
21

Wang, J., Y. N. Lee, P. H. Daum, J. Jayne, and M. L. Alexander. "Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect." Atmospheric Chemistry and Physics Discussions 8, no. 3 (May 28, 2008): 9783–818. http://dx.doi.org/10.5194/acpd-8-9783-2008.

Full text
Abstract:
Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.22% supersaturation to those predicted based on size distribution and chemical composition using Köhler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization. For aerosols with organics volume fraction up to 70%, such as the marine boundary layer and free troposphere aerosols, CCN concentration and the corresponding first indirect aerosol effect are insensitive to the properties of organics, and can be accurately predicted with a constant hygroscopicity for all organic species. This simplification can facilitate the prediction of indirect aerosol effects using physically-based parameterizations in large scale models. However, for the aerosols within the thin layers above clouds, organics contributed up to 90% of the total aerosol volume, and a detailed knowledge of organic hygroscopicity is required to accurately predict CCN concentrations. Derivations of organic properties in future closure studies, when aerosols are dominated by organic species, would help constrain the descriptions of organics and aerosol-cloud parameterizations in large scale models.
APA, Harvard, Vancouver, ISO, and other styles
22

Zobrist, B., C. Marcolli, D. A. Pedernera, and T. Koop. "Do atmospheric aerosols form glasses?" Atmospheric Chemistry and Physics 8, no. 17 (September 3, 2008): 5221–44. http://dx.doi.org/10.5194/acp-8-5221-2008.

Full text
Abstract:
Abstract. A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5), of dicarboxylic acids and ammonium sulfate (M5AS), of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K). To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1) and more hydrophobic organic molecules are more likely to form glasses at intermediate to high relative humidities in the upper troposphere. Our results suggest that the water uptake of aerosols, heterogeneous chemical reactions in aerosol particles, as well as ice nucleation and ice crystal growth can be significantly impeded or even completely inhibited in organic-enriched aerosols at upper tropospheric temperatures with implications for cirrus cloud formation and upper tropospheric relative humidity.
APA, Harvard, Vancouver, ISO, and other styles
23

Zobrist, B., C. Marcolli, D. A. Pedernera, and T. Koop. "Do atmospheric aerosols form glasses?" Atmospheric Chemistry and Physics Discussions 8, no. 3 (May 22, 2008): 9263–321. http://dx.doi.org/10.5194/acpd-8-9263-2008.

Full text
Abstract:
Abstract. A new process is presented by which water-soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulphate and mixtures of dicarboxylic acids (M5), of dicarboxylic acids and ammonium sulphate (M5AS), of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg-values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K). To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger and more hydrophobic organic molecules (≳150 g mol-1) are more likely to form glasses at intermediate to high relative humidities in the upper troposphere. Our results suggest that the water uptake of aerosols, heterogeneous chemical reactions in aerosol particles, as well as ice nucleation and ice crystal growth can be significantly impeded or even completely inhibited in organic-enriched aerosols at upper tropospheric temperatures with implications for cirrus cloud formation and upper tropospheric relative humidity.
APA, Harvard, Vancouver, ISO, and other styles
24

Bauer, S. E., D. Koch, N. Unger, S. M. Metzger, D. T. Shindell, and D. G. Streets. "Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone." Atmospheric Chemistry and Physics 7, no. 19 (October 2, 2007): 5043–59. http://dx.doi.org/10.5194/acp-7-5043-2007.

Full text
Abstract:
Abstract. Nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammonium-sulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gas- and aerosol phase chemistry to investigate current and future (2030, following the SRES A1B emission scenario) atmospheric compositions. A set of sensitivity experiments was carried out to quantify the individual impact of emission- and physical climate change on nitrate aerosol formation. We found that future nitrate aerosol loads depend most strongly on changes that may occur in the ammonia sources. Furthermore, microphysical processes that lead to aerosol mixing play a very important role in sulphate and nitrate aerosol formation. The role of nitrate aerosols as climate change driver is analyzed and set in perspective to other aerosol and ozone forcings under pre-industrial, present day and future conditions. In the near future, year 2030, ammonium nitrate radiative forcing is about −0.14 W/m² and contributes roughly 10% of the net aerosol and ozone forcing. The present day nitrate and pre-industrial nitrate forcings are −0.11 and −0.05 W/m², respectively. The steady increase of nitrate aerosols since industrialization increases its role as a non greenhouse gas forcing agent. However, this impact is still small compared to greenhouse gas forcings, therefore the main role nitrate will play in the future atmosphere is as an air pollutant, with annual mean near surface air concentrations, in the fine particle mode, rising above 3 μg/m³ in China and therefore reaching pollution levels, like sulphate aerosols.
APA, Harvard, Vancouver, ISO, and other styles
25

Peng, Chao, Yu Wang, Zhijun Wu, Lanxiadi Chen, Ru-Jin Huang, Weigang Wang, Zhe Wang, et al. "Tropospheric aerosol hygroscopicity in China." Atmospheric Chemistry and Physics 20, no. 22 (November 18, 2020): 13877–903. http://dx.doi.org/10.5194/acp-20-13877-2020.

Full text
Abstract:
Abstract. Hygroscopicity largely determines phase state, chemical reactivity, optical properties, and cloud nucleation activities of aerosol particles, thus significantly affecting their impacts on visibility, atmospheric chemistry, and climate. In the last 20 years, a large number of field studies have investigated the hygroscopicity of tropospheric aerosols in China under subsaturated and supersaturated conditions. Aerosol hygroscopicity measurements in China are reviewed in this paper: (1) a comprehensive summary and critical discussion of aerosol hygroscopicity measurements in China are provided; (2) available measurement data are compiled and presented under a consistent framework to enhance their accessibility and usability; and (3) current knowledge gaps are identified, and an outlook which could serve as guidelines for planning future research is also proposed.
APA, Harvard, Vancouver, ISO, and other styles
26

Volkamer, R., S. Baidar, T. L. Campos, S. Coburn, J. P. DiGangi, B. Dix, E. W. Eloranta, et al. "Aircraft measurements of BrO, IO, glyoxal, NO<sub>2</sub>, H<sub>2</sub>O, O<sub>2</sub>–O<sub>2</sub> and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements." Atmospheric Measurement Techniques 8, no. 5 (May 20, 2015): 2121–48. http://dx.doi.org/10.5194/amt-8-2121-2015.

Full text
Abstract:
Abstract. Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2–O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2–0.55 pptv IO and 32–36 pptv glyoxal were observed. The near-surface concentrations agree within 30% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6° N; 101.2 to 97.4° W). At 14.5 km, 5–10 pptv NO2 agree with model predictions and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12–20 degrees of freedom (DoF) and up to 500 m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 × 1013 molec cm−2 (RF12) and at least 0.5 × 1013 molec cm−2 (RF17, 0–10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 × 1012 molec cm−2 (RF12) and 2.5 × 1012 molec cm−2 (RF17) and glyoxal VCDs of 2.6 × 1014 molec cm−2 (RF12) and 2.7 × 1014 molec cm−2 (RF17). Surprisingly, essentially all BrO as well as the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 ± 5%, 0.1–0.2 pptv; glyoxal: 52 ± 5%, 3–20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere. The atmospheric implications are briefly discussed. Future studies are necessary to better understand the sources and impacts of free tropospheric halogens and oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation and the oxidation capacity of the atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
27

Nozière, B., P. Dziedzic, and A. Córdova. "Common inorganic ions are efficient catalysts for organic reactions in atmospheric aerosols and other natural environments." Atmospheric Chemistry and Physics Discussions 9, no. 1 (January 5, 2009): 1–21. http://dx.doi.org/10.5194/acpd-9-1-2009.

Full text
Abstract:
Abstract. In this work, inorganic ammonium ions, NH4+, and carbonate ions, CO32−, are reported for the first time as catalysts for organic reactions in atmospheric aerosols and other natural environments at the Earth's surface. These reactions include the formation of C–C and C–O bonds by aldol condensation and acetal formation, and reveal a new aspect of the interactions between organic and inorganic materials in natural environments. The catalytic properties of inorganic ammonium ions, in particular, were not previously known in chemistry. The reactions were found to be as fast in tropospheric ammonium sulfate composition as in concentrated sulfuric acid. The ubiquitous presence and large concentrations of ammonium ions in tropospheric aerosols would make of ammonium catalysis a main consumption pathway for organic compounds in these aerosols, while acid catalysis would have a minor contribution. In particular, ammonium catalysis would account quantitatively for the aging of carbonyl compounds into secondary ''fulvic'' compounds in tropospheric aerosols, a transformation affecting the optical properties of these aerosols. In general, ammonium catalysis is likely to be responsible for many observations previously attributed to acid catalysis in the troposphere.
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, J., Y. N. Lee, P. H. Daum, J. Jayne, and M. L. Alexander. "Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect." Atmospheric Chemistry and Physics 8, no. 21 (November 3, 2008): 6325–39. http://dx.doi.org/10.5194/acp-8-6325-2008.

Full text
Abstract:
Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at ~0.2% supersaturation to those predicted based on size distribution and chemical composition using Köhler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization. For aerosols with organics volume fraction up to 70%, such as the marine boundary layer and free troposphere aerosols, CCN concentration and the corresponding first indirect aerosol effect are insensitive to the properties of organics, and can be accurately predicted with a constant hygroscopicity for all organic species. This simplification can facilitate the prediction of indirect aerosol effects using physically-based parameterizations in large scale models. However, for the aerosols within the thin layers above clouds, organics contributed up to 90% of the total aerosol volume, and an accurate knowledge of the overall organic hygroscopicity is required to accurately predict CCN concentrations. Derivations of organic properties in future closure studies, when aerosols are dominated by organic species, would help constrain the descriptions of organics and aerosol-cloud parameterizations in large scale models.
APA, Harvard, Vancouver, ISO, and other styles
29

Ekman, A. M. L., C. Wang, J. Wilson, and J. Ström. "Explicit simulation of aerosol physics in a cloud-resolving model." Atmospheric Chemistry and Physics Discussions 4, no. 1 (February 2, 2004): 753–803. http://dx.doi.org/10.5194/acpd-4-753-2004.

Full text
Abstract:
Abstract. The role of convection in introducing aerosols and promoting the formation of new particles to the upper troposphere has been examined using a cloud-resolving model coupled with an interactive explicit aerosol module. A baseline simulation suggests good agreement in the upper troposphere between modeled and observed results including concentrations of aerosols in different size ranges, mole fractions of key chemical species, and concentrations of ice particles. In addition, a set of 34 sensitivity simulations has been carried out to investigate the sensitivity of modeled results to the treatment of various aerosol physical and chemical processes in the model. The size distribution of aerosols is proved to be an important factor in determining the aerosols' fate within the convective cloud. Nucleation mode aerosols (0<−d<−5.84 nm) are quickly transferred to the larger modes as they grow through coagulation and condensation of H2SO4. Accumulation mode aerosols (d>−31.0 nm) are almost completely removed by nucleation (activation of cloud droplets) and impact scavenging. However, a substantial part (up to 10% of the boundary layer concentration) of the Aitken mode aerosol population (5.84 nm<−d<−31.0 nm) reaches the top of the cloud and the free troposphere. These particles may continually survive in the upper troposphere, or over time form ice crystals, both that could impact the atmospheric radiative budget. The sensitivity simulations performed indicate that critical processes in the model causing a substantial change in the upper tropospheric Aitken mode number concentration are coagulation, condensation, nucleation scavenging, nucleation of aerosols and the transfer of aerosol mass and number between different aerosol bins. In particular, for aerosols in the Aitken mode to grow to CCN size, coagulation appears to be more important than condensation. Less important processes are dry deposition, impact scavenging and the initial vertical distribution and concentration of aerosols. It is interesting to note that in order to sustain a vigorous storm cloud, the supply of CCN must be continuous over a considerably long time period of the simulation. Hence, the treatment of the growth of particles is in general much more important than the initial aerosol concentration itself.
APA, Harvard, Vancouver, ISO, and other styles
30

Anderson, Theodore L., Robert J. Charlson, David M. Winker, John A. Ogren, and Kim Holmén. "Mesoscale Variations of Tropospheric Aerosols*." Journal of the Atmospheric Sciences 60, no. 1 (January 2003): 119–36. http://dx.doi.org/10.1175/1520-0469(2003)060<0119:mvota>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Palancar, G. G., B. L. Lefer, S. R. Hall, W. J. Shaw, C. A. Corr, S. C. Herndon, J. R. Slusser, and S. Madronich. "Effect of aerosols and NO<sub>2</sub> concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations." Atmospheric Chemistry and Physics Discussions 12, no. 8 (August 3, 2012): 19243–75. http://dx.doi.org/10.5194/acpd-12-19243-2012.

Full text
Abstract:
Abstract. Urban air pollution absorbs and scatters solar ultraviolet (UV) radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between UV actinic fluxes (AF) measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV) model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 67% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6) reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.
APA, Harvard, Vancouver, ISO, and other styles
32

Palancar, G. G., B. L. Lefer, S. R. Hall, W. J. Shaw, C. A. Corr, S. C. Herndon, J. R. Slusser, and S. Madronich. "Effect of aerosols and NO<sub>2</sub> concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations." Atmospheric Chemistry and Physics 13, no. 2 (January 24, 2013): 1011–22. http://dx.doi.org/10.5194/acp-13-1011-2013.

Full text
Abstract:
Abstract. Urban air pollution absorbs and scatters solar ultraviolet (UV) radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between actinic fluxes (AF) in the wavelength range 330–420 nm measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV) model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 68% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6) reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.
APA, Harvard, Vancouver, ISO, and other styles
33

Mao, J., S. Fan, D. J. Jacob, and K. R. Travis. "Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols." Atmospheric Chemistry and Physics 13, no. 2 (January 16, 2013): 509–19. http://dx.doi.org/10.5194/acp-13-509-2013.

Full text
Abstract:
Abstract. The hydroperoxyl radical (HO2) is a major precursor of OH and tropospheric ozone. OH is the main atmospheric oxidant, while tropospheric ozone is an important surface pollutant and greenhouse gas. Standard gas-phase models for atmospheric chemistry tend to overestimate observed HO2 concentrations, and this has been tentatively attributed to heterogeneous uptake by aerosol particles. It is generally assumed that HO2 uptake by aerosol involves conversion to H2O2, but this is of limited efficacy as an HO2 sink because H2O2 can photolyze to regenerate OH and from there HO2. Joint atmospheric observations of HO2 and H2O2 suggest that HO2 uptake by aerosols may in fact not produce H2O2. Here we propose a catalytic mechanism involving coupling of the transition metal ions Cu(I)/Cu(II) and Fe(II)/Fe(III) to rapidly convert HO2 to H2O in aqueous aerosols. The implied HO2 uptake and conversion to H2O significantly affects global model predictions of tropospheric OH, ozone, carbon monoxide (CO) and other species, improving comparisons to observations in the GEOS-Chem model. It represents a previously unrecognized positive radiative forcing of aerosols through the effects on the chemical budgets of major greenhouse gases including methane and hydrofluorocarbons (HFCs).
APA, Harvard, Vancouver, ISO, and other styles
34

Vernier, J. P., J. P. Pommereau, L. W. Thomason, J. Pelon, A. Garnier, T. Deshler, J. Jumelet, and J. K. Nielsen. "Overshooting of clean tropospheric air in the tropical lower stratosphere as seen by the CALIPSO lidar." Atmospheric Chemistry and Physics 11, no. 18 (September 20, 2011): 9683–96. http://dx.doi.org/10.5194/acp-11-9683-2011.

Full text
Abstract:
Abstract. The evolution of aerosols in the tropical upper troposphere/lower stratosphere between June 2006 and October 2009 is examined using the observations of the space borne CALIOP lidar aboard the CALIPSO satellite. Superimposed on several volcanic plumes and soot from an extreme biomass-burning event in 2009, the measurements reveal the existence of fast-cleansing episodes in the lower stratosphere to altitudes as high as 20 km. The cleansing of the layer, which extends from 14 to 20 km, takes place within 1 to 4 months during the southern tropics convective season that transports aerosol-poor tropospheric air into the lower stratosphere. In contrast, the convective season of the Northern Hemisphere summer shows an increase in the particle load at the tropopause consistent with a lofting of air rich with aerosols. These aerosols can consist of surface-derived material such as mineral dust and soot as well as liquid sulfate and organic particles. The flux of tropospheric air during the Southern Hemisphere convective season derived from CALIOP observations is shown to be 5 times at 16 km and 20 times at 19 km larger, respectively, than that associated with flux caused by slow ascent through radiative heating. These results suggest that convective overshooting is a major contributor to troposphere-to-stratosphere transport with concomitant implications for the Tropical Tropopause Layer top height, the humidity, the photochemistry and the thermal structure of the layer.
APA, Harvard, Vancouver, ISO, and other styles
35

Faïn, X., D. Obrist, A. G. Hallar, I. Mccubbin, and T. Rahn. "High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains." Atmospheric Chemistry and Physics 9, no. 20 (October 23, 2009): 8049–60. http://dx.doi.org/10.5194/acp-9-8049-2009.

Full text
Abstract:
Abstract. The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with carbon monoxide (CO), ozone (O3), aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m−3 (GEM), 20 pg m−3 (RGM) and 9 pg m−3 (HgP). We observed eight events of strongly enhanced atmospheric RGM levels with maximum concentrations up to 137 pg m−3. RGM enhancement events lasted for long time periods of 2 to 6 days showing both enriched level during daytime and nighttime when other tracers (e.g., aerosols) showed different representations of boundary layer air and free tropospheric air. During seven of these events, RGM was inversely correlated to GEM (RGM/GEM regression slope ~−0.1), but did not exhibit correlations with ozone, carbon monoxide, or aerosol concentrations. Relative humidity was the dominant factor affecting RGM levels with high RGM levels always present whenever relative humidity was below 40 to 50%. We conclude that RGM enhancements observed at Storm Peak Laboratory were not induced by pollution events and were related to oxidation of tropospheric GEM. High RGM levels were not limited to upper tropospheric or stratospherically influenced air masses, indicating that entrainment processes and deep vertical mixing of free tropospheric air enriched in RGM may lead to high RGM levels throughout the troposphere and into the boundary layer over the Western United States. Based on backtrajectory analysis and a lack of mass balance between RGM and GEM, atmospheric production of RGM may also have occurred in some distance allowing for scavenging and/or deposition of RGM prior to reaching the laboratory. Our observations provide evidence that the tropospheric pool of mercury is frequently enriched in divalent mercury, that high RGM levels are not limited to upper tropospheric air masses, but that the build-up of high RGM in the troposphere is limited to the presence of dry air.
APA, Harvard, Vancouver, ISO, and other styles
36

Jiang, Zhihong, Fei Huo, Hongyun Ma, Jie Song, and Aiguo Dai. "Impact of Chinese Urbanization and Aerosol Emissions on the East Asian Summer Monsoon." Journal of Climate 30, no. 3 (January 16, 2017): 1019–39. http://dx.doi.org/10.1175/jcli-d-15-0593.1.

Full text
Abstract:
Abstract Impacts of urbanization and anthropogenic aerosols in China on the East Asian summer monsoon (EASM) are investigated using version 5.1 of the Community Atmosphere Model (CAM5.1) by comparing simulations with and without incorporating urban land cover and/or anthropogenic aerosol emissions. Results show that the increase of urban land cover causes large surface warming and an urban frictional drag, both leading to a northeasterly wind anomaly in the lower troposphere over eastern China (EC). This weakens the southerly winds associated with the EASM and causes a convergence anomaly in southern China (SC) with increased ascent, latent heating, and cloudiness. The enhanced latent heating reinforces surface convergence and upper-level divergence over SC, leading to more northward advection in the upper level into northern China (NC) and descending between 30° and 50°N over East Asia. Cloudiness reduction, adiabatic heating, and warm advection over NC all enhance the urban heating there, together causing anomalous tropospheric warming at those latitudes over East Asia. Anthropogenic aerosols cause widespread cooling at the surface and in the troposphere over EC, which decreases the summer land–ocean thermal contrast, leading to a weakened EASM circulation with reduced moisture transport to NC. This results in wetter and drier conditions over SC and NC, respectively. When both the urbanization and anthropogenic aerosols are included in the model, aerosols’ cooling is partially offset by the urban heating, and their joint effect on the circulation is dominated by the aerosols’ effect with a reduced magnitude. In the combined experiment, surface and tropospheric temperatures are also altered by the decrease (increase) in cloudiness over NC (SC) with most of the cooling confined to SC, which further weakens the EASM circulation.
APA, Harvard, Vancouver, ISO, and other styles
37

Visioni, Daniele, Giovanni Pitari, Valentina Aquila, Simone Tilmes, Irene Cionni, Glauco Di Genova, and Eva Mancini. "Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP)." Atmospheric Chemistry and Physics 17, no. 18 (September 21, 2017): 11209–26. http://dx.doi.org/10.5194/acp-17-11209-2017.

Full text
Abstract:
Abstract. Sulfate geoengineering (SG), made by sustained injection of SO2 in the tropical lower stratosphere, may impact the CH4 abundance through several photochemical mechanisms affecting tropospheric OH and hence the methane lifetime. (a) The reflection of incoming solar radiation increases the planetary albedo and cools the surface, with a tropospheric H2O decrease. (b) The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: the net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D). (c) The extratropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-to-upper troposphere, thus reducing the amount of NOx and O3 production. (d) The tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rate perturbation is highly latitude dependent, producing a stronger meridional component of the Brewer–Dobson circulation. The net effect on tropospheric OH due to the enhanced stratosphere–troposphere exchange may be positive or negative depending on the net result of different superimposed species perturbations (CH4, NOy, O3, SO4) in the extratropical upper troposphere and lower stratosphere (UTLS). In addition, the atmospheric stabilization resulting from the tropospheric cooling and lower stratospheric warming favors an additional decrease of the UTLS extratropical CH4 by lowering the horizontal eddy mixing. Two climate–chemistry coupled models are used to explore the above radiative, chemical and dynamical mechanisms affecting CH4 transport and lifetime (ULAQ-CCM and GEOSCCM). The CH4 lifetime may become significantly longer (by approximately 16 %) with a sustained injection of 8 Tg-SO2 yr−1 starting in the year 2020, which implies an increase of tropospheric CH4 (200 ppbv) and a positive indirect radiative forcing of sulfate geoengineering due to CH4 changes (+0.10 W m−2 in the 2040–2049 decade and +0.15 W m−2 in the 2060–2069 decade).
APA, Harvard, Vancouver, ISO, and other styles
38

Bauer, S. E., D. Koch, N. Unger, S. M. Metzger, D. T. Shindell, and D. G. Streets. "Nitrate aerosols today and in 2030: importance relative to other aerosol species and tropospheric ozone." Atmospheric Chemistry and Physics Discussions 7, no. 2 (April 26, 2007): 5553–93. http://dx.doi.org/10.5194/acpd-7-5553-2007.

Full text
Abstract:
Abstract. Ammonium-nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammonium-sulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gas- and aerosol phase chemistry to investigate current and future (2030, following the SRES A1B emission scenario) atmospheric compositions. A set of sensitivity experiments was carried out to quantify the individual impact of emission- and physical climate change on nitrate aerosol formation. We found that future nitrate aerosol loads depend most strongly on changes that may occur in the ammonia sources. Furthermore, microphysical processes that lead to aerosol mixing play a very important role in sulphate and nitrate aerosol formation. The role of nitrate aerosols as climate change driver is analyzed and set in perspective to other aerosol and ozone forcings under pre-industrial, present day and future conditions. In the near future, year 2030, ammonium nitrate radiative forcing is about –0.14 W/m2 and contributes roughly 10% of the net aerosol and ozone forcing. The present day nitrate and pre-industrial nitrate forcings are –0.11 and –0.05 W/m2, respectively. The steady increase of nitrate aerosols since industrialization increases its role as a non greenhouse gas forcing agent. However, this impact is still small compared to greenhouse gas forcings, therefore the main role nitrate will play in the future atmosphere is as an air pollutant, with annual mean near surface air concentrations rising above 3 μg/m3 in China and therefore reaching pollution levels, like sulphate aerosols, in the fine particle mode.
APA, Harvard, Vancouver, ISO, and other styles
39

van Noije, T. P. C., P. Le Sager, A. J. Segers, P. F. J. van Velthoven, M. C. Krol, W. Hazeleger, A. G. Williams, and S. D. Chambers. "Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth." Geoscientific Model Development 7, no. 5 (October 22, 2014): 2435–75. http://dx.doi.org/10.5194/gmd-7-2435-2014.

Full text
Abstract:
Abstract. We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.
APA, Harvard, Vancouver, ISO, and other styles
40

van Noije, T. P. C., P. Le Sager, A. J. Segers, P. F. J. van Velthoven, M. C. Krol, and W. Hazeleger. "Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth." Geoscientific Model Development Discussions 7, no. 2 (March 25, 2014): 1933–2006. http://dx.doi.org/10.5194/gmdd-7-1933-2014.

Full text
Abstract:
Abstract. We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.
APA, Harvard, Vancouver, ISO, and other styles
41

Jégou, F., G. Berthet, C. Brogniez, J. B. Renard, P. François, J. M. Haywood, A. Jones, et al. "Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer." Atmospheric Chemistry and Physics Discussions 13, no. 2 (February 8, 2013): 3613–62. http://dx.doi.org/10.5194/acpd-13-3613-2013.

Full text
Abstract:
Abstract. Aerosols from the Sarychev volcano eruption (Kuril Islands, northeast of Japan) were observed in the Arctic lower stratosphere a few days after the strongest SO2 injection which occurred on 15 and 16 June 2009. From the observations provided by the Infrared Atmospheric Sounding Interferometer (IASI) an estimated 0.9 Tg of sulphur dioxide was injected into the Upper Troposphere and Lower Stratosphere (UTLS). The resultant stratospheric sulphate aerosols were detected by the Optical Spectrograph and Infrared Imaging System (OSIRIS) limb sounder and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instruments. By the first week of July the aerosol plume had spread out over the entire Arctic region. The Sarychev-induced stratospheric aerosol over the Kiruna region (north of Sweden) was measured by the Stratospheric and Tropospheric Aerosol Counter (STAC) during eight balloon flights planned in August and September 2009. During this balloon campaign the Micro RADIomètre BALlon (MicroRADIBAL) and the Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON) remote-sensing instruments also observed these aerosols. Aerosol concentrations returned to near-background levels by spring 2010. The effective radius, the Surface Area Density (SAD), the aerosol extinction, and the total sulphur mass from STAC in situ measurements are enhanced with mean values in the range 0.15–0.21 μm, 5.5–14.7 μm2 cm−3, 5.5–29.5×10−4 km−1, and 4.9–12.6×10−10 kg [S] kg−1 [air], respectively, between 14 km and 18 km. The observed and modelled e-folding time of sulphate aerosols from the Sarychev eruption is around 70–80 days, a value much shorter than the 12–14 months calculated for aerosols from the 1991 eruption of Mt. Pinatubo. The OSIRIS stratospheric Aerosol Optical Depth (AOD) at 750 nm is enhanced by a factor of 6 with a value of 0.02 in late July compared to 0.0035 before the eruption. The HadGEM2 and MIMOSA model outputs indicate that aerosol layers in polar region up to 14–15 km are largely modulated by stratosphere-troposphere exchange processes. The spatial extension of the Sarychev plume is well represented in the HadGEM2 model with lower altitudes of the plume being controlled by upper tropospheric troughs which displace the plume downward and upper altitudes around 18–20 km in agreement with lidar observations. A good consistency is found between the HadGEM2 sulphur mass density and the value inferred from the STAC observations with a maximum located about 1 km above the tropopause ranging from 1 to 2×10−9 kg [S] kg−1 [air], which is one order of magnitude higher than the background level.
APA, Harvard, Vancouver, ISO, and other styles
42

Xu, Y., and S. P. Xie. "Ocean mediation of tropospheric response to reflecting and absorbing aerosols." Atmospheric Chemistry and Physics Discussions 15, no. 4 (February 25, 2015): 5537–52. http://dx.doi.org/10.5194/acpd-15-5537-2015.

Full text
Abstract:
Abstract. Radiative forcing by reflecting (e.g., sulfate, SO4) and absorbing (e.g., black carbon, BC) aerosols is distinct: the former cools the planet by reducing solar radiation at the top of the atmosphere and the surface, without largely affecting the atmospheric column, while the latter heats the atmosphere directly. Despite the fundamental difference in forcing, here we show that the structure of the tropospheric response is remarkably similar between the two types of aerosols, featuring a deep vertical structure of temperature change (of opposite sign) in the Northern Hemisphere (NH) mid-latitudes. The deep temperature structure is anchored by the slow response of the ocean, as large meridional sea surface temperature (SST) gradient drives an anomalous inter-hemispheric Hadley circulation in the tropics and induces atmospheric eddy adjustments in the NH mid-latitudes. The robust tropospheric response is unique to aerosol forcing and absent in the CO2 response, which can be exploited for climate change attribution. The tropospheric warming in response to projected future decline in reflecting aerosols poses additional threats to the stability of mountain glaciers in NH.
APA, Harvard, Vancouver, ISO, and other styles
43

Xu, Y., and S. P. Xie. "Ocean mediation of tropospheric response to reflecting and absorbing aerosols." Atmospheric Chemistry and Physics 15, no. 10 (May 27, 2015): 5827–33. http://dx.doi.org/10.5194/acp-15-5827-2015.

Full text
Abstract:
Abstract. Radiative forcing by reflecting (e.g., sulfate, SO4) and absorbing (e.g., black carbon, BC) aerosols is distinct: the former cools the planet by reducing solar radiation at the top of the atmosphere and the surface, without largely affecting the atmospheric column, while the latter heats the atmosphere directly. Despite the fundamental difference in forcing, here we show that the structure of the tropospheric response is remarkably similar between the two types of aerosols, featuring a deep vertical structure of temperature change (of opposite sign) at the Northern Hemisphere (NH) mid-latitudes. The deep temperature structure is anchored by the slow response of the ocean, as a large meridional sea surface temperature (SST) gradient drives an anomalous inter-hemispheric Hadley circulation in the tropics and induces atmospheric eddy adjustments at the NH mid-latitudes. The tropospheric warming in response to projected future decline in reflecting aerosols poses additional threats to the stability of mountain glaciers in the NH. Additionally, robust tropospheric response is unique to aerosol forcing and absent in the CO2 response, which can be exploited for climate change attribution.
APA, Harvard, Vancouver, ISO, and other styles
44

Mao, J., S. Fan, D. J. Jacob, and K. R. Travis. "Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols." Atmospheric Chemistry and Physics Discussions 12, no. 10 (October 15, 2012): 27053–76. http://dx.doi.org/10.5194/acpd-12-27053-2012.

Full text
Abstract:
Abstract. The hydroperoxyl radical (HO2) is a major precursor of OH and tropospheric ozone. OH is the main atmospheric oxidant, while tropospheric ozone is an important surface pollutant and greenhouse gas. Standard gas-phase models for atmospheric chemistry tend to overestimate observed HO2 concentrations, and this has been tentatively attributed to heterogeneous uptake by aerosol particles. It is generally assumed that HO2 uptake by aerosol involve conversion to H2O2, but this is of limited efficacy as an HO2 sink because H2O2 can photolyze to regenerate OH and from there HO2. Joint atmospheric observations of HO2 and H2O2 suggest that HO2 uptake by aerosols may in fact not produce H2O2. Here we propose a catalytic mechanism involving coupling of the transition metal ions (TMI) Cu(I)/Cu(II) and Fe(II)/Fe(III) to rapidly convert HO2 to H2O in aerosols. The implied HO2 uptake significantly affects global model predictions of tropospheric OH, ozone, and other species, improving comparisons to observations, and may have a major and previously unrecognized impact on atmospheric oxidant chemistry.
APA, Harvard, Vancouver, ISO, and other styles
45

Elina, Giannakaki, Anne Pfüller, Kimmo Korhonen, Tero Mielonen, Lauri Laakso, Ville Vakkari, Holger Baars, et al. "Free Tropospheric Aerosols Over South Africa." EPJ Web of Conferences 119 (2016): 23015. http://dx.doi.org/10.1051/epjconf/201611923015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

PANDIS, S. N., A. S. WEXLER, and J. H. SEINFELD. "ChemInform Abstract: Dynamics of Tropospheric Aerosols." ChemInform 26, no. 41 (August 17, 2010): no. http://dx.doi.org/10.1002/chin.199541309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Metzig, G. "Extinction coefficient measurements of tropospheric aerosols." Journal of Aerosol Science 19, no. 7 (January 1988): 1179–82. http://dx.doi.org/10.1016/0021-8502(88)90130-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vlemmix, T., A. J. M. Piters, A. J. C. Berkhout, L. F. L. Gast, P. Wang, and P. F. Levelt. "Ability of the MAX-DOAS method to derive profile information for NO<sub>2</sub>: can the boundary layer and free troposphere be separated?" Atmospheric Measurement Techniques 4, no. 12 (December 9, 2011): 2659–84. http://dx.doi.org/10.5194/amt-4-2659-2011.

Full text
Abstract:
Abstract. Multiple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments can measure from the ground the absorption by nitrogen dioxide (NO2) of scattered sunlight seen in multiple viewing directions. This paper studies the potential of this technique to derive the vertical distribution of NO2 in the troposphere. Such profile information is essential for detailed comparisons of MAX-DOAS retrievals with other measurement techniques for NO2, e.g. with a lidar or from space. The retrieval algorithm used is based on a pre-calculated look-up table and assumes homogeneous mixing of aerosols and NO2 in layers extending from the surface to a variable height. Two retrieval models are compared: one including and one excluding an elevated NO2 layer at a fixed altitude in the free troposphere. An ensemble technique is applied to derive retrieval uncertainties. Sensitivity studies demonstrate that NO2 in the free troposphere can only be retrieved accurately if: (i) the retrieved boundary layer profiles for aerosols and NO2 correspond to the real ones, (ii) if the right a-priori choice is made for the (average) height of free tropospheric NO2, and (iii) if all other error sources are very low. It is shown that retrieval models that are capable of accurate NO2 retrievals in the free troposphere, i.e. models not constrained too much by a-priori assumptions, have as a major disadvantage that they will frequently find free tropospheric NO2, also when it is not present in reality. This is a consequence of the fact that NO2 in the free troposphere is poorly constrained by the MAX-DOAS observations, especially for high aerosol optical thickness values in the boundary layer. Retrieval of free tropospheric NO2 is therefore sensitive to a large number of error sources. For this reason it is advised to firmly constrain free tropospheric NO2 in MAX-DOAS retrieval models used for applications such as satellite validation. This effectively makes free tropospheric NO2 a source of error for MAX-DOAS retrieval of NO2 profiles in the boundary layer. A comparison was performed with independent data, based on MAX-DOAS observations done at the CINDI campaign, held in the Netherlands in 2009. Comparison with lidar partial tropospheric NO2 columns showed a correlation of 0.78, and an average difference of 0.1× 1015 molec cm−2. The diurnal evolution of the NO2 volume mixing ratio measured by in-situ monitors at the surface and averaged over five days with cloud-free mornings, compares well to the MAX-DOAS retrieval: a correlation was found of 0.94, and an average difference of 0.04 ppb.
APA, Harvard, Vancouver, ISO, and other styles
49

Vlemmix, T., A. J. M. Piters, P. Stammes, P. Wang, and P. F. Levelt. "Retrieval of tropospheric NO<sub>2</sub> using the MAX-DOAS method combined with relative intensity measurements for aerosol correction." Atmospheric Measurement Techniques 3, no. 5 (October 4, 2010): 1287–305. http://dx.doi.org/10.5194/amt-3-1287-2010.

Full text
Abstract:
Abstract. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a technique to measure trace gas amounts in the lower troposphere from ground-based scattered sunlight observations. MAX-DOAS observations are especially suitable for validation of tropospheric trace gas observations from satellite, since they have a representative range of several kilometers, both in the horizontal and in the vertical dimension. A two-step retrieval scheme is presented here, to derive aerosol corrected tropospheric NO2 columns from MAX-DOAS observations. In a first step, boundary layer aerosols, characterized in terms of aerosol optical thickness (AOT), are estimated from relative intensity observations, which are defined as the ratio of the sky radiance at elevation α and the sky radiance in the zenith. Relative intensity measurements have the advantage of a strong dependence on boundary layer AOT and almost no dependence on boundary layer height. In a second step, tropospheric NO2 columns are derived from differential slant columns, based on AOT-dependent air mass factors. This two-step retrieval scheme was applied to cloud free periods in a twelve month data set of observations in De Bilt, The Netherlands. In a comparison with AERONET (Cabauw site) a mean difference in AOT (AERONET minus MAX-DOAS) of −0.01±0.08 was found, and a correlation of 0.85. Tropospheric-NO2 columns were compared with OMI-satellite tropospheric NO2. For ground-based observations restricted to uncertainties below 10%, no significant difference was found, and a correlation of 0.88.
APA, Harvard, Vancouver, ISO, and other styles
50

Vlemmix, T., A. J. M. Piters, P. Stammes, P. Wang, and P. F. Levelt. "Retrieval of tropospheric NO2</sub> using the MAX-DOAS method combined with relative intensity measurements for aerosol correction." Atmospheric Measurement Techniques Discussions 3, no. 3 (May 19, 2010): 2317–66. http://dx.doi.org/10.5194/amtd-3-2317-2010.

Full text
Abstract:
Abstract. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a technique to measure trace gas amounts in the lower troposphere from ground-based scattered sunlight observations. MAX-DOAS observations are especially suitable for validation of tropospheric trace gas observations from satellite, since they have a representative range of several kilometers, both in the horizontal and in the vertical dimension. A two-step retrieval scheme is presented here, to derive aerosol corrected tropospheric NO2 columns from MAX-DOAS observations. In a first step, boundary layer aerosols, characterized in terms of aerosol optical thickness (AOT), are estimated from relative intensity observations, which are defined as the ratio of the sky radiance at elevation α and the sky radiance in the zenith. Relative intensity measurements have the advantage of a strong dependence on boundary layer AOT and almost no dependence on boundary layer height. In a second step, tropospheric NO2 columns are derived from differential slant columns, based on AOT-dependent air mass factors. This two-step retrieval scheme was applied to cloud free periods in a twelve month data set of observations in De Bilt, the Netherlands. In a comparison with AERONET (Cabauw site) a mean difference in AOT (AERONET minus MAX-DOAS) of −0.01±0.08 was found, and a correlation of 0.85. Tropospheric-NO2 columns were compared with OMI-satellite tropospheric NO2. For ground-based observations restricted to uncertainties below 10%, no significant difference was found, and a correlation of 0.88.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography