Journal articles on the topic 'Troposphere; Winds – Measurement'

To see the other types of publications on this topic, follow the link: Troposphere; Winds – Measurement.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Troposphere; Winds – Measurement.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rao, I. Srinivasa, V. K. Anandan, and P. Narasimha Reddy. "Evaluation of DBS Wind Measurement Technique in Different Beam Configurations for a VHF Wind Profiler." Journal of Atmospheric and Oceanic Technology 25, no. 12 (December 1, 2008): 2304–12. http://dx.doi.org/10.1175/2008jtecha1113.1.

Full text
Abstract:
Abstract Atmospheric winds in the troposphere have been observed routinely for many years with wind profiling (VHF and UHF) radars using the Doppler beam swinging (DBS) technique. Accuracy of wind estimates using wind profiling radars with different beam configurations has its limitations due to both the system of observation and atmospheric conditions. This paper presents a quantitative analysis and evaluation of horizontal wind estimation in different beam configurations up to an altitude of 18 km using the mesosphere–stratosphere–troposphere (MST) radar located in Gadanki, India. Horizontal wind velocities are derived in three different ways using two-, three-, and four-beam configurations. To know the performance of each configuration, radar-derived winds have been compared with the winds obtained by simultaneous GPS sonde balloon measurements, which are considered to be a standard reference by default. Results show that horizontal winds measured using three different beam configurations are comparable in general but discrepancy varies from one beam configuration to the other. It is observed that horizontal winds measured using four-beam configuration (east, west, north, and south) have better estimates than the other two-beam configurations. The standard deviation was found to be varying from 1.4 to 2.5 m s−1 and percentage error is about 9.68%–12.73% in four-beam configuration, whereas in other beam configurations the standard deviation is about 1.65–3.9 m s−1 and the percentage error is about 11.29%–15.16% with reference to GPS sonde balloon–measured winds.
APA, Harvard, Vancouver, ISO, and other styles
2

Anandan, V. K., I. Srinivasa Rao, and P. Narasimha Reddy. "A Study on Optimum Tilt Angle for Wind Estimation Using Indian MST Radar." Journal of Atmospheric and Oceanic Technology 25, no. 9 (September 1, 2008): 1579–89. http://dx.doi.org/10.1175/2008jtecha1030.1.

Full text
Abstract:
Abstract The effect of tilt angle on horizontal wind estimation is studied using Indian mesosphere–stratosphere–troposphere (MST) radar located at Gadanki (13.45°N, 79.18°E). It operates in Doppler beam swinging (DBS) mode with a beamwidth of 3°. Horizontal winds are computed for different tilt angles from 3° to 15° with an increment of 3° from a height range of 3.6–18 km. The effective beam pointing angle (θeff) is calculated to determine the effect of aspect sensitivity on the determination of horizontal wind components. For different tilt angles radar-derived winds are compared with simultaneous GPS sonde wind measurements, which were launched from a nearby site. The first method utilizes direct comparison of radar-derived winds with those of GPS sondes using the actual beam pointing angle; the second method uses the effective beam pointing angle derived from the ratios of two oblique beams. For this study a variety of statistics were explored in terms of standard deviation, correlation coefficient, and percentage error. From the results it is observed that in agreement with previous studies, the effective beam pointing angle deviates from the actual beam pointing angle, which results in the underestimation of horizontal wind components, and also when tilt angle is close to zenith and far from zenith, the estimation of horizontal winds is found to be far from true values at different heights. Radar wind estimation has better agreement with GPS sonde measurement when the off-zenith angle is around 10°. It is also found that correction to the actual beam pointing angle provides 3%–6% improved agreement between the radar and GPS wind measurements.
APA, Harvard, Vancouver, ISO, and other styles
3

Wright, Corwin J., Richard J. Hall, Timothy P. Banyard, Neil P. Hindley, Isabell Krisch, Daniel M. Mitchell, and William J. M. Seviour. "Dynamical and surface impacts of the January 2021 sudden stratospheric warming in novel Aeolus wind observations, MLS and ERA5." Weather and Climate Dynamics 2, no. 4 (December 20, 2021): 1283–301. http://dx.doi.org/10.5194/wcd-2-1283-2021.

Full text
Abstract:
Abstract. Major sudden stratospheric warmings (SSWs) are extreme dynamical events where the usual strong westerly winds of the stratospheric polar vortex temporarily weaken or reverse and polar stratospheric temperatures rise by tens of kelvins over just a few days and remain so for an extended period. Via dynamical modification of the atmosphere below them, SSWs are believed to be a key contributor to extreme winter weather events at the surface over the following weeks. SSW-induced changes to the wind structure of the polar vortex have previously been studied in models and reanalyses and in localised measurements such as radiosondes and radars but have not previously been directly and systematically observed on a global scale because of the major technical challenges involved in observing winds from space. Here, we exploit novel observations from ESA's flagship Aeolus wind-profiler mission, together with temperature and geopotential height data from NASA's Microwave Limb Sounder and surface variables from the ERA5 reanalysis, to study the 2021 SSW. This allows us to directly examine wind and related dynamical changes associated with the January 2021 major SSW. Aeolus is the first satellite mission to systematically and directly acquire profiles of wind, and therefore our results represent the first direct measurements of SSW-induced wind changes at the global scale. We see a complete reversal of the zonal winds in the lower to middle stratosphere, with reversed winds in some geographic regions reaching down to the bottom 2 km of the atmosphere. These altered winds are associated with major changes to surface temperature patterns, and in particular we see a strong potential linkage from the SSW to extreme winter weather outbreaks in Greece and Texas during late January and early February. Our results (1) demonstrate the benefits of wind-profiling satellites such as Aeolus in terms of both their direct measurement capability and use in supporting reanalysis-driven interpretation of stratosphere–troposphere coupling signatures, (2) provide a detailed dynamical description of a major weather event, and (3) have implications for the development of Earth-system models capable of accurately forecasting extreme winter weather.
APA, Harvard, Vancouver, ISO, and other styles
4

Hara, K., M. Hayashi, M. Yabuki, M. Shiobara, and C. Nishita-Hara. "Simultaneous aerosol measurements of unusual aerosol enhancement in the troposphere over Syowa Station, Antarctica." Atmospheric Chemistry and Physics 14, no. 8 (April 25, 2014): 4169–83. http://dx.doi.org/10.5194/acp-14-4169-2014.

Full text
Abstract:
Abstract. Unusual aerosol enhancement is often observed at Syowa Station, Antarctica, during winter and spring. Simultaneous aerosol measurements near the surface and in the upper atmosphere were conducted twice using a ground-based optical particle counter, a balloon-borne optical particle counter, and micropulse lidar (MPL) in August and September 2012. During 13–15 August, aerosol enhancement occurred immediately after a storm condition. A high backscatter ratio and high aerosol concentrations were observed from the surface to ca. 2.5 km over Syowa Station. Clouds appeared occasionally at the top of the aerosol-enhanced layer during the episode. Aerosol enhancement was terminated on 15 August by strong winds from a cyclone's approach. In the second case, on 5–7 September, aerosol number concentrations in Dp > 0.3 μm near the surface reached > 104 L−1 at about 15:00 UT (Universal Time) on 5 September despite calm wind conditions, whereas MPL measurement exhibited aerosols were enhanced at about 04:00 UT at 1000–1500 m above Syowa Station. The aerosol enhancement occurred near the surface to ca. 4 km. In both cases, air masses with high aerosol enhancement below 2.5–3 km were transported mostly from the boundary layer over the sea-ice area. In addition, air masses at 3–4 km in the second case came from the boundary layer over the open-sea area. This air mass history strongly suggests that dispersion of sea-salt particles from the sea-ice surface contributes considerably to aerosol enhancement in the lower free troposphere (about 3 km) and that the release of sea-salt particles from the ocean surface engenders high aerosol concentrations in the free troposphere (3–4 km). Continuous MPL measurements indicate that high aerosol enhancement occurred mostly in surface–lower free troposphere (3 km) during the period July–September.
APA, Harvard, Vancouver, ISO, and other styles
5

Diab, R. D., A. Raghunandan, A. M. Thompson, and V. Thouret. "Classification of tropospheric ozone profiles over Johannesburg based on MOZAIC aircraft data." Atmospheric Chemistry and Physics Discussions 3, no. 1 (February 12, 2003): 705–32. http://dx.doi.org/10.5194/acpd-3-705-2003.

Full text
Abstract:
Abstract. Each ozone profile is a unique response to the photochemical and dynamic processes operating in the troposphere and hence is critical to our understanding of processes and their relative contributions to the tropospheric ozone budget. Traditionally, mean profiles, together with some measure of variability, averaged by season or year at a particular location have been presented as a climatology. However, the mean profile is difficult to interpret because of the counteracting influences present in the micro-structure. On the other hand, case study analysis, whilst revealing, only applies to isolated conditions. In a search for pattern and order within ozone profiles, a classification based on a cluster analysis technique has been applied in this study. Ozone profiles are grouped according to the magnitude and altitude of ozone concentration. This technique has been tested with 56 ozone profiles at Johannesburg, South Africa, recorded by aircraft as part of the MOZAIC (Measurement of Ozone and Water Vapor aboard Airbus In-service Aircraft) program. Six distinct groups of ozone profiles have been identified and their characteristics described. The widely recognized spring maximum in tropospheric ozone is identified through the classification, but a new summertime mid-tropospheric enhancement due to the penetration of tropical air masses from continental regions in central Africa has been identified. Back trajectory modeling is used to provide evidence of the different origins of ozone enhancements in each of the classes. Continental areas over central Africa are shown to be responsible for the low to mid-tropospheric enhancement in spring and the mid-tropospheric peak in summer, whereas the winter low-tropospheric enhancement is attributed to local sources. The dominance of westerly winds through the troposphere associated with the passage of a mid-latitude cyclone gives rise to reduced ozone values.
APA, Harvard, Vancouver, ISO, and other styles
6

Diab, R. D., A. Raghunandan, A. M. Thompson, and V. Thouret. "Classification of tropospheric ozone profiles over Johannesburg based on mozaic aircraft data." Atmospheric Chemistry and Physics 3, no. 3 (June 12, 2003): 713–23. http://dx.doi.org/10.5194/acp-3-713-2003.

Full text
Abstract:
Abstract. Each ozone profile is a unique response to the photochemical and dynamic processes operating in the troposphere and hence is critical to our understanding of processes and their relative contributions to the tropospheric ozone budget. Traditionally, mean profiles, together with some measure of variability, averaged by season or year at a particular location have been presented as a climatology. However, the mean profile is difficult to interpret because of the counteracting influences present in the micro-structure. On the other hand, case study analysis, whilst revealing, only applies to isolated conditions. In a search for pattern and order within ozone profiles, a classification based on a cluster analysis technique has been applied in this study. Ozone profiles are grouped according to the magnitude and altitude of ozone concentration. This technique has been tested with 56 ozone profiles at Johannesburg, South Africa, recorded by aircraft as part of the MOZAIC (Measurement of Ozone and Water Vapor aboard Airbus In-service Aircraft) program. Six distinct groups of ozone profiles have been identified and their characteristics described. The widely recognized spring maximum in tropospheric ozone is identified through the classification, but a new summertime mid-tropospheric enhancement due to the penetration of tropical air masses from continental regions in central Africa has been identified. Back trajectory modeling is used to provide evidence of the different origins of ozone enhancements in each of the classes. Continental areas over central Africa are shown to be responsible for the low to mid-tropospheric enhancement in spring and the mid-tropospheric peak in summer, whereas the winter low-tropospheric enhancement is attributed to local sources. The dominance of westerly winds through the troposphere associated with the passage of a mid-latitude cyclone gives rise to reduced ozone values.
APA, Harvard, Vancouver, ISO, and other styles
7

Lux, Oliver, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, and Oliver Reitebuch. "Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator." Atmospheric Measurement Techniques 13, no. 4 (April 23, 2020): 2075–97. http://dx.doi.org/10.5194/amt-13-2075-2020.

Full text
Abstract:
Abstract. Shortly after the successful launch of the European Space Agency's wind mission Aeolus, co-located airborne wind lidar observations were performed in central Europe; these observations employed a prototype of the satellite instrument – the ALADIN (Atmospheric LAser Doppler INstrument) Airborne Demonstrator (A2D). Like the direct-detection Doppler wind lidar on-board Aeolus, the A2D is composed of a frequency-stabilized ultra-violet (UV) laser, a Cassegrain telescope and a dual-channel receiver to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. In the framework of the first airborne validation campaign after the launch and still during the commissioning phase of the mission, four coordinated flights along the satellite swath were conducted in late autumn of 2018, yielding wind data in the troposphere with high coverage of the Rayleigh channel. Owing to the different measurement grids and LOS viewing directions of the satellite and the airborne instrument, intercomparison with the Aeolus wind product requires adequate averaging as well as conversion of the measured A2D LOS wind speeds to the satellite LOS (LOS*). The statistical comparison of the two instruments shows a positive bias (of 2.6 m s−1) of the Aeolus Rayleigh winds (measured along its LOS*) with respect to the A2D Rayleigh winds as well as a standard deviation of 3.6 m s−1. Considering the accuracy and precision of the A2D wind data, which were determined from comparison with a highly accurate coherent wind lidar as well as with the European Centre for Medium-Range Weather Forecasts (ECMWF) model winds, the systematic and random errors of the Aeolus LOS* Rayleigh winds are 1.7 and 2.5 m s−1 respectively. The paper also discusses the influence of different threshold parameters implemented in the comparison algorithm as well as an optimization of the A2D vertical sampling to be used in forthcoming validation campaigns.
APA, Harvard, Vancouver, ISO, and other styles
8

Hara, K., M. Hayashi, M. Yabuki, M. Shiobara, and C. Nishita-Hara. "Simultaneous aerosol measurements of unusual aerosol enhancement in troposphere over Syowa Station, Antarctica." Atmospheric Chemistry and Physics Discussions 13, no. 10 (October 10, 2013): 26269–303. http://dx.doi.org/10.5194/acpd-13-26269-2013.

Full text
Abstract:
Abstract. Unusual aerosol enhancement is often observed at Syowa Station, Antarctica during winter through spring. Simultaneous aerosol measurements near the surface and in the upper atmosphere were conducted twice using a ground-based optical particle counter, a balloon-borne optical particle counter, and micro-pulse LIDAR (MPL) in August and September 2012. During 13–15 August, aerosol enhancement occurred immediately after a storm condition. A high backscatter ratio and aerosol concentrations were observed from the surface to ca. 2.5 km over Syowa Station. Clouds appeared occasionally at the top of aerosol-enhanced layer during the episode. Aerosol enhancement was terminated on 15 August by strong winds caused by a cyclone's approach. In the second case on 5–7 September, aerosol number concentrations in Dp > 0.3 μm near the surface reached > 104 L−1 at about 15:00 UT on 5 September in spite of calm wind conditions, whereas MPL measurement exhibited aerosols were enhanced at about 04:00 UT at 1000–1500 m above Syowa Station. The aerosol enhancement occurred near the surface–ca. 4 km. In both cases, air masses with high aerosol enhancement below 2.5–3 km were transported mostly from the boundary layer over the sea-ice area. In addition, air masses at 3–4 km in the second case came from the boundary layer over the open-sea area. This air mass history strongly suggests that dispersion of sea-salt particles from the sea-ice surface contributes considerably to the aerosol enhancement in the lower free troposphere (about 3 km) and that the release of sea-salt particles from the ocean surface engenders high aerosol concentrations in the free troposphere (3–4 km).
APA, Harvard, Vancouver, ISO, and other styles
9

Fischer, H., R. Kormann, T. Klüpfel, Ch Gurk, R. Königstedt, U. Parchatka, J. Mühle, et al. "Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone." Atmospheric Chemistry and Physics Discussions 2, no. 5 (October 7, 2002): 1509–43. http://dx.doi.org/10.5194/acpd-2-1509-2002.

Full text
Abstract:
Abstract. An intensive measurement campaign was performed in June 2000 at the Mt. Cimone station (44°11' N -- 10°42' E, 2165 m asl, the highest mountain in the northern Italian Apennines) to study photochemical ozone production in the lower free troposphere. In general, average mixing ratios of important trace gases were not very high (121 ± 20 ppbv CO, 0.284 ± 0.220 ppbv NOx, 1.15 ± 0.8 ppbv NOy, 58 ± 9 ppbv O3), which indicates a small contribution by local pollution. This is supported by the analysis of volatile organic compounds (VOCs), that exhibit mean levels typical for background continental air (e.g. 905 ± 200\\,pptv C2H6 268 ± 110\\,pptv C3H8, 201 ±102 pptv C2H2, 111 ± 124 pptv isoprene, 65 ± 33 pptv benzene). Furthermore, significant diurnal variations for a number of trace gases (O3, CO, NOx, NOy, HCHO) indicate the presence of free tropospheric airmasses at nighttime as a consequence of local catabatic winds. Average mid-day peroxy radical concentrations at Mt. Cimone are of the order of 30 pptv. At mean NO concentrations of the order of 40 pptv this gives rise to significant in situ net O3 production of 0.1--0.3 ppbv/hr. The importance of O3 production is supported by correlations between O3, CO, NOz, and HCHO, and between HCHO, CO and NOy.
APA, Harvard, Vancouver, ISO, and other styles
10

Fischer, H., R. Kormann, T. Klüpfel, Ch Gurk, R. Königstedt, U. Parchatka, J. Mühle, et al. "Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone." Atmospheric Chemistry and Physics 3, no. 3 (June 16, 2003): 725–38. http://dx.doi.org/10.5194/acp-3-725-2003.

Full text
Abstract:
Abstract. An intensive measurement campaign was performed in June 2000 at the Mt. Cimone station (44°11' N-10°42' E, 2165 m asl, the highest mountain in the northern Italian Apennines) to study photochemical ozone production in the lower free troposphere. In general, average mixing ratios of important trace gases were not very high (121 ± 20 ppbv CO, 0.284 ± 0.220 ppbv NOx, 1.15 ± 0.8 ppbv NOy, 58 ± 9 ppbv O3), which indicates a small contribution by local pollution. Those trace gas levels are representative of continental background air, which is further supported by the analysis of VOCs (e.g.: C2H6 = (905 ± 200) pptv, C3H8 = (268 ±110) pptv, C2H2 = (201 ± 102) pptv, C5H8 = (111 ± 124) pptv, benzene = (65 ± 33) pptv). Furthermore, significant diurnal variations for a number of trace gases (O3, CO, NOx, NOy, HCHO) indicate the presence of free tropospheric airmasses at nighttime as a consequence of local catabatic winds. Average mid-day peroxy radical concentrations at Mt. Cimone are of the order of 30 pptv. At mean NO concentrations of the order of 40 pptv this gives rise to significant in situ net O3 production of 0.1-0.3 ppbv/hr. The importance of O3 production is supported by correlations between O3, CO, NOz, and HCHO, and between HCHO, CO and NOy.
APA, Harvard, Vancouver, ISO, and other styles
11

Schneider, Andreas, Johannes Wagner, Jens Söder, Michael Gerding, and Franz-Josef Lübken. "Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations." Atmospheric Chemistry and Physics 17, no. 12 (June 30, 2017): 7941–54. http://dx.doi.org/10.5194/acp-17-7941-2017.

Full text
Abstract:
Abstract. Measurements of turbulent energy dissipation rates obtained from wind fluctuations observed with the balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) are combined with simulations with the Weather Research and Forecasting (WRF) model to study the breakdown of waves into turbulence. One flight from Kiruna (68° N, 21° E) and two flights from Kühlungsborn (54° N, 12° E) are analysed. Dissipation rates are of the order of 0. 1 mW kg−1 (∼ 0.01 K d−1) in the troposphere and in the stratosphere below 15 km, increasing in distinct layers by about 2 orders of magnitude. For one flight covering the stratosphere up to ∼ 28 km, the measurement shows nearly no turbulence at all above 15 km. Another flight features a patch with highly increased dissipation directly below the tropopause, collocated with strong wind shear and wave filtering conditions. In general, small or even negative Richardson numbers are affirmed to be a sufficient condition for increased dissipation. Conversely, significant turbulence has also been observed in the lower stratosphere under stable conditions. Observed energy dissipation rates are related to wave patterns visible in the modelled vertical winds. In particular, the drop in turbulent fraction at 15 km mentioned above coincides with a drop in amplitude in the wave patterns visible in the WRF. This indicates wave saturation being visible in the LITOS turbulence data.
APA, Harvard, Vancouver, ISO, and other styles
12

Patra, P. K., S. Lal, S. Venkataramani, and D. Chand. "Halogen Occultation Experiment (HALOE) and balloon-borne in situ measurements of methane in stratosphere and their relation to the quasi-biennial oscillation (QBO)." Atmospheric Chemistry and Physics 3, no. 4 (July 16, 2003): 1051–62. http://dx.doi.org/10.5194/acp-3-1051-2003.

Full text
Abstract:
Abstract. Measurements of methane have been made from various observational platforms in the atmosphere. In this article, we have compared four high precision balloon-borne measurements from Hyderabad (17.5°N), India in the period of 1987 and 1998 with a part of HALOE/UARS global observations available since 1991. All the balloon measurements correspond to boreal spring (March and April) but belong to different years. A comparison shows fairly good agreement with each other. The gradient in CH4 profiles in the troposphere is controlled by the variation in vertical transport. The strongest effect of dynamical influence on methane vertical profiles is shown to be resulting from the dynamical quasi-biennial oscillation in the stratosphere, and that has been consistently derived from both the measurement techniques and chemistry-transport model simulations. It is observed that the QBO signal in CH4 anomaly exhibits interhemispheric asymmetry caused by the tropics to midlatitude circulation in the stratosphere. A mechanism is suggested to explain how and to what extent the methane vertical profiles over Hyderabad and higher latitudes could be modulated by the prevailing QBO winds in the tropics. We have also discussed how the same mechanism would affect ozone distribution in the stratosphere quite differently.
APA, Harvard, Vancouver, ISO, and other styles
13

Carr, James L., Dong L. Wu, Robert E. Wolfe, Houria Madani, Guoqing (Gary) Lin, and Bin Tan. "Joint 3D-Wind Retrievals with Stereoscopic Views from MODIS and GOES." Remote Sensing 11, no. 18 (September 9, 2019): 2100. http://dx.doi.org/10.3390/rs11182100.

Full text
Abstract:
Atmospheric motion vectors (AMVs), derived by tracking patterns, represent the winds in a layer characteristic of the pattern. AMV height (or pressure), important for applications in atmospheric research and operational meteorology, is usually assigned using observed IR brightness temperatures with a modeled atmosphere and can be inaccurate. Stereoscopic tracking provides a direct geometric height measurement of the pattern that an AMV represents. We extend our previous work with multi-angle imaging spectro–radiometer (MISR) and GOES to moderate resolution imaging spectroradiometer (MODIS) and the GOES-R series advanced baseline imager (ABI). MISR is a unique satellite instrument for stereoscopy with nine angular views along track, but its images have a narrow (380 km) swath and no thermal IR channels. MODIS provides a much wider (2330 km) swath and eight thermal IR channels that pair well with all but two ABI channels, offering a rich set of potential applications. Given the similarities between MODIS and VIIRS, our methods should also yield similar performance with VIIRS. Our methods, as enabled by advanced sensors like MODIS and ABI, require high-accuracy geographic registration in both systems but no synchronization of observations. AMVs are retrieved jointly with their heights from the disparities between triplets of ABI scenes and the paired MODIS granule. We validate our retrievals against MISR-GOES retrievals, operational GOES wind products, and by tracking clear-sky terrain. We demonstrate that the 3D-wind algorithm can produce high-quality AMV and height measurements for applications from the planetary boundary layer (PBL) to the upper troposphere, including cold-air outbreaks, wildfire smoke plumes, and hurricanes.
APA, Harvard, Vancouver, ISO, and other styles
14

Garreaud, R. D., J. A. Rutllant, R. C. Muñoz, D. A. Rahn, M. Ramos, and D. Figueroa. "VOCALS-CUpEx: the Chilean Upwelling Experiment." Atmospheric Chemistry and Physics 11, no. 5 (March 4, 2011): 2015–29. http://dx.doi.org/10.5194/acp-11-2015-2011.

Full text
Abstract:
Abstract. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was a major field experiment conducted in spring of 2008 off southern Peru and northern Chile, aimed at better understanding the coupled climate systems of the southeast Pacific. Because of logistical constrains, the coastal area around 30° S was not sampled during VOCALS-REx. This area not only marks the poleward edge of the subtropical stratocumulus cloud regime (thus acting as a source of transient disturbances) but is also one of the most active upwelling centers and source of surface ocean kinetic energy along the Chilean coast. To fill such an observational gap, a small, brief, but highly focused field experiment was conducted in late spring 2009 in the near-shore region around 30° S. The Chilean Upwelling Experiment (CUpEx) was endorsed by VOCALS as a regional component. CUpEx included long-term monitoring, an intensive two-week field campaign and off-shore research flights. Our goal was to obtain an atmospheric/oceanic dataset with enough temporal and spatial coverage to be able to document (a) the mean diurnal cycles of the lower-troposphere and upper-ocean in a region of complex topography and coastline geometry, and (b) the ocean-atmosphere response to the rapid changes in coastal winds from strong, upwelling-favorable equatorward flow (southerly winds) to downwelling-favorable poleward flow (northerly winds). In this paper we describe the measurement platforms and sampling strategy, and provide an observational overview, highlighting some key mean-state and transient features.
APA, Harvard, Vancouver, ISO, and other styles
15

Garreaud, R. D., J. A. Rutllant, R. C. Muñoz, D. A. Rahn, M. Ramos, and D. Figueroa. "VOCALS-CUpEx: the Chilean Upwelling Experiment." Atmospheric Chemistry and Physics Discussions 10, no. 11 (November 5, 2010): 26437–72. http://dx.doi.org/10.5194/acpd-10-26437-2010.

Full text
Abstract:
Abstract. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was a major field experiment conducted in spring of 2008 off southern Peru and northern Chile, aimed at better understanding the coupled climate systems of the southeast Pacific. Because of logistical constrains, the coastal area around 30° S was not sampled during VOCALS-REx. This area not only marks the poleward edge of the subtropical stratocumulus cloud regime (thus acting as a source of transient disturbances) but is also one of the most active upwelling centers and source of surface ocean kinetic energy along the Chilean coast. To fill such an observational gap, a small, brief, but highly focused field experiment was conducted in late spring 2009 in the near-shore region around 30° S. The Chilean Upwelling Experiment (CUpEx) was endorsed by VOCALS as a regional component. CUpEx included long-term monitoring, an intensive two-week field campaign and off-shore research flights. Our goal was to obtain an atmospheric/oceanic dataset with enough temporal and spatial coverage to be able to document (a) the mean diurnal cycles of the lower-troposphere and upper-ocean in a region of complex topography and coastline geometry, and (b) the ocean-atmosphere response to the rapid changes in coastal winds from strong, upwelling-favorable southerly winds to relaxed southerlies or even downwelling-favorable northerlies. In this paper we describe the measurement platforms and sampling strategy, and provide an observational overview, highlighting some key mean and transient features.
APA, Harvard, Vancouver, ISO, and other styles
16

Holla, Robert, Stefan Schmitt, Udo Frieß, Denis Pöhler, Jutta Zingler, Ulrich Corsmeier, and Ulrich Platt. "Vertical distribution of BrO in the boundary layer at the Dead Sea." Environmental Chemistry 12, no. 4 (2015): 438. http://dx.doi.org/10.1071/en14224.

Full text
Abstract:
Environmental context Reactive halogen species affect chemical processes in the troposphere in many ways. The reactive bromine species bromine monoxide (BrO) is found in high concentrations at the Dead Sea, but processes for its formation and its spatial distribution are largely unknown. Information on the vertical distribution of BrO at the Dead Sea obtained in this work may give insight into the processes leading to BrO release and its consequences. Abstract We present results of multi-axis differential optical absorption spectroscopy (MAX‐DOAS) and long‐path DOAS (LP‐DOAS) measurements from two measurement campaigns at the Dead Sea in 2002 and 2012. The special patterns of its dynamics and topography in combination with the high salt and especially bromide content of its water lead to the particular large atmospheric abundances of more than 100 ppt BrO close to the ground and in several hundred meters above ground level. We conclude that vertical transport barriers induced by the special dynamics in the Dead Sea Valley lead to an accumulation of aerosol and reactive bromine species. This occurs in situations of weak synoptic winds and of mountain induced thermal circulations. Thus BrO release strongly depends on the topography and local and meso-scale meteorology. In case of strong zonal winds, the Dead Sea valley is flushed and high BrO levels cannot accumulate. NO2 levels below 1–2 ppb seem to be a prerequisite for a high BrO production. We assume that at least a part of the missing NO2 might be converted to BrONO2 leading to a deposition of nitrate within the aerosol and acting as a reservoir for reactive bromine. From these measurements, it was possible for the first time to simultaneously retrieve vertical profiles of aerosols, BrO and NO2 and gain also information on the distribution at the Dead Sea, allowing for a thorough characterization of the chemical processes leading to halogen release in the context of the special atmospheric dynamics in the Dead Sea Valley.
APA, Harvard, Vancouver, ISO, and other styles
17

Groenemeijer, Pieter, Christian Barthlott, Ulrich Corsmeier, Jan Handwerker, Martin Kohler, Christoph Kottmeier, Holger Mahlke, et al. "Observations of Kinematics and Thermodynamic Structure Surrounding a Convective Storm Cluster over a Low Mountain Range." Monthly Weather Review 137, no. 2 (February 1, 2009): 585–602. http://dx.doi.org/10.1175/2008mwr2562.1.

Full text
Abstract:
Abstract Measurements of a convective storm cluster in the northern Black Forest in southwest Germany have revealed the development of a warm and dry downdraft under its anvil cloud that had an inhibiting effect on the subsequent development of convection. These measurements were made on 12 July 2006 as part of the field campaign Prediction, Identification and Tracking of Convective Cells (PRINCE) during which a number of new measurement strategies were deployed. These included the collocation of a rotational Raman lidar and a Doppler lidar on the summit of the highest mountain in the region (1164 m MSL) as well as the deployment of teams carrying radiosondes to be released in the vicinity of convective storms. In addition, an aircraft equipped with sensors for meteorological variables and dropsondes was in operation and determined that the downdraft air was approximately 1.5 K warmer, 4 g kg−1 drier, and therefore 3 g m−3 less dense than the air at the same altitude in the storm’s surroundings. The Raman lidar detected undulating aerosol-rich layers in the preconvective environment and a gradual warming trend of the lower troposphere as the nearby storm system evolved. The Doppler lidar both detected a pattern of convergent radial winds under a developing convective updraft and an outflow emerging under the storm’s anvil cloud. The dryness of the downdraft air indicates that it had subsided from higher altitudes. Its low density reveals that its development was not caused by negative thermal buoyancy, but was rather due to the vertical mass flux balance accompanying the storm’s updrafts.
APA, Harvard, Vancouver, ISO, and other styles
18

Horvath, Kristian, Alica Bajić, and Stjepan Ivatek-Šahdan. "Dynamical Downscaling of Wind Speed in Complex Terrain Prone To Bora-Type Flows." Journal of Applied Meteorology and Climatology 50, no. 8 (August 2011): 1676–91. http://dx.doi.org/10.1175/2011jamc2638.1.

Full text
Abstract:
AbstractThe results of numerically modeled wind speed climate, a primary component of wind energy resource assessment in the complex terrain of Croatia, are given. For that purpose, dynamical downscaling of 10 yr (1992–2001) of the 40-yr ECMWF Re-Analysis (ERA-40) was performed to 8-km horizontal grid spacing with the use of a spectral, prognostic full-physics model Aire Limitée Adaptation Dynamique Développement International (ALADIN; the “ALHR” version). Then modeled data with a 60-min frequency were refined to 2-km horizontal grid spacing with a simplified and cost-effective model version, the so-called dynamical adaptation (DADA). The statistical verification of ERA-40-, ALHR-, and DADA-modeled wind speed on the basis of data from measurement stations representing different regions of Croatia suggests that downscaling was successful and that model accuracy generally improves as horizontal resolution is increased. The areas of the highest mean wind speeds correspond well to locations of frequent and strong bora flow as well as to the prominent mountain peaks. The best results are achieved with DADA and contain bias of 1% of the mean wind speed for eastern Croatia while reaching 10% for complex coastal terrain, mainly because of underestimation of the strongest winds. Root-mean-square errors for DADA are significantly smaller for flat terrain than for complex terrain, with relative values close to 12% of the mean wind speed regardless of the station location. Spectral analyses suggest that the shape of the kinetic energy spectra generally relaxes from k−3 at the upper troposphere to the shape of orographic spectra near the surface and shows no seasonal variability. Apart from the buildup of energy on smaller scales of motions, it is shown that mesoscale simulations contain a considerable amount of energy related to near-surface and mostly divergent meso-β-scale (20–200 km) motions. Spectral decomposition of measured and modeled data in temporal space indicates a reasonable performance of all model datasets in simulating the primary maximum of spectral power related to synoptic and larger-than-diurnal mesoscale motions, with somewhat increased accuracy of mesoscale model data. The primary improvement of dynamical adaptation was achieved for cross-mountain winds, whereas mixed results were found for along-mountain wind directions. Secondary diurnal and tertiary semidiurnal maxima are significantly better simulated with the mesoscale model for coastal stations but are somewhat more erroneous for the continental station. The mesoscale model data underestimate the spectral power of motions with less-than-semidiurnal periods.
APA, Harvard, Vancouver, ISO, and other styles
19

Sioris, Christopher E., Jason Zou, C. Thomas McElroy, Chris D. Boone, Patrick E. Sheese, and Peter F. Bernath. "Water vapour variability in the high-latitude upper troposphere – Part 2: Impact of volcanic eruptions." Atmospheric Chemistry and Physics 16, no. 4 (February 25, 2016): 2207–19. http://dx.doi.org/10.5194/acp-16-2207-2016.

Full text
Abstract:
Abstract. The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellite-based remote sensing mission are chosen. The Puyehue–Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12) % increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of ∼ 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes. The Puyehue–Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade.
APA, Harvard, Vancouver, ISO, and other styles
20

Baray, Jean-Luc, Yves Pointin, Joël Van Baelen, Marie Lothon, Bernard Campistron, Jean-Pierre Cammas, Olivier Masson, et al. "Case Study and Climatological Analysis of Upper-Tropospheric Jet Stream and Stratosphere–Troposphere Exchanges Using VHF Profilers and Radionuclide Measurements in France." Journal of Applied Meteorology and Climatology 56, no. 11 (November 2017): 3081–97. http://dx.doi.org/10.1175/jamc-d-16-0353.1.

Full text
Abstract:
AbstractThe authors present a climatological analysis of tropospheric horizontal wind profiles and jet stream events using long series of wind profiles from two VHF profilers located in France: Lannemezan (2001–14) and Opme (1999–2014). A case study of jet stream and stratospheric intrusion of air into the troposphere that occurred in January 2013 is first described and demonstrates the capability of the VHF profilers to detect jet stream events. The climatology study over the two sites reveals the strongest values of seasonal wind during winter (21.4 m s−1 at 8.7-km height at Opme; 25.1 m s−1 at 9.6-km height at Lannemezan). A methodology based on the automatic detection of maximum winds on a decadal series of hourly wind profiles allows the detection of jet stream events and establishes its climatology for each site. A frequency analysis of jet stream events of westerly winds over 50 m s−1 presents a clear seasonality at the two sites, with a maximum in winter (3.5%–9.7% of hourly profiles) and a minimum in summer (near 1%). Cosmogenic radionuclides sampled at Opme also exhibit a clear seasonal variation with maximum in spring and minimum in the cold seasons; the 7Be/22Na activity ratio confirms stratosphere-to-troposphere exchanges for the studied cases. The mean interannual variability of the frequency of jet stream events is 1.5% in Opme and 2.9% in Lannemezan. Positive decadal trends are observed for the two sites: +1.6 ± 1.2% decade−1 for Opme and +2.4 ± 2.2% decade−1 for Lannemezan.
APA, Harvard, Vancouver, ISO, and other styles
21

Tegtmeier, S., K. Krüger, B. Quack, E. Atlas, D. R. Blake, H. Boenisch, A. Engel, et al. "The contribution of oceanic methyl iodide to stratospheric iodine." Atmospheric Chemistry and Physics Discussions 13, no. 4 (April 30, 2013): 11427–71. http://dx.doi.org/10.5194/acpd-13-11427-2013.

Full text
Abstract:
Abstract. We investigate the contribution of oceanic methyl iodide (CH3I) to the stratospheric iodine budget. Based on CH3I measurements during three tropical ship campaigns and the Lagrangian transport model FLEXPART we provide a detailed analysis of CH3I transport from the ocean surface to the cold point in the upper tropical tropopause layer (TTL). While average oceanic emissions differ by less than 50% from campaign to campaign, the measurements show much stronger variations within each campaign. A positive correlation between the oceanic CH3I emissions and the efficiency of CH3I troposphere–stratosphere transport has been identified for some cruise sections. The mechanism of strong horizontal surface winds triggering large emissions on the one hand and being associated with tropical convective systems, such as developing typhoons, on the other hand, could explain the identified correlations. As a result of the simultaneous occurrence of large CH3I emissions and strong vertical uplift, localized maximum mixing ratios of 0.6 ppt CH3I at the cold point have been determined for observed peak emissions during the SHIVA-Sonne campaign in the coastal West Pacific. The other two campaigns give considerable smaller maxima of 0.1 ppt CH3I for the TransBrom campaign in the open West Pacific and 0.03 ppt for emissions from the coastal East Atlantic during the DRIVE campaign. In order to assess the representativeness of the large local mixing ratios we use climatological emission scenarios to derive global upper air estimates of CH3I abundances. The model results are compared to available upper air measurements including data from the recent ATTREX and HIPPO2 aircraft campaigns. In the East Pacific region, the location of the available measurement campaigns in the upper TTL, the comparisons give a good agreement indicating that around 0.01 to 0.02 ppt of CH3I enter the stratosphere. However, other tropical regions, which are subject to stronger convective activity show larger CH3I entrainment, e.g., 0.08 ppt in the West Pacific. The strong variations in the geographical distribution of CH3I entrainment suggest that currently available upper air measurements are not representative of global estimates and further campaigns will be necessary in order to better understand the CH3I contribution to stratospheric iodine.
APA, Harvard, Vancouver, ISO, and other styles
22

Tegtmeier, S., K. Krüger, B. Quack, E. Atlas, D. R. Blake, H. Boenisch, A. Engel, et al. "The contribution of oceanic methyl iodide to stratospheric iodine." Atmospheric Chemistry and Physics 13, no. 23 (December 9, 2013): 11869–86. http://dx.doi.org/10.5194/acp-13-11869-2013.

Full text
Abstract:
Abstract. We investigate the contribution of oceanic methyl iodide (CH3I) to the stratospheric iodine budget. Based on CH3I measurements from three tropical ship campaigns and the Lagrangian transport model FLEXPART, we provide a detailed analysis of CH3I transport from the ocean surface to the cold point in the upper tropical tropopause layer (TTL). While average oceanic emissions differ by less than 50% from campaign to campaign, the measurements show much stronger variations within each campaign. A positive correlation between the oceanic CH3I emissions and the efficiency of CH3I troposphere–stratosphere transport has been identified for some cruise sections. The mechanism of strong horizontal surface winds triggering large emissions on the one hand and being associated with tropical convective systems, such as developing typhoons, on the other hand, could explain the identified correlations. As a result of the simultaneous occurrence of large CH3I emissions and strong vertical uplift, localized maximum mixing ratios of 0.6 ppt CH3I at the cold point have been determined for observed peak emissions during the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere)-Sonne research vessel campaign in the coastal western Pacific. The other two campaigns give considerably smaller maxima of 0.1 ppt CH3I in the open western Pacific and 0.03 ppt in the coastal eastern Atlantic. In order to assess the representativeness of the large local mixing ratios, we use climatological emission scenarios to derive global upper air estimates of CH3I abundances. The model results are compared with available upper air measurements, including data from the recent ATTREX and HIPPO2 aircraft campaigns. In the eastern Pacific region, the location of the available measurement campaigns in the upper TTL, the comparisons give a good agreement, indicating that around 0.01 to 0.02 ppt of CH3I enter the stratosphere. However, other tropical regions that are subject to stronger convective activity show larger CH3I entrainment, e.g., 0.08 ppt in the western Pacific. Overall our model results give a tropical contribution of 0.04 ppt CH3I to the stratospheric iodine budget. The strong variations in the geographical distribution of CH3I entrainment suggest that currently available upper air measurements are not representative of global estimates and further campaigns will be necessary in order to better understand the CH3I contribution to stratospheric iodine.
APA, Harvard, Vancouver, ISO, and other styles
23

Engler, N., W. Singer, R. Latteck, and B. Strelnikov. "Comparison of wind measurements in the troposphere and mesosphere by VHF/MF radars and in-situ techniques." Annales Geophysicae 26, no. 12 (November 24, 2008): 3693–705. http://dx.doi.org/10.5194/angeo-26-3693-2008.

Full text
Abstract:
Abstract. Radar wind observations at frequencies between 1.98 and 53.5 MHz obtained at polar latitudes were compared to in-situ wind measurements by radiosondes at tropospheric altitudes and to winds from falling spheres at mesospheric altitudes. Comparisons are shown for several campaigns of radiosonde and falling sphere observations. The radar wind directions agree well to the radiosonde and falling sphere observations and are highly correlated. The winds estimated from radar measurements are less than the radiosonde data by about 15% for spaced antenna observations and by about 10% for the Doppler beam swinging experiment. At mesospheric altitudes the spaced antenna winds obtained from the wide-beam Andenes MF radar are underestimated in the order of 35% and winds from the narrow-beam Saura MF radar are underestimated by about 20% compared to falling sphere winds at altitudes between 70 and 80 km. Furthermore, the relation between wind measurements using narrow-beam and wide-beam antenna arrangements for the MF radars is discussed and VHF radar observations are compared to the wide-beam MF radar.
APA, Harvard, Vancouver, ISO, and other styles
24

Stober, G., R. Latteck, M. Rapp, W. Singer, and M. Zecha. "MAARSY – the new MST radar on Andøya: first results of spaced antenna and Doppler measurements of atmospheric winds in the troposphere and mesosphere using a partial array." Advances in Radio Science 10 (September 19, 2012): 291–98. http://dx.doi.org/10.5194/ars-10-291-2012.

Full text
Abstract:
Abstract. MST radars have been used to study the troposphere, stratosphere and mesosphere over decades. These radars have proven to be a valuable tool to investigate atmospheric dynamics. MAARSY, the new MST radar at the island of Andøya uses a phased array antenna and is able to perform spaced antenna and Doppler measurements at the same time with high temporal and spatial resolution. Here we present first wind observations using the initial expansion stage during summer 2010. The tropospheric spaced antenna and Doppler beam swinging experiments are compared to radiosonde measurements, which were launched at the nearby Andøya Rocket Range (ARR). The mesospheric wind observations are evaluated versus common volume meteor radar wind measurements. The beam steering capabilities of MAARSY are demonstrated by performing systematic scans of polar mesospheric summer echoes (PMSE) using 25 and 91 beam directions. These wind observations permit to evaluate the new radar against independent measurements from radiosondes and meteor radar measurements to demonstrate its capabilities to provide reliable wind data from the troposphere up to the mesosphere.
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Ning, Xinan Yue, Feng Ding, Baiqi Ning, Junyi Wang, Junhao Luo, Yonghui Wang, Mingyuan Li, and Yihui Cai. "Initial Tropospheric Wind Observations by Sanya Incoherent Scatter Radar." Remote Sensing 14, no. 13 (June 29, 2022): 3138. http://dx.doi.org/10.3390/rs14133138.

Full text
Abstract:
Sanya incoherent scatter radar (SYISR) is a newly developed phased array incoherent scatter radar in the low latitudes of China located at Sanya (18.3°N, 109.6°E), Hainan Province. The main objective of SYISR is to observe the ionosphere. Given its frequency and power, it should have the capability to observe the troposphere. In this study, we show several tropospheric wind experiments that may indicate radar function expansion and capability verification, although observing the troposphere will not be an operation mode in the future. Reliable radar echoes were detected by SYISR up to 20 km with a turbulence scale of 0.35 m and a frequency of 430 MHz. Generally, both the geometric (GEO) method and the velocity azimuth display (VAD) method give similar wind profiles. Above 10 km, the discrepancy between the two methods becomes nonnegligible. For the same method, the discrepancy above 15–20 km among winds derived from different zenith angle measurements is nonnegligible. The VAD methods give more reasonable results at higher altitudes. The standard deviation of the difference (SYISR radar minus the reanalysis data ERA5) for zonal wind and meridional wind was 1.1 m/s and 0.78 m/s, respectively. During rainfall, we can distinguish the spectrum of rainfall and atmospheric turbulence from the power spectrum according to the spectral widths and Doppler frequency shifts.
APA, Harvard, Vancouver, ISO, and other styles
26

Lee, C. F., G. Vaughan, and D. A. Hooper. "Evaluation of wind profiles from the NERC MST Radar, Aberystwyth, UK." Atmospheric Measurement Techniques Discussions 7, no. 5 (May 8, 2014): 4589–621. http://dx.doi.org/10.5194/amtd-7-4589-2014.

Full text
Abstract:
Abstract. This study quantifies the uncertainties in winds measured by the Aberystwyth Mesosphere-Stratosphere-Troposphere (MST) radar (52.4° N, 4.0° W), before and after its renovation in March 2011. 127 radiosondes provide an independent measure of winds. Differences between radiosonde and radar-measured horizontal winds are correlated with long-term averages of vertical velocities, suggesting an influence from local mountain waves. These local influences are an important consideration when using radar winds as a measure of regional conditions, particularly for numerical weather prediction. In those applications, local effects represent a source of sampling error additional to the inherent uncertainties in the measurements themselves. The radar renovation improved the SNR of measurements, with correspondingly improved altitude coverage. It also corrected an under-estimate of horizontal wind speeds attributed to beam formation problems, due to component failure pre-renovation. The standard error in radar-measured winds averaged over half-an-hour increases with wind speed and altitude, and is 0.6–2.5 m s−1 (5–20% of wind speed) for post-renovation horizontal winds. Pre-renovation values are typically 0.4 m s−1 (0.03 m s−1) larger. The standard error in radial velocities is < 0.04 m s−1. Eight weeks of special radar operation are used to investigate the effects of echo power aspect sensitivity. Corrections for echo power aspect sensitivity remove an underestimate of horizontal wind speeds, however aspect sensitivity is azimuthally anisotropic at the scale of routine observations (≈ 1 h). This anisotropy introduces additional random error into wind profiles. For winds averaged over half-an-hour, the random error is around 3.5% above 8 km, but as large as 4.5% in the mid-troposphere.
APA, Harvard, Vancouver, ISO, and other styles
27

Berkovic, Sigalit, and Pinhas Alpert. "A Synoptic Study of Low Troposphere Wind at the Israeli Coast." Open Atmospheric Science Journal 12, no. 1 (August 13, 2018): 80–106. http://dx.doi.org/10.2174/1874282301812010080.

Full text
Abstract:
Objective:This research is dedicated to the study of the feasibility of surface wind downscaling from 925 or 850 hPa winds according to synoptic class, season and hour.Methods:Two aspects are examined: low tropospheric wind veering and wind speed correlation and verification of the ERA-Interim analysis wind by comparison to radiosonde data at Beit Dagan, a station on the Israeli coast.Results:Relatively small (< 60°) cross angles between the 1000 hPa wind vector and the 925 hPa or 850 hPa wind vector at 12Z and high correlation (0.6-0.8) between the wind speed at the two levels were found only under winter lows. Relatively small cross angles and small wind speed correlation were found under highs to the west and Persian troughs.The verification of ERA-Interim analysis in comparison with radiosonde data has shown good prediction of wind direction at 12Z at 1000, 925 and 850 hPa levels (RMSE 20°-60°) and lower prediction quality at 1000 hPa at 0Z (RMSE 60°-90°). The analysis under-predicts the wind speed, especially at 1000 hPa. The wind speed RMSE is 1-2 m/s, except for winter lows with 2-3 m/s RMSE at 0Z, 12Z at all levels.Conclusion:Inference of surface wind may be possible at 12Z from 925 or 825 hPa winds under winter lows. Inference of wind direction from 925 hPa winds may be possible under highs to the west and Persian troughs. Wind speed should be inferred by interpolation, according to historical data of measurements or high resolution model.
APA, Harvard, Vancouver, ISO, and other styles
28

Thomas, L., R. M. Worthington, and A. J. McDonald. "Inertia-gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region." Annales Geophysicae 17, no. 1 (January 31, 1999): 115–21. http://dx.doi.org/10.1007/s00585-999-0115-4.

Full text
Abstract:
Abstract. Radar measurements at Aberystwyth (52.4° N, 4.1° W) of winds at tropospheric and lower stratospheric heights are shown for 12-13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; middle atmosphere dynamics; waves and tides)
APA, Harvard, Vancouver, ISO, and other styles
29

Lee, C. F., G. Vaughan, and D. A. Hooper. "Evaluation of wind profiles from the NERC MST radar, Aberystwyth, UK." Atmospheric Measurement Techniques 7, no. 9 (September 24, 2014): 3113–26. http://dx.doi.org/10.5194/amt-7-3113-2014.

Full text
Abstract:
Abstract. This study quantifies the uncertainties in winds measured by the Aberystwyth Mesosphere–Stratosphere–Troposphere (MST) radar (52.4° N, 4.0° W), before and after its renovation in March 2011. A total of 127 radiosondes provide an independent measure of winds. Differences between radiosonde and radar-measured horizontal winds are correlated with long-term averages of vertical velocities, suggesting an influence from local mountain waves. These local influences are an important consideration when using radar winds as a measure of regional conditions, particularly for numerical weather prediction. For those applications, local effects represent a source of sampling error additional to the inherent uncertainties in the measurements themselves. The radar renovation improved the signal-to-noise ratio (SNR) of measurements, with a corresponding improvement in altitude coverage. It also corrected an underestimate of horizontal wind speeds attributed to beam formation problems, due to pre-renovation component failure. The root mean square error (RMSE) in radar-measured horizontal wind components, averaged over half an hour, increases with wind speed and altitude, and is 0.8–2.5 m s−1 (6–12% of wind speed) for post-renovation winds. Pre-renovation values are typically 0.1 m s−1 larger. The RMSE in radial velocities is <0.04 m s−1. Eight weeks of special radar operation are used to investigate the effects of echo power aspect sensitivity. Corrections for echo power aspect sensitivity remove an underestimate of horizontal wind speeds; however aspect sensitivity is azimuthally anisotropic at the scale of routine observations (≈1 h). This anisotropy introduces random error into wind profiles. For winds averaged over half an hour, the RMSE is around 3.5% above 8 km, but as large as 4.5% in the mid-troposphere.
APA, Harvard, Vancouver, ISO, and other styles
30

Van Dingenen, R., J. P. Putaud, S. Martins-Dos Santos, and F. Raes. "Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy) during the first MINATROC campaign." Atmospheric Chemistry and Physics Discussions 5, no. 1 (February 25, 2005): 1067–114. http://dx.doi.org/10.5194/acpd-5-1067-2005.

Full text
Abstract:
Abstract. Aerosol physical properties were measured at the Monte Cimone Observatory (Italy) from 1 June till 6 July 2000. The measurement site is located in the transition zone between continental boundary layer and the free troposphere (FT), at the border between the Mediterranean area and Central Europe, and is exposed to a variety of air masses. Sub-micrometer number size distributions, aerosol hygroscopicity at 90% RH, refractory size distribution at 270°C and black carbon mass were continuously measured. Number size distributions and hygroscopic properties indicate that the site is exposed to aged continental air masses, however during daytime it is also affected by upslope winds. The mixing of this transported polluted boundary layer air masses with relatively clean FT air leads to frequent nucleation events around local noon. Night-time size distributions including fine and coarse fractions for each air mass episode have been parameterized by a 3-modal lognormal distribution. Number and volume concentrations in the sub-micrometer modes are strongly affected by the air mass origin, with highest levels in NW-European air masses, versus very clean air in the ''Arctic'' episode. During the dust episode, the coarse mode is clearly enhanced. The observed hygroscopic behavior of the aerosol is consistent with the chemical composition described by Putaud et al. (2004a), but no closure could be made because the hygroscopic properties of the water-soluble organic matter is not known. The data suggest that WSOM is slightly-to-moderately hygroscopic, and that this property may well depend on the air mass origin and history. Although externally mixing is observed in all air masses, the occurrence of ''less'' hygroscopic particles has mostly such a low occurrence rate that the average growth factor distribution mostly appears as a single mode. This is not the case for the dust episode, where the external mixing between less hygroscopic and more hygroscopic particles is very prominent, and indicating clearly the occurrence of a dust accumulation mode, extending down to 50 nm particles, along with an anthropogenic pollution mode. The presented physical measurements finally allow us to provide a partitioning of the sub-µm aerosol in four non-overlapping fractions (soluble + volatile, non-soluble + volatile, refractory + non-BC, BC) which can be roughly associated with separate groups of chemical compounds (ions, organic matter, dust, BC). For what concerns the relative contributions of the fractions, all air masses except the free-tropospheric (FT) and Dust Episodes show a similar composition within the uncertainty of the data. The latter two have a significantly higher refractory fraction, which in the FT air mass is attributed to carbonaceous particles, and in the dust episode to a sub-µm accumulation mode of dust.
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Jianhao, and Paquita Zuidema. "Sunlight-absorbing aerosol amplifies the seasonal cycle in low-cloud fraction over the southeast Atlantic." Atmospheric Chemistry and Physics 21, no. 14 (July 23, 2021): 11179–99. http://dx.doi.org/10.5194/acp-21-11179-2021.

Full text
Abstract:
Abstract. The mean altitude of the smoke loading over the southeast Atlantic moves from the boundary layer in July to the free troposphere by October. This study details the month-by-month changes in cloud properties and the large-scale environment as a function of the biomass burning aerosol loading at Ascension Island (8∘ S, 14.5∘ W) from July to October, based on island measurements, satellite retrievals, and reanalysis. In July and August, the smoke loading predominantly varies within the boundary layer. During both months, the low-cloud fraction is less and is increasingly cumuliform when more smoke is present, with the exception of a late morning boundary layer deepening that encourages a short-lived cloud development. The meteorology varies little, suggesting aerosol–cloud interactions explain the cloudiness changes. September marks a transition month during which midlatitude disturbances can intrude into the Atlantic subtropics, constraining the free tropospheric aerosol closer to the African coast. Stronger boundary layer winds on cleaner days help deepen, dry, and cool much of the marine boundary layer compared to that on days with high smoke loadings, with stratocumulus reducing everywhere but at the northern deck edge. The September free troposphere is better mixed on smoky days compared to October. Longwave cooling rates, generated by a sharp water vapor gradient at the aerosol layer top, encourage a small-scale vertical mixing that could help maintain the well-mixed smoky September free troposphere. The October meteorology primarily varies as a function of the strength of the free tropospheric winds advecting aerosol offshore. The free tropospheric aerosol loading is less than in September, and the moisture variability is greater. Low-level clouds increase and are more stratiform in October when the smoke loadings are higher. The increased free tropospheric moisture can help sustain the clouds through a reduction in evaporative drying during cloud-top entrainment. Enhanced subsidence above the coastal upwelling region, increasing cloud droplet number concentrations, may further prolong cloud lifetime through microphysical interactions. Reduced subsidence underneath stronger free tropospheric winds at Ascension Island supports slightly higher cloud tops during smokier conditions. Overall, the monthly changes in the large-scale aerosol and moisture vertical structure act to amplify the seasonal cycle in low-cloud amount and morphology. This is climatically important, as cloudiness changes dominate changes in the top-of-atmosphere radiation budget.
APA, Harvard, Vancouver, ISO, and other styles
32

Karpechko, A., A. Lukyanov, E. Kyrö, S. Khaikin, L. Korshunov, R. Kivi, and H. Vömel. "The water vapour distribution in the Arctic lowermost stratosphere during the LAUTLOS campaign and related transport processes including stratosphere-troposphere exchange." Atmospheric Chemistry and Physics 7, no. 1 (January 10, 2007): 107–19. http://dx.doi.org/10.5194/acp-7-107-2007.

Full text
Abstract:
Abstract. Balloon-borne water vapour measurements during January and February 2004, which were obtained as part of the LAUTLOS campaign at Sodankylä, Finland, 67° N, were used to analyse the water vapour distribution in the wintertime Arctic lowermost stratosphere. A 2.5 km thick layer (or 30 K in the potential temperature scale) above the tropopause is characterized by a significant water vapour variability on a synoptic timescale with values between stratospheric and tropospheric, which is in good agreement with previously reported measurements. A cross-correlation analysis of ozone and water vapour confirms that this layer contains a mixture of stratospheric and tropospheric air masses. Some of the flights sampled laminae of enhanced water vapour above the tropopause. Meteorological analyses and backward trajectory calculations show that these features were related to filaments that had developed along the flanks of cut-off anticyclones, which had been active at this time over the Northern Atlantic. The role of the filaments was however not to transport water vapour from the troposphere to the stratosphere but rather to transport it within the stratosphere away from regions where intensive two-way stratosphere-troposphere exchange (STE) was identified. Intensive STE occurred around cut-off anticyclones in regions of strong winds, where calculations suggest the presence of clear-air turbulence (CAT). Evidences that CAT contributes to the troposphere-to-stratosphere transport (TST) are presented. However, statistically, relation between TST and CAT during the studied period is weak.
APA, Harvard, Vancouver, ISO, and other styles
33

Van Dingenen, R., J. P. Putaud, S. Martins-Dos Santos, and F. Raes. "Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy) during the first MINATROC campaign." Atmospheric Chemistry and Physics 5, no. 8 (August 19, 2005): 2203–26. http://dx.doi.org/10.5194/acp-5-2203-2005.

Full text
Abstract:
Abstract. Aerosol physical properties were measured at the Monte Cimone Observatory (Italy) from 1 June till 6 July 2000. The measurement site is located in the transition zone between the continental boundary layer and the free troposphere (FT), at the border between the Mediterranean area and Central Europe, and is exposed to a variety of air masses. Sub-μm number size distributions, aerosol hygroscopicity near 90% RH, refractory size distribution at 270°C and equivalent black carbon mass were continuously measured. Number size distributions and hygroscopic properties indicate that the site is exposed to aged continental air masses, however during daytime it is also affected by upslope winds. The mixing of this transported polluted boundary layer air masses with relatively clean FT air leads to frequent nucleation events around local noon. Night-time size distributions, including fine and coarse fractions for each air mass episode, have been parameterized by a 3-modal lognormal distribution. Number and volume concentrations in the sub-μm modes are strongly affected by the air mass origin, with highest levels in NW-European air masses, versus very clean, free tropospheric air coming from the N-European sector. During a brief but distinct dust episode, the coarse mode is clearly enhanced. The observed hygroscopic behavior of the aerosol is consistent with the chemical composition described by Putaud et al. (2004), but no closure between known chemical composition and measured hygroscopicity could be made because the hygroscopic properties of the water-soluble organic matter (WSOM) are not known. The data suggest that WSOM is slightly-to-moderately hygroscopic (hygroscopic growth factor GF at 90% relative humidity between 1.05 and 1.51), and that this property may well depend on the air mass origin and history. External mixing of aerosol particles is observed in all air masses through the occurrence of two hygroscopicity modes (average GF of 1.22 and 1.37, respectively). However, the presence of "less" hygroscopic particles has mostly such a low occurrence rate that the average growth factor distribution for each air mass sector actually appears as a single mode. This is not the case for the dust episode, where the external mixing between less hygroscopic and more hygroscopic particles is very prominent, and indicating clearly the occurrence of a dust accumulation mode, extending down to 50 nm particles, along with an anthropogenic pollution mode. The presented physical measurements finally allow us to provide a partitioning of the sub-μm aerosol in four non-overlapping fractions (soluble/volatile, non-soluble/volatile, refractory/non-black carbon, black carbon) which can be associated with separate groups of chemical compounds determined with chemical-analytical techniques (ions, non-water soluble organic matter, dust, elemental carbon). All air masses except the free-tropospheric N-European and Dust episodes show a similar composition within the uncertainty of the data (53%, 37%, 5% and 5% respectively for the four defined fractions). Compared to these sectors, the dust episode shows a clearly enhanced refractory-non-BC fraction (17%), attributed to dust in the accumulation mode, whereas for the very clean N-EUR sector, the total refractory fraction is 25%, of which 13% non-BC and 12% BC.
APA, Harvard, Vancouver, ISO, and other styles
34

Niranjan Kumar, K., D. V. Phanikumar, T. B. M. J. Ouarda, M. Rajeevan, M. Naja, and K. K. Shukla. "Modulation of surface meteorological parameters by extratropical planetary-scale Rossby waves." Annales Geophysicae 34, no. 1 (January 25, 2016): 123–32. http://dx.doi.org/10.5194/angeo-34-123-2016.

Full text
Abstract:
Abstract. This study examines the link between upper-tropospheric planetary-scale Rossby waves and surface meteorological parameters based on the observations made in association with the Ganges Valley Aerosol Experiment (GVAX) campaign at an extratropical site at Aryabhatta Research Institute of Observational Sciences, Nainital (29.45° N, 79.5° E) during November–December 2011. The spectral analysis of the tropospheric wind field from radiosonde measurements indicates a predominance power of around 8 days in the upper troposphere during the observational period. An analysis of the 200 hPa meridional wind (v200 hPa) anomalies from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis shows distinct Rossby-wave-like structures over a high-altitude site in the central Himalayan region. Furthermore, the spectral analysis of global v200 hPa anomalies indicates the Rossby waves are characterized by zonal wave number 6. The amplification of the Rossby wave packets over the site leads to persistent subtropical jet stream (STJ) patterns, which further affects the surface weather conditions. The propagating Rossby waves in the upper troposphere along with the undulations in the STJ create convergence and divergence regions in the mid-troposphere. Therefore, the surface meteorological parameters such as the relative humidity, wind speeds, and temperature are synchronized with the phase of the propagating Rossby waves. Moreover, the present study finds important implications for medium-range forecasting through the upper-level Rossby waves over the study region.
APA, Harvard, Vancouver, ISO, and other styles
35

Savazzi, Alessandro Carlo Maria, Louise Nuijens, Irina Sandu, Geet George, and Peter Bechtold. "The representation of the trade winds in ECMWF forecasts and reanalyses during EUREC4A." Atmospheric Chemistry and Physics 22, no. 19 (October 11, 2022): 13049–66. http://dx.doi.org/10.5194/acp-22-13049-2022.

Full text
Abstract:
Abstract. The characterization of systematic forecast errors in lower-tropospheric winds is an essential component of model improvement. This paper is motivated by a global, long-standing surface bias in the operational medium-range weather forecasts produced with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Over the tropical oceans, excessive easterly flow is found. A similar bias is found in the western North Atlantic trades, where the EUREC4A field campaign provides an unprecedented wealth of measurements. We analyze the wind bias in the IFS and ERA5 reanalysis throughout the entire lower troposphere during EUREC4A. The wind bias varies greatly from day to day, resulting in root mean square errors (RMSEs) up to 2.5 m s−1, with a mean wind speed bias up to −1 m s−1 near and above the trade inversion in the forecasts and up to −0.5 m s−1 in reanalyses. These biases are insensitive to the assimilation of sondes. The modeled zonal and meridional winds exhibit a diurnal cycle that is too strong, leading to a weak wind speed bias everywhere up to 5 km during daytime but a wind speed bias below 2 km at nighttime that is too strong. Removing momentum transport by shallow convection reduces the wind bias near the surface but leads to stronger easterly near cloud base. The update in moist physics in the newest IFS cycle (cycle 47r3) reduces the meridional wind bias, especially during daytime. Below 1 km, modeled friction due to unresolved physical processes appears to be too strong but is (partially) compensated for by the dynamics, making this a challenging coupled problem.
APA, Harvard, Vancouver, ISO, and other styles
36

Belova, Evgenia, Peter Voelger, Sheila Kirkwood, Susanna Hagelin, Magnus Lindskog, Heiner Körnich, Sourav Chatterjee, and Karathazhiyath Satheesan. "Validation of wind measurements of two mesosphere–stratosphere–troposphere radars in northern Sweden and in Antarctica." Atmospheric Measurement Techniques 14, no. 4 (April 12, 2021): 2813–25. http://dx.doi.org/10.5194/amt-14-2813-2021.

Full text
Abstract:
Abstract. Two atmospheric VHF radars: ESRAD (Esrange MST radar) located near Kiruna in the Swedish Arctic and MARA (Moveable Atmospheric Radar for Antarctica) at the Indian research station Maitri in Antarctica perform wind measurements in the troposphere and lower stratosphere on a regular basis. We compared horizontal winds at altitudes between about 0.5 and 14 km derived from the radar data using the full correlation analysis (FCA) technique with radiosonde observations and models. The comparison with 28 radiosondes launched from January 2017 to August 2019 showed that ESRAD underestimates the zonal and meridional winds by about 8 % and 25 %, respectively. This is likely caused by the receiver group arrangement used for the FCA together with a high level of non-white noise. A similar result was found when comparing with the regional numerical weather prediction model HARMONIE-AROME (Bengtsson et al., 2017) for the period September 2018–May 2019. The MARA winds were compared with winds from radiosondes for the period February–October 2014 (291 occasions). In contrast to ESRAD, there is no indication that MARA underestimates the winds compared to the sondes. The mean difference between the radar and radiosonde winds is close to zero for both zonal and meridional components. The comparison of MARA with the ECMWF ERA5 reanalysis for January–December 2019 reveals good agreement with the mean difference between 0.1 and −0.5 m/s depending on the component and season. The random errors in the wind components (standard deviations over all estimates in 1 h averages) are typically 2–3 m/s for both radars. Standard deviation of the differences between radars and sondes are 3–5 m/s.
APA, Harvard, Vancouver, ISO, and other styles
37

Francis, Jennifer A., Elias Hunter, and Cheng-Zhi Zou. "Arctic Tropospheric Winds Derived from TOVS Satellite Retrievals." Journal of Climate 18, no. 13 (July 1, 2005): 2270–85. http://dx.doi.org/10.1175/jcli3407.1.

Full text
Abstract:
Abstract Accurate three-dimensional wind fields are essential for diagnosing a variety of important climate processes in the Arctic, such as the advection and deposition of heat and moisture, changes in circulation features, and transport of trace constituents. In light of recent studies revealing significant biases in upper-level winds over the Arctic Ocean from reanalyses, new daily wind fields are generated from 22.5 yr of satellite-retrieved thermal-wind profiles, corrected with a recently developed mass-conservation scheme. Compared to wind measurements from rawinsondes during the Surface Heat Budget of the Arctic (SHEBA) experiment, biases in satellite-retrieved winds are near zero in the meridional direction, versus biases of over 50% for reanalyses. Errors in the zonal component are smaller than those observed in reanalysis winds in the upper troposphere, while in the lower troposphere the effects of Greenland introduce uncertainty in the mass-conservation calculation. Further reduction in error may be achieved by incorporating winds retrieved from feature-tracking techniques using satellite imagers. Overall, satellite-retrieved winds are superior to reanalysis products over the data-sparse Arctic Ocean and provide increased accuracy for analyses requiring wind information. Trends and anomalies for the 22.5-yr record are calculated for both meridional and zonal winds at eight levels between the surface and 300 hPa. Annual mean trends are similar at varying levels, reflecting the relatively barotropic nature of the Arctic troposphere. Zonal winds are more westerly over Eurasia and the western Arctic Ocean, while westerlies have weakened over northern Canada. Combined with the corresponding pattern in meridional winds, these results suggest that the polar vortex has, on average, shifted toward northern Canada. Seasonal trends show that some changes persist throughout the year while others vary in magnitude and sign. Most striking are spring patterns, which differ markedly from the other seasons. Changes in meridional winds are consistent with observed trends in melt-onset date and sea ice concentration in the marginal seas. Anomalies in zonal wind profiles exhibit decadal-scale cyclicity in the eastern Arctic Ocean, while overall shifts in anomaly signs are evident and vary by region. The winter North Atlantic Oscillation (NAO) index correlates moderately with meridional wind anomalies in the Atlantic sector of the Arctic Ocean: positively (0.48) in the Barents Sea and negatively (−0.59) in the Lincoln Sea. These observed trends and anomalies are expected to translate to changes in advected heat and moisture into the Arctic basin, which are likely linked to trends in sea ice extent, melt onset, cloud properties, and surface temperature.
APA, Harvard, Vancouver, ISO, and other styles
38

Luo, M., C. Boxe, J. Jiang, R. Nassar, and N. Livesey. "Interpretation of Aura satellite observations of CO and aerosol index related to the December 2006 Australia fires." Atmospheric Chemistry and Physics Discussions 9, no. 6 (November 9, 2009): 23665–93. http://dx.doi.org/10.5194/acpd-9-23665-2009.

Full text
Abstract:
Abstract. Enhanced Carbon Monoxide (CO) in the upper troposphere (UT) is shown by collocated Tropospheric Emission Spectrometer (TES) and Microwave Limb Sounder (MLS) measurements near and down-wind from the known wildfire region of SE Australia from 12–19 December 2006. Enhanced UV aerosol index (AI) derived from Ozone Monitoring Instrument (OMI) measurements correlate with these high CO concentrations. HYSPLIT model back trajectories trace selected air parcels to the SE Australia fire region as their initial location, where TES observes enhanced CO in the upper and lower troposphere. Simultaneously, they show a lack of vertical advection along their tracks. TES retrieved CO vertical profiles in the higher and lower southern latitudes are examined together with the averaging kernels and show that TES CO retrievals are most sensitive at approximately 300–400 hPa. The enhanced CO observed by TES at the upper (215 hPa) and lower (681 hPa) troposphere are, therefore, influenced by mid-tropospheric CO. GEOS-Chem model simulations with an 8-day emission inventory, as the wildfire source over Australia, are sampled to the TES/MLS observation times and locations. These simulations only show CO enhancements in the lower troposphere near and down-wind from the wildfire region of SE Australia with drastic underestimates of UT CO. Although CloudSat along-track ice-water content curtains are examined to see whether possible vertical convection events can explain the high UT CO values, sparse observations of collocated Aura CO and CloudSat along-track ice-water content measurements for the single event precludes any conclusive correlation. Vertical convection that uplift fire-induced CO (i.e. most notably referred to as pyro-cumulonimbus, pyroCb) may provide an explanation for the incongruence between these simulations and the TES/MLS observations of enhanced CO in the UT. Future GEOS-Chem simulations are needed to validate this conjecture as the the PyroCb mechanism is currently not incorporated in GEOS-Chem.
APA, Harvard, Vancouver, ISO, and other styles
39

Randriambelo, T., J. L. Baray, S. Baldy, A. M. Thompson, S. Oltmans, and P. Keckhut. "Investigation of the short-time variability of tropical tropospheric ozone." Annales Geophysicae 21, no. 10 (October 31, 2003): 2095–106. http://dx.doi.org/10.5194/angeo-21-2095-2003.

Full text
Abstract:
Abstract. Since 1998, a ground-based tropospheric ozone lidar has been running at Reunion Island and has been involved with a daily measurement campaign that was performed in the latter part of the biomass burning season, during November–December 1999. The averaged ozone profile obtained during November–December 1999 agrees well with the averaged ozone profile obtained from the ozonesondes launch at Reunion during November–December (1992– 2001). Comparing weekly sonde launches (part of the Southern Hemisphere Additional Ozonesondes: SHADOZ program) with the daily ground-based lidar observations shows that some striking features of the day-to-day variability profiles are not observed in the sonde measurements. Ozone profiles respond to the nature of disturbances which vary from one day to the next. The vertical ozone distribution at Reunion is examined as a function of prevailing atmospheric circulation. Back trajectories show that most of the enhanced ozone crossed over biomass burning and convectively active regions in Madagascar and the southern African continent. The analyses of the meteorological data show that ozone stratification profiles are in agreement with the movement of the synoptic situations in November–December 1999. Three different sequences of transport are explained using wind fields. The first sequence from 23 to 25 November is characterized by northerly transport; during the second sequence from 26 to 30 November, the air masses are influenced by meridional transport. The third sequence from 2 to 6 December is characterized by westerly transport associated with the sub-tropical jet stream. The large, standard deviations of lidar profiles in the middle and upper troposphere are in agreement with the upper wind variabilities which evidence passing ridge and trough disturbances. During the transition period between the dry season and the wet season, multiple ozone sources including stratosphere-troposphere exchanges, convection and biomass burning contribute to tropospheric ozone at Reunion Island through sporadic events characterized by a large spatial and temporal variability.Key words. Atmospheric composition and structure (troposphere-composition and chemistry) – Meteorology and atmospheric dynamics (climatology; tropical meteorology)
APA, Harvard, Vancouver, ISO, and other styles
40

Kalabokas, P. D., J. P. Cammas, V. Thouret, A. Volz-Thomas, D. Boulanger, and C. C. Repapis. "Examination of the atmospheric conditions associated with high and low summer ozone levels in the lower troposphere over the Eastern Mediterranean." Atmospheric Chemistry and Physics Discussions 13, no. 1 (January 23, 2013): 2457–91. http://dx.doi.org/10.5194/acpd-13-2457-2013.

Full text
Abstract:
Abstract. In order to evaluate the observed high rural ozone levels in the Eastern Mediterranean area during summertime, vertical profiles of ozone measured in the period 1994–2008 in the framework of the MOZAIC project (Measurement of Ozone and Water Vapor by Airbus in Service Aircraft) over the Eastern Mediterranean basin (Cairo, Tel-Aviv, Heraklion, Rhodes, Antalya) were analysed, focusing in the lower troposphere (1.5–5 km). At first, vertical profiles collected during extreme days with very high or very low tropospheric ozone mixing ratios have been examined together with the corresponding back-trajectories. Also, the average profiles of ozone, relative humidity, carbon monoxide, temperature gradient and wind speed corresponding to the 7% highest and the 7% lowest ozone mixing ratios for the 1500–5000 m height layer for Cairo and Tel-Aviv have been examined and the corresponding composite maps of geopotential heights at 850 hPa have been plotted. Based on the above analysis, it turns out that the lower-tropospheric ozone variability over the Eastern Mediterranean area is controlled mainly by the synoptic meteorological conditions, combined with local topographical and meteorological features. In particular, the highest ozone concentrations in the lower troposphere and subsequently in the boundary layer are associated with large scale subsidence of ozone rich air masses from the upper troposphere under anticyclonic conditions while the lowest ozone concentrations are associated with low pressure conditions inducing uplifting of boundary layer air, poor in ozone and rich in relative humidity, to the lower troposphere.
APA, Harvard, Vancouver, ISO, and other styles
41

Kalabokas, P. D., J. P. Cammas, V. Thouret, A. Volz-Thomas, D. Boulanger, and C. C. Repapis. "Examination of the atmospheric conditions associated with high and low summer ozone levels in the lower troposphere over the eastern Mediterranean." Atmospheric Chemistry and Physics 13, no. 20 (October 23, 2013): 10339–52. http://dx.doi.org/10.5194/acp-13-10339-2013.

Full text
Abstract:
Abstract. In order to evaluate the observed high rural ozone levels in the eastern Mediterranean area during summertime, vertical profiles of ozone measured in the period 1994–2008 in the framework of the MOZAIC project (Measurement of Ozone and Water Vapor by Airbus in Service Aircraft) over the eastern Mediterranean basin (Cairo, Tel Aviv, Heraklion, Rhodes, Antalya) were analyzed, focusing in the lower troposphere (1.5–5 km). At first, vertical profiles collected during extreme days with very high or very low tropospheric ozone mixing ratios have been examined together with the corresponding back-trajectories. Also, the average profiles of ozone, relative humidity, carbon monoxide, temperature gradient and wind speed corresponding to the 7% highest and the 7% lowest ozone mixing ratios for the 1500–5000 m height layer for Cairo and Tel Aviv have been examined and the corresponding composite maps of geopotential heights at 850 hPa have been plotted. Based on the above analysis, it turns out that the lower-tropospheric ozone variability over the eastern Mediterranean area is controlled mainly by the synoptic meteorological conditions, combined with local topographical and meteorological features. In particular, the highest ozone concentrations in the lower troposphere and subsequently in the boundary layer are associated with large-scale subsidence of ozone-rich air masses from the upper troposphere under anticyclonic conditions while the lowest ozone concentrations are associated with low pressure conditions inducing uplifting of boundary-layer air, poor in ozone and rich in relative humidity, to the lower troposphere.
APA, Harvard, Vancouver, ISO, and other styles
42

Cavalié, T., B. Benmahi, V. Hue, R. Moreno, E. Lellouch, T. Fouchet, P. Hartogh, et al. "First direct measurement of auroral and equatorial jets in the stratosphere of Jupiter." Astronomy & Astrophysics 647 (March 2021): L8. http://dx.doi.org/10.1051/0004-6361/202140330.

Full text
Abstract:
Context. The tropospheric wind pattern in Jupiter consists of alternating prograde and retrograde zonal jets with typical velocities of up to 100 m s−1 around the equator. At much higher altitudes, in the ionosphere, strong auroral jets have been discovered with velocities of 1−2 km s−1. There is no such direct measurement in the stratosphere of the planet. Aims. In this Letter, we bridge the altitude gap between these measurements by directly measuring the wind speeds in Jupiter’s stratosphere. Methods. We use the Atacama Large Millimeter/submillimeter Array’s very high spectral and angular resolution imaging of the stratosphere of Jupiter to retrieve the wind speeds as a function of latitude by fitting the Doppler shifts induced by the winds on the spectral lines. Results. We detect, for the first time, equatorial zonal jets that reside at 1 mbar, that is, above the altitudes where Jupiter’s quasi-quadrennial oscillation occurs. Most noticeably, we find 300−400 m s−1 nonzonal winds at 0.1 mbar over the polar regions underneath the main auroral ovals. They are in counterrotation and lie several hundred kilometers below the ionospheric auroral winds. We suspect them to be the lower tail of the ionospheric auroral winds. Conclusions. We directly detect, for the first time, strong winds in Jupiter’s stratosphere. They are zonal at low-to-mid latitudes and nonzonal at polar latitudes. The wind system found at polar latitudes may help increase the efficiency of chemical complexification by confining the photochemical products in a region of large energetic electron precipitation.
APA, Harvard, Vancouver, ISO, and other styles
43

Huang, J., H. Liu, J. H. Crawford, C. Chan, D. B. Considine, Y. Zhang, X. Zheng, et al. "Origin of springtime ozone enhancements in the lower troposphere over Beijing: in situ measurements and model analysis." Atmospheric Chemistry and Physics Discussions 14, no. 23 (December 22, 2014): 32583–627. http://dx.doi.org/10.5194/acpd-14-32583-2014.

Full text
Abstract:
Abstract. Ozone (O3) concentrations in the lower troposphere (LT) over Beijing have significantly increased over the past two decades as a result of rapid industrialization in China, with important implications for regional air quality and photochemistry of the background troposphere. We characterize the vertical distribution of lower-tropospheric (0–6 km) O3 over Beijing using observations from 16 ozonesonde soundings made during a field campaign in April–May 2005 and MOZAIC (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft) aircraft measurements over 13 days in the same period. We focus on the origin of LT O3 enhancements observed over Beijing, particularly in May. We use a global 3-D chemistry and transport model (GEOS-Chem CTM) driven by assimilated meteorological fields to examine the transport pathways for O3 pollution, and quantify the sources contributing to O3 and its enhancements in the springtime LT over Beijing. Output from the Global Modeling Initiative (GMI) CTM is also used. High O3 concentrations (up to 94.7 ppbv) were frequently observed at the altitude of ~1.5–2 km. The CTMs captured the timing of the occurrences but significantly underestimated their magnitude. GEOS-Chem simulations and a case study showed that O3 produced in the Asian troposphere (especially from Asian anthropogenic pollution) made major contributions to the observed O3 enhancements. Contributions from anthropogenic pollution in the European and North American troposphere were reduced during these events, in contrast with days without O3 enhancements, when contributions from Europe and North America were substantial. The O3 enhancements typically occurred under southerly wind and warmer conditions. It is suggested that an earlier onset of the Asian summer monsoon would cause more O3 enhancement events in the lower troposphere over the North China Plain in late spring and early summer.
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Qiang, Markus Rapp, Gunter Stober, and Ralph Latteck. "High-resolution vertical velocities and their power spectrum observed with the MAARSY radar – Part 1: frequency spectrum." Annales Geophysicae 36, no. 2 (April 3, 2018): 577–86. http://dx.doi.org/10.5194/angeo-36-577-2018.

Full text
Abstract:
Abstract. The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb–Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s−1) are much steeper than during quiet periods (with wind velocity < 10 m s−1). The distribution of spectral slopes is roughly symmetric with a maximum at −5/3 during active periods, whereas a very asymmetric distribution with a maximum at around −1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of −5/3 at a wind velocity of 10 m s−1 and then roughly maintain this slope (−5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions. Keywords. Meteorology and atmospheric dynamics (turbulence; waves and tides)
APA, Harvard, Vancouver, ISO, and other styles
45

Schäfler, Andreas, Andreas Dörnbrack, Christoph Kiemle, Stephan Rahm, and Martin Wirth. "Tropospheric Water Vapor Transport as Determined from Airborne Lidar Measurements." Journal of Atmospheric and Oceanic Technology 27, no. 12 (December 1, 2010): 2017–30. http://dx.doi.org/10.1175/2010jtecha1418.1.

Full text
Abstract:
Abstract The first collocated measurements during THORPEX (The Observing System Research and Predictability Experiment) regional campaign in Europe in 2007 were performed by a novel four-wavelength differential absorption lidar and a scanning 2-μm Doppler wind lidar on board the research aircraft Falcon of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). One mission that was characterized by exceptionally high data coverage (47% for the specific humidity q and 63% for the horizontal wind speed υh) was selected to calculate the advective transport of atmospheric moisture qυh along a 1600-km section in the warm sector of an extratropical cyclone. The observations are compared with special 1-hourly model data calculated by the ECMWF integrated forecast system. Along the cross section, the model underestimates the wind speed on average by −2.8% (−0.6 m s−1) and overestimates the moisture at dry layers and in the boundary layer, which results in a wet bias of 17.1% (0.2 g kg−1). Nevertheless, the ECMWF model reproduces quantitatively the horizontally averaged moisture transport in the warm sector. There, the superposition of high low-level humidity and the increasing wind velocities with height resulted in a deep tropospheric layer of enhanced water vapor transport qυh. The observed moisture transport is variable and possesses a maximum of qυh = 130 g kg−1 m s−1 in the lower troposphere. The pathways of the moisture transport from southwest via several branches of different geographical origin are identified by Lagrangian trajectories and by high values of the vertically averaged tropospheric moisture transport.
APA, Harvard, Vancouver, ISO, and other styles
46

Narendra Babu, A., K. Kishore Kumar, G. Kishore Kumar, M. Venkat Ratnam, S. Vijaya Bhaskara Rao, and D. Narayana Rao. "Long-term MST radar observations of vertical wave number spectra of gravity waves in the tropical troposphere over Gadanki (13.5° N, 79.2° E): comparison with model spectra." Annales Geophysicae 26, no. 7 (June 12, 2008): 1671–80. http://dx.doi.org/10.5194/angeo-26-1671-2008.

Full text
Abstract:
Abstract. The potential utility of Mesosphere-Stratosphere-Troposphere (MST) radar measurements of zonal, meridional and vertical winds for divulging the gravity wave vertical wave number spectra is discussed. The data collected during the years 1995–2004 are used to obtain the mean vertical wave number spectra of gravity wave kinetic energy in the tropical troposphere over Gadanki (13.5° N, 79.2° E). First, the climatology of 3-dimensional wind components is developed using ten years of radar observations, for the first time, over this latitude. This climatology brought out the salient features of background tropospheric winds over Gadanki. Further, using the second order polynomial fit as background, the day-to-day wind anomalies are estimated. These wind anomalies in the 4–14 km height regions are used to estimate the profiles of zonal, meridional and vertical kinetic energy per unit mass, which are then used to estimate the height profile of total kinetic energy. Finally, the height profiles of total kinetic energy are subjected to Fourier analysis to obtain the monthly mean vertical wave number spectra of gravity wave kinetic energy. The monthly mean vertical wave number spectra are then compared with a saturation spectrum predicted by gravity wave saturation theory. A slope of 5/3 is used for the model gravity wave spectrum estimation. In general, the agreement is good during all the months. However, it is noticed that the model spectrum overestimates the PSD at lower vertical wave numbers and underestimates it at higher vertical wave numbers, which is consistently observed during all the months. The observed discrepancies are attributed to the differences in the slopes of theoretical and observed gravity wave spectra. The slopes of the observed vertical wave number spectra are estimated and compared with the model spectrum slope, which are in good agreement. The estimated slopes of the observed monthly vertical wave number spectra are in the range of −2 to −2.8. The significance of the present study lies in using the ten years of data to estimate the monthly mean vertical wave number spectra of gravity waves, which will find their application in representing the realistic gravity wave characteristics in atmospheric models.
APA, Harvard, Vancouver, ISO, and other styles
47

Wagner, T., O. Ibrahim, R. Shaiganfar, and U. Platt. "Mobile MAX-DOAS observations of tropospheric trace gases." Atmospheric Measurement Techniques Discussions 2, no. 6 (November 2, 2009): 2851–80. http://dx.doi.org/10.5194/amtd-2-2851-2009.

Full text
Abstract:
Abstract. From Multi-Axis- (MAX-) DOAS observations information on tropospheric trace gases close to the surface and up to the free troposphere can be obtained. Usually MAX-DOAS observations are performed at fixed locations, which allows to retrieve the diurnal variation of tropospheric species at that location. Alternatively, MAX-DOAS observations can also be made on mobile platforms like cars, ships or aircrafts. Then, in addition to the vertical (and temporal) distribution, also the horizontal variation of tropospheric trace gases can be measured. Such information is important for the quantitative comparison with model simulations, study of transport processes, and for the validation of tropospheric trace gas products from satellite observations. However, for MAX-DOAS observations from mobile platforms, the standard analysis techniques for MAX-DOAS observations can usually not be applied, because the probed airmasses can change rapidly between successive measurements. In this study we introduce a new technique which overcomes these problems and allows the exploitation of the full information content of mobile MAX-DOAS observations. Our method can also be applied to MAX-DOAS observations made at fixed locations in order to improve the accuracy especially in cases of strong winds. We apply the new technique to MAX-DOAS observations made during an automobile trip from Brussels to Heidelberg.
APA, Harvard, Vancouver, ISO, and other styles
48

Wagner, T., O. Ibrahim, R. Shaiganfar, and U. Platt. "Mobile MAX-DOAS observations of tropospheric trace gases." Atmospheric Measurement Techniques 3, no. 1 (February 3, 2010): 129–40. http://dx.doi.org/10.5194/amt-3-129-2010.

Full text
Abstract:
Abstract. From Multi-Axis- (MAX-) DOAS observations, information on tropospheric trace gases close to the surface and up to the free troposphere can be obtained. Usually MAX-DOAS observations are performed at fixed locations, which allows to retrieve the diurnal variation of tropospheric species at that location. Alternatively, MAX-DOAS observations can also be made on mobile platforms like cars, ships or aircrafts. Then, in addition to the vertical (and temporal) distribution, also the horizontal variation of tropospheric trace gases can be measured. Such information is important for the quantitative comparison with model simulations, study of transport processes, and for the validation of tropospheric trace gas products from satellite observations. However, for MAX-DOAS observations from mobile platforms, the standard analysis techniques for MAX-DOAS observations can usually not be applied, because the probed airmasses can change rapidly between successive measurements. In this study we introduce a new technique which overcomes these problems and allows the exploitation of the full information content of mobile MAX-DOAS observations. Our method can also be applied to MAX-DOAS observations made at fixed locations in order to improve the accuracy especially in cases of strong winds. We apply the new technique to MAX-DOAS observations made during an automobile trip from Brussels to Heidelberg.
APA, Harvard, Vancouver, ISO, and other styles
49

CHATTERJEE, KALIPADA. "Atmospheric ozone monitoring in the Indian network in view of possibility of damage to the biosphere due to distortion of ozone layer." MAUSAM 37, no. 4 (April 7, 2022): 471–82. http://dx.doi.org/10.54302/mausam.v37i4.2568.

Full text
Abstract:
Atmospheric ozone protects life on the earth from harmful ultraviolet radiation of wavelengths in the biologically important 300nanometre region. In recent year many workers in the field of atmospheric ozone have brought out the various effects of oxides of nitrogen (NOx) Oxides of chlorine (CIOx) and Hydroxyl radicals (HOx) on the ozone layer due to man made activities. It has been demonstrated by recent studies that monsoon season these man made chemicals like NOx, ClOx released in the troposphere due to industrializations may eventually deplete ozone in the stratosphere by as much as 5% at the present rate of discharge of these chemicals in the lower troposphere. This depletion of total ozone could cause an increase in the incident of skin cancer. Furthermore these are indications of the possibility that plant life and marine life and other ecological systems are also affected cultural planning by the changes in ultraviolet radiation. The ozone layer in the stratosphere controls the temperature & winds in the stratosphere and have a great influence in the general circulation & climate of the earth. Depletion of ozone in the stratosphere due to man made actitives, may therefore cause adverse effects on the earth’s climate. Model calculation indicate that early next Century the combined radiative effects of ozone and other trace gases would be of the same order as that calculated for CO2. Recent studies in the field of tropospheric ozone have indicated that due to man made activities possibility of sharp increase in the tropospheric ozone particularly in the industrially developed countries. This increase in the tropospheric ozone could adversely effect human health and plant life particularly forest resources. It has, therefore, become very important to accurately monitor atmospheric ozone on a routine and network basis over the entire globe by insitu, balloon borne and satellite measurements. The present paper brings out the results and analysis of total ozone, vertical ozone measurements by Umkehr and balloon sonde and tropospheric ozone measurements by ground based and balloon borne sondes made in the Indian network during the last decade (1970-1979) and various aspects of ozone profiles and variations and ozone trend analysis over the years have been presented and discussed in this paper.
APA, Harvard, Vancouver, ISO, and other styles
50

Pilch Kedzierski, Robin, Katja Matthes, and Karl Bumke. "The tropical tropopause inversion layer: variability and modulation by equatorial waves." Atmospheric Chemistry and Physics 16, no. 18 (September 20, 2016): 11617–33. http://dx.doi.org/10.5194/acp-16-11617-2016.

Full text
Abstract:
Abstract. The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia–gravity waves and hamper stratosphere–troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO).We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ∼ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis.We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20–25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the extratropics.To elucidate possible enhancing mechanisms of the tropical TIL, we quantify the signature of the different equatorial waves on the vertical structure of static stability in the tropics. All waves show, on average, maximum cold anomalies at the thermal tropopause, warm anomalies above and a net TIL enhancement close to the tropopause. The main drivers are Kelvin, inertia–gravity and Rossby waves. We suggest that a similar wave modulation will exist at mid- and polar latitudes from the extratropical wave modes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography