Academic literature on the topic 'Triosephosphate isomerases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Triosephosphate isomerases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Triosephosphate isomerases"
Walden, H., G. Taylor, H. Lilie, T. Knura, and R. Hensel. "Triosephosphate isomerase of the hyperthermophile Thermoproteus tenax: thermostability is not everything." Biochemical Society Transactions 32, no. 2 (April 1, 2004): 305. http://dx.doi.org/10.1042/bst0320305.
Full textÁabrahám, Magdolna, A. Alexin, and B. Szajáni. "Immobilized triosephosphate isomerases a comparative study." Applied Biochemistry and Biotechnology 36, no. 1 (July 1992): 1–12. http://dx.doi.org/10.1007/bf02950771.
Full textZhang, Y., K. U. Yuksel, and R. W. Gracy. "Terminal Marking of Avian Triosephosphate Isomerases by Deamidation and Oxidation." Archives of Biochemistry and Biophysics 317, no. 1 (February 1995): 112–20. http://dx.doi.org/10.1006/abbi.1995.1142.
Full textDel Buono, Daniele, Bhakti Prinsi, Luca Espen, and Luciano Scarponi. "Triosephosphate Isomerases in Italian Ryegrass (Lolium multiflorum): Characterization and Susceptibility to Herbicides." Journal of Agricultural and Food Chemistry 57, no. 17 (September 9, 2009): 7924–30. http://dx.doi.org/10.1021/jf901681q.
Full textFIGUEROA-ANGULO, ELISA E., PRISCILA ESTRELLA-HERNÁNDEZ, HOLJES SALGADO-LUGO, ADRIÁN OCHOA-LEYVA, ARMANDO GÓMEZ PUYOU, SILVIA S. CAMPOS, GABRIELA MONTERO-MORAN, et al. "Cellular and biochemical characterization of two closely related triosephosphate isomerases from Trichomonas vaginalis." Parasitology 139, no. 13 (August 29, 2012): 1729–38. http://dx.doi.org/10.1017/s003118201200114x.
Full textAguirre, Yolanda, Nallely Cabrera, Beatriz Aguirre, Ruy Pérez-Montfort, Alejandra Hernandez-Santoyo, Horacio Reyes-Vivas, Sergio Enríquez-Flores, et al. "Different contribution of conserved amino acids to the global properties of triosephosphate isomerases." Proteins: Structure, Function, and Bioinformatics 82, no. 2 (October 18, 2013): 323–35. http://dx.doi.org/10.1002/prot.24398.
Full textBlacklow, Stephen C., and Jeremy R. Knowles. "How can a catalytic lesion be offset? The energetics of two pseudorevertant triosephosphate isomerases." Biochemistry 29, no. 17 (May 1990): 4099–108. http://dx.doi.org/10.1021/bi00469a012.
Full textWierenga, R. K., T. V. Borcher, and M. E. M. Noble. "Crystallographic binding studies with triosephosphate isomerases: Conformational changes induced by substrate and substrate-analogues." FEBS Letters 307, no. 1 (July 27, 1992): 34–39. http://dx.doi.org/10.1016/0014-5793(92)80897-p.
Full textRodríguez-Bolaños, Monica, Nallely Cabrera, and Ruy Perez-Montfort. "Identification of the critical residues responsible for differential reactivation of the triosephosphate isomerases of two trypanosomes." Open Biology 6, no. 10 (October 2016): 160161. http://dx.doi.org/10.1098/rsob.160161.
Full textGAO, Xiu-Gong, Georgina GARZA-RAMOS, Emma SAAVEDRA-LIRA, Nallely CABRERA, Marietta T. de GÓMEZ-PUYOU, Ruy PEREZ-MONTFORT, and Armando GÓMEZ-PUYOU. "Reactivation of triosephosphate isomerase from three trypanosomatids and human: effect of Suramin." Biochemical Journal 332, no. 1 (May 15, 1998): 91–96. http://dx.doi.org/10.1042/bj3320091.
Full textDissertations / Theses on the topic "Triosephosphate isomerases"
Yüksel, K. Umit. "Molecular Aging of Triosephosphate Isomerase." Thesis, North Texas State University, 1987. https://digital.library.unt.edu/ark:/67531/metadc935641/.
Full textAlahuhta, M. (Markus). "Protein crystallography of triosephosphate isomerases: functional and protein engineering studies." Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514287909.
Full textTiivistelmä Tämän väitöskirjatyön tarkoituksena oli oppia paremmin ymmärtämään trioosifosfaatti-isomeraasin (TIM) toimintamekanismeja sen rakenteen perusteella ja käyttää tätä tietämystä samaisen proteiinin muokkaamiseen uusiin tarkoituksiin. TIM on keskeinen entsyymi solun energian tuotannossa ja sen toiminta on välttämätöntä kaikille eliöille. Tämän vuoksi on tärkeää oppia ymmärtämään miten se saavuttaa tehokkaan reaktionopeutensa ja miksi se katalysoi vain D-glyseraldehydi-3-fosfaattia (D-GAP) ja dihydroksiasetonifosfaattia (DHAP). TIM:n toiminta mekanismien ymmärtämiseksi sen aminohapposekvenssiä muokattiin kahdesta kohtaa (P168A ja A178L) ja seuraukset todettiin mittaamalla tuotettujen proteiinien stabiilisuutta optisesti eri lämpötiloissa ja selvittämällä niiden kolmiulotteinen rakenne käyttäen röntgensädekristallografiaa. Mutaatioita tehtiin dimeeriseen villityypin TIM:in (wtTIM) ja jo aikaisemmin muokattuun monomeeriseen TIM:in (ml1TIM). Näiden mutaatioiden tarkoituksena oli suosia entsyymin aktiivista konformaatiota, jossa reaktion kannalta välttämätön vapaasti liikkuva peptidisilmukka numero 6 on suljetussa konformaatiossa. Monomeerisissä TIM:ssa peptidisilmukka numero 6:n ei ole välttämätöntä aueta. Tulokset mutaatiokokeista olivat osittain lupaavia. P168A-mutaatio lisäsi D-GAP:in sitoutumista, mutta rikkoi tärkeän mekanismin suljetussa, ligandia sitovassa, konformaatiossa. A178L-mutaatio aiheutti muutoksia avoimeen konformaatioon ja teki siitä suljettua konformaatiota muistuttavan jopa ilman ligandia, mutta samalla koko proteiini muuttui epävakaammaksi. Näistä kahdesta mutaatiosta A178L voisi olla hyödyllinen muokattujen TIM-versioiden ominaisuuksien parantamiseksi. Lisäksi yhdessä jo aikaisemmin julkaistujen yksityiskohtien kanssa nämä tulokset tekevät mahdolliseksi esittää tarkennusta siihen miten TIM toimii kun ligandi saapuu sen lähettyville. Tämän väitöskirjatyön yksi tavoite oli myös muokata edelleen monomeeristä TIM versiota (ml8bTIM), joka on suunniteltu siten, että se voi mahdollisesti sitoa uudenlaisia ligandeja. Tämä projekti vaati onnistuakseen 20 eri versiota ml8bTIM:n sekvenssistä ja noin 30 rakennetta. Uusia ligandeja sitova muoto (A-TIM) sitoi onnistuneesti sitraattia ja villityypin TIM:n inhibiittoreita. Erityisen lupaavaa oli, että A-TIM sitoi myös bromohydroksiasetonifosfaattia (BHAP), joka sitoutuu ainoastaan toimivaan aktiiviseen kohtaan. Nämä tulokset osoittavat, että A-TIM kykenee tarvittaessa katalysoimaan isomerisaatio reaktion uudenlaisille molekyyleille. Esimerkiksi katalysoimaan isomerisointireaktiota sokerianalogien tuotannossa
Craig, Leonard C. (Leonard Callaway). "Analysis of a Human Transfer RNA Gene Cluster and Characterization of the Transcription Unit and Two Processed Pseudogenes of Chimpanzee Triosephosphate Isomerase." Thesis, University of North Texas, 1990. https://digital.library.unt.edu/ark:/67531/metadc331579/.
Full textKrause, Mirja [Verfasser], Peter [Akademischer Betreuer] Neubauer, Rik [Akademischer Betreuer] Wierenga, and Juri [Akademischer Betreuer] Rappsilber. "Creating artificial sugar isomerases on the scaffold of a monomeric triosephosphate isomerase (A‐TIM) by protein engineering / Mirja Krause. Gutachter: Peter Neubauer ; Rik Wierenga ; Juri Rappsilber. Betreuer: Peter Neubauer ; Rik Wierenga." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1065665962/34.
Full textLolis, Elias. "Crystallography and mutogenesis triosephosphate isomerase." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/13959.
Full textChang, Timothy C. "Evaluating the Role of Glu97 in Triosephosphate Isomerase." Thesis, California State University, Long Beach, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10979019.
Full textA comprehensive understanding of the design of proteins puts heavy emphasis on certain key residues. These key residues can often be identified by the level of conservation in nature, which acts as a reliable witness mark in order to study the pressures that select for residues which play a critical role in the function of the protein. In the case of triosephosphate isomerase (TIM), the fifth enzyme in glycolysis, the second-shell residue Glu97 has been found to be fully conserved across all known TIM sequences. Its proximity to the active site as well as several previous studies has pointed to a possible direct role in catalysis. However, the present study shows when Glu97 is mutated to Ala, Gln, and Asp in Trypanosoma brucei brucei (tbb) that the resulting effects on kcat are small. Previous results from other studies that have observed larger mutational effects may be due to nearby non-conserved residues that are specific to the TIM homolog in which these studies are performed. The structural studies detailed here suggest that instead, Glu97 is involved in the structural stability of the enzyme, as well as participating in dimer formation. Size-exclusion chromatography analysis suggests that several tbbTIM mutants may in fact be monomeric.
Fugtong, Nantana. "Physiological consequences of triosephosphate isomerase overproduction in Saccharomyces cerevisiae." Thesis, University of Edinburgh, 1995. http://hdl.handle.net/1842/20513.
Full textSun, An-Qiang. "How Do Enzymes Wear Out? Effects of Posttranslational Modifications on Structure and Stability of Proteins; The Triosephosphate Isomerase Model." Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc798116/.
Full textKursula, I. (Inari). "Crystallographic studies on the structure-function relationships in triosephosphate isomerase." Doctoral thesis, University of Oulu, 2003. http://urn.fi/urn:isbn:9514270096.
Full textColquhoun, Anh N. "Investigating the Role of Glutamate 97 in Triosephosphate Isomerase from Homo sapiens." Thesis, California State University, Long Beach, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10976077.
Full textIn spite of the advances made in experimental and mutational studies, understanding the importance of remote interactions is crucial for refining the knowledge of enzyme catalysis. In this study, a model system for Glu97 was developed in Homo sapiens triosephosphate isomerase ( hTIM) to investigate the energetic contribution and structural role of this fully conserved glutamate residue in the TIM-catalyzed isomerization reaction. Recombinant human triosephosphate isomerase (hTIM) was altered using site-directed mutagenesis, in which an aspartate, glutamine, or alanine residue was substituted for Glu97. In steady-state kinetics, the E97D variant exhibited the most significant catalytic activity while the E97Q enzyme was the least active. Observing both the forward and reverse directions of the TIM-catalyzed reaction, the results revealed that the enzymatic activity for E97D and E97A TIM was diminished by ~3-fold or less, and the rate was essentially unchanged for the E97D mutation. The E97Q mutant observed a greater rate effect, ~10-fold decrease in kcat and ~20-fold decrease in catalytic efficiency (kcat/ KM). To determine the conformational stability of the WT and mutant hTIM, unfolding of all four enzymes was monitored by circular dichroism, tryptophan and ANS fluorescence spectroscopy. The dimer stability was evaluated by gel-filtration analysis and the mutants showed similar chromatograms compared to that of the WT. The similar behavior observed for the WT and E97D suggests that the Asp mutation has little effect on catalysis, enzyme stability, and the unfolding pathway. On the contrary, the statistical significance observed in the E97Q and E97A mutants suggests that the Gln and Ala mutations affect the stability of the structure and may affect the unfolding pathway. Overall, these point-mutations support the model that remote interactions of Glu97 may have a modest role in catalysis. One explanation is that the direct role of Glu97 may have evolved in the human species and plays a less significant role compared to earlier species in evolution in which Glu97 mutations showed larger rate effects. Possibly, the network of unfavorable interactions is reduced and therefore, the mutational effect of Glu97 is less deleterious in hTIM.
Books on the topic "Triosephosphate isomerases"
Russell, Deanna L. Characterization of a retinol-induced triosephosphate isomerase cDNA isolated from rat testis using subtractive hybridization. 1994.
Find full textBook chapters on the topic "Triosephosphate isomerases"
Kamp, Marc Willem. "Triosephosphate Isomerase – Computational Studies." In Encyclopedia of Biophysics, 2658–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_233.
Full textBlacklow, S. C., J. D. Hermes, and J. R. Knowles. "The Improvement of Catalytic Effectiveness of an Enzyme: Pseudorevertant Triosephosphate Isomerases Obtained by Random Mutagenesis of Catalytically Sluggish Mutants." In Protein Structure and Protein Engineering, 59–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74173-9_7.
Full textJimenez-Sandoval, Pedro, Eduardo Castro-Torres, Corina Diaz-Quezada, and Luis G. Brieba. "Crystallographic Studies of Triosephosphate Isomerase from Schistosoma mansoni." In Methods in Molecular Biology, 211–18. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0635-3_17.
Full textNagase, Toshihiko, Toshihiro Sugiyama, Shigeki Higashiyama, Daitoku Sakamuro, Sumio Kawata, Seiichiro Tarui, and Naoyuki Taniguchi. "Identifications of Carbonic Anhydrase III and Triosephosphate Isomerase in the Liver Proteins in LEC Rats on Two-Dimensional Gel Electrophoresis." In The LEC Rat, 175–84. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68153-3_20.
Full textFrey, Perry A., and Adrian D. Hegeman. "Isomerization." In Enzymatic Reaction Mechanisms. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195122589.003.0011.
Full text"Triosephosphate Isomerase Deficiency (TPI1)." In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 2031. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_17473.
Full textZárate-Pérez, Francisco, María Elena Chánez-Cárdenas, and Edgar Vázquez-Contreras. "The Folding Pathway of Triosephosphate Isomerase." In Progress in Molecular Biology and Translational Science, 251–67. Elsevier, 2008. http://dx.doi.org/10.1016/s0079-6603(08)00407-8.
Full textZanella, Alberto, and Paola Bianchi. "Erythrocyte enzymopathies." In Oxford Textbook of Medicine, edited by Chris Hatton and Deborah Hay, 5463–72. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0540.
Full textCui, Qiang, and Martin Karplus. "Catalysis and Specificity in Enzymes: A Study of Triosephosphate Isomerase and Comparison with Methyl Glyoxal Synthase." In Protein Simulations, 315–72. Elsevier, 2003. http://dx.doi.org/10.1016/s0065-3233(03)66008-0.
Full textConference papers on the topic "Triosephosphate isomerases"
Zárate-Pérez, Francisco, Edgar Vázquez-Contreras, Leonardo Dagdug, and Leopoldo Gracía-Colin S. "The Oligomeric Nature of Triosephosphate Isomerase. Studies of Monomerization." In COMPLIFE 2007: The Third International Symposium on Computational Life Science. AIP, 2008. http://dx.doi.org/10.1063/1.2891415.
Full textPeräkylä, Mikael, and Tapani A. Pakkanen. "Ab initio model assembly study of the catalytic mechanism of triosephosphate isomerase (TIM)." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47648.
Full textVázquez-Contreras, Edgar. "The Unfolding and Refolding Reactions of Triosephosphate Isomerase from Trypanosoma Cruzi Follow Similar Pathways. Guanidinium Hydrochloride Studies." In STATISTICAL PHYSICS AND BEYOND: 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP, 2005. http://dx.doi.org/10.1063/1.1900497.
Full text