To see the other types of publications on this topic, follow the link: Trimethylphosphin.

Journal articles on the topic 'Trimethylphosphin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Trimethylphosphin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kreissl, F. R., W. Uedelhoven, and D. Neugebauer. "Carbonyl(cyclopentadienyl)(trimethylphosphin)tolylcarbin-komplexe von Molybdän und Wolfram." Journal of Organometallic Chemistry 344, no. 2 (April 1988): C27—C30. http://dx.doi.org/10.1016/0022-328x(88)80486-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schütt, Wolfgang, Norbert Ullrich, and Frist R. Kreiβl. "Darstellung und Reaktionen von Trimethylphosphin-sbustituierten η2-Triocarbenkomplexes des Wolframs." Journal of Organometallic Chemistry 408, no. 1 (January 1991): C5—C8. http://dx.doi.org/10.1016/0022-328x(91)80108-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steil, Peter, and Andreas Mayr. "Selektive Ligandensubstitutionsreaktionen an Carbin-Wolframkomplexen des Typs [W(CPh)Br(CO)2L2] (L = Stickstoff-Donorligand) / Selective Ligand Substitution Reactions on Carbyne Tungsten Complexes of the Type [W(CPh)Br(CO)2L2] (L = Nitrogen Donor Ligand)." Zeitschrift für Naturforschung B 47, no. 5 (May 1, 1992): 656–61. http://dx.doi.org/10.1515/znb-1992-0508.

Full text
Abstract:
The reaction of [W(CPh)Br(CO)2(py)2] (1) with one equivalent of triisopropylphosphine gives [W(CPh)Br(CO)2(py)(P-i-Pr3)] (3). The reaction of 1 with two equivalents of triisopropylphosphine under irradiation with visible light affords trans-[W(CPh)Br(CO)2(P-i-Pr3)2] (4). Substitution of the pyridine ligand in 3 by other ligands L (t-butylisocyanide, trimethylphosphine and trimethylphosphite) gives the complexes [W(CPh)Br(CO)2(L)(P-i-Pr3)]. Reaction of 4 with t-butylisocyanide gives trans-[W(CPh)Br(CO)(CNCMe3)(P-i-Pr3)2]. Irradiation of [W(CPh)Br(CO)2(tmeda)] in the presence of excess trimethylphosphine gives [W(CPh)Br(CO)(PMe3)3]. The reaction of 1 with maleic anhydride gives [W(CPh)Br(CO)(C4H203)(py)2].
APA, Harvard, Vancouver, ISO, and other styles
4

Geboes, Yannick, Frank De Proft, and Wouter A. Herrebout. "Taking the halogen bonding–hydrogen bonding competition one step further: complexes of difluoroiodomethane with trimethylphosphine, dimethyl sulfide and chloromethane." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 73, no. 2 (March 14, 2017): 168–78. http://dx.doi.org/10.1107/s2052520617001354.

Full text
Abstract:
To rationalize the driving factors in the competition of halogen bonding and hydrogen bonding, the complexes of the combined halogen-/hydrogen-bond donor difluoroiodomethane with the Lewis bases trimethylphosphine, dimethyl sulfide and chloromethane are studied. For all Lewis bases,ab initiocalculations lead to halogen- and hydrogen-bonded complexes. Fourier transform–IR experiments involving solutions of mixtures of difluoroiodomethane with trimethylphosphine(-d9) or dimethyl sulfide(-d6) in liquid krypton confirm the coexistence of a halogen-bonded and hydrogen-bonded complex. Also for solutions containing chloromethane, evidence of the formation of binary associations is found, but no definitive assignment of the multiple complex bands could be made. Using van't Hoff plots, the experimental complexation enthalpies for the halogen- and hydrogen-bonded complex of difluoroiodomethane with trimethylphosphine are determined to be −15.4 (4) and −10.5 (3) kJ mol−1, respectively, while for the halogen- and hydrogen-bonded complexes with dimethyl sulfide, the values are −11.3 (5) and −7.7 (6) kJ mol−1, respectively. The experimental observation that for both trimethylphospine and dimethyl sulfide the halogen-bonded complex is more stable than the hydrogen-bonded complex supports the finding that softer Lewis bases tend to favor iodine halogen bonding over hydrogen bonding.
APA, Harvard, Vancouver, ISO, and other styles
5

Kreißl, Fritz R., and Norbert Ullrich. "Elektrophile Addition des Thiomethyl-Kations an η5-Cyclopentadienyl(ethoxymethylcarben)-(nitrosyl)(trimethylphosphin)molybdän." Journal of Organometallic Chemistry 440, no. 3 (November 1992): 335–39. http://dx.doi.org/10.1016/0022-328x(92)80212-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Steinborn, Dirk, Steffi Becke, Renate Herzog, Mike Günther, Robert Kircheisen, Helen Stoeckli-Evans, and Clemens Bruhn. "Heteroatomfunktionalisierte Methylgold-Komplexe: Synthese und Struktur von Chlormethyl(triphenylphosphin)- und Phenylthiomethyl(trimethylphosphin)gold." Zeitschrift für anorganische und allgemeine Chemie 624, no. 8 (August 1998): 1303–7. http://dx.doi.org/10.1002/(sici)1521-3749(199808)624:8<1303::aid-zaac1303>3.0.co;2-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schütt, W., E. Herdtweck, F. Hahn, and F. R. Kreißl. "Darstellung und Röntgenstrukturuntersuchung von [1-Carbonyl-1-(η5-cyclopentadienyl)-2,3-dimethyl-1-trimethylphosphin-3-trimethylphosphoranyliden-1-wolframa-2-thiacyclopropan]-tetrafluoroborat." Journal of Organometallic Chemistry 443, no. 2 (January 1993): C33—C36. http://dx.doi.org/10.1016/0022-328x(93)80311-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kameda, Mitsuaki, and Goji Kodama. "Reaction of Bis(trimethylphosphine)heptahydrotetraboron(1+) Cation with Trimethylphosphine." Collection of Czechoslovak Chemical Communications 62, no. 8 (1997): 1279–88. http://dx.doi.org/10.1135/cccc19971279.

Full text
Abstract:
The reaction of the arachno-bis(trimethylphosphine)heptahydrotetraboron(1+) cation, B4H7 . 2 P(CH3)3+ (1), with trimethylphosphine paralleled with that of the isoelectronic arachno-trimethylphosphine-tetraborane(8), B4H8 . P(CH3)3 (2). Thus, it first gave the hypho-tris(trimethylphosphine)heptahydrotetraboron(1+) cation, B4H7 . 3 P(CH3)3+ (3), which further reacted with P(CH3)3 to finally give cleaved products, the hypho-tetrakis(trimethylphosphine)tetrahydrotriboron(1+) cation, B3H4 . 4 P(CH3)3+ (4), and trimethylphosphine-borane(3), BH3 . P(CH3)3. The effect of the ionic charges upon the reaction rates was apparent. Thus, the second reaction for 1 was rapid at room temperature while the corresponding reaction for 2 was slow and the negatively charged isoelectronic species, the B4H9 . P(CH3)3+ anion, did not undergo the second reaction. The above two hypho polyboron complex cations, 3 and 4, were characterized by 11B and 31P NMR spectroscopy. Like its isoelectronic counterparts, the cation 3 was highly fluxional; at room temperature the three B-P(CH3)3 groups were equivalent on the NMR time scale.
APA, Harvard, Vancouver, ISO, and other styles
9

Klein, Hans-Friedrich, Xiaoyan Li, Ulrich Flörke, and Hans-Jürgen Haupt. "Hydrido(acylenolato)cobalt(III)-Verbindungen mit Trimethylphosphan- Liganden: Insertionsreaktionen mit Alkinen und die ersten Carbonylcobalt(III)-Komplexe / Hydrido(acylenolato)cobalt(III) Compounds Containing Trimethylphosphane Ligands: Insertion Reactions with Alkynes and the First Carbonylcobalt(III) Complexes." Zeitschrift für Naturforschung B 55, no. 8 (August 1, 2000): 707–17. http://dx.doi.org/10.1515/znb-2000-0807.

Full text
Abstract:
Abstract Formal insertion of phenylethyne into Co-H functions of mer-octahedral acyl(enolato)-cobalt(III) hydrides 1-3 proceeds under ambient conditions affording η1-vinylcobalt(III) compounds where the dianionic acyl(enolato) ligands are derived from 2-formyl-4-phenyl-cyclohexanone (4), 1-formyl-cyclohexan-2-one (5), and 3-hydroxo-2,3-diphenyl-propenal (6). Dissociation and association of trimethylphosphane results in a reversible transformation of penta-coordinate complexes 4 -6 into hexa-coordinate ones 7 -9, respectively, involving different tautomeric vinyl species. In toluene solution 9 rearranges by reductive C,C coupling into a 5,6-η2-olefin(enolato)cobalt(I) complex 10. Trimethylsilylethyne undergoes a hydrolytic desilylation reaction which is followed by reductive C,C-coupling reactions of acyl and vinyl functions selectively producing chelating η1-enolato-5,6-η2-olefin ligands in cobalt(I) com ­ pounds 13 -16 where the (ax,eq)chelating ligands are derived from 1-formyl-cyclohexan-2-one (13), 3-hydroxo-2,3-diphenyl-propenal (14), 2-formyl-α-tetralone (15), and 2-formyl-4-tert-butyl-cyclohexanone (16). An axial position of the enolato-O donor in the trigonal bipyramidal configuration of complex 15 has been confirmed by X-ray diffraction analysis. With 1,4-bis(trimethylsilyl)buta-diyne 1,2-addition in cobalt(III) hydrides 2, 3, 11 (as deriverd from 2-formyl-α-tetralone), and 12 (as derived from 2-formyl-4-tert-butyl-cyclohexanone) produces 2-metalated vinyl groups in compounds 17 -20. Dissociation of trimethylphosphane from 17 and 19 does not activate C,C coupling at the cobalt(III) centre of penta-coordinate 21 and 22. Steric congestion in compounds 17, 18, and 20 favours exchange of trimethylphosphine for carbon monoxide affording the first octahedral carbonyl complexes of cobalt (d6) (23 -25). In the crystal and in solution a meridional configuration is adopted by complex 23 with the CO group in a position opposite to the acyl function.
APA, Harvard, Vancouver, ISO, and other styles
10

Shen, Wanling, Xin Li, and Xin Liu. "A study of oxidizing centers in carbon nanotubes by solid-state NMR." RSC Advances 5, no. 74 (2015): 60380–85. http://dx.doi.org/10.1039/c5ra07605f.

Full text
Abstract:
The adsorbed trimethylphosphine is oxidized to trimethylphosphine oxide by the oxygen-containing groups on the surface of functionalized CNTs. The concentration of oxidizing center is selectively measured.
APA, Harvard, Vancouver, ISO, and other styles
11

Klein, Hans-Friedrich, Klaus Ellrich, Susanne Lamac, Goetz Lull, Laszlo Zsolnai, and Gottfried Hüttner. "Anthracen- und Phenanthren-Cobalt-Verbindungen mit Trimethylphosphan-Liganden / Anthracene and Phenanthrene Cobalt Compounds Containing Trimethylphosphane Ligands." Zeitschrift für Naturforschung B 40, no. 10 (October 1, 1985): 1377–82. http://dx.doi.org/10.1515/znb-1985-1023.

Full text
Abstract:
Anthracene and phenanthrene complexes of zerovalent cobalt, Co(Cl4H10)(PMe3)3, are obtained by substitution of olefin in Co(olefin)(PMe3)3 (olefin = propene, cyclopentene). Ethene replaces the η2-bonded aromatic molecules. Substitution labile ligands L′ in hydridocobalt complexes CoH(L′)(PMe3)3 (L′ = N2, C4H8) give way to an anthracene or phenanthrene ligand and can in turn be replaced by carbon monoxide. η4-Coordinated anthracene in Co[Sn(C6H5)3](C14H10)(PMe3)2 is not replaced by CO under normal conditions. In η2-coordinated anthracene the bond between coordinated C-atoms in ring positions 2 and 3 is elongated by 8.9 pm when compared with free anthracene, deviations from planarity of six-membered rings are slight. η4-Coordinated anthracene contains a naphthalin-type planar part and. in the coordinated ring with the longer CC-bonds, shows a folding away from the cobalt atom.
APA, Harvard, Vancouver, ISO, and other styles
12

Klein, Hans-Friedrich, Stefan Haller, Hongjian Sun, Xiaoyan Li, Thomas Jung, Caroline Röhr, Ulrich Flörke, and Hans-Jürgen Haupt. "Halogeno(acylphenolato)cobalt(III)-Verbindungen mit Trimethylphosphan-Liganden/ Halogeno(acylphenolato)cobalt(III) Compounds Containing Trimethylphosphane Ligands." Zeitschrift für Naturforschung B 53, no. 8 (August 1, 1998): 856–64. http://dx.doi.org/10.1515/znb-1998-0814.

Full text
Abstract:
Abstract Complexes mer-CoH(CO-CR=CR′-O)(PMe3)3 react with haloalkanes RX (X = Br, I) or with acids HX (X = Cl, Br) under elimination of dihydrogen. In both reactions a change of configu­ration at the metal is brought about by directional steering through the hard/soft (acyl)enolato chelate ligands to form octahedral complexes mer-CoX(CO-CR=CR′-C))(PMe3)3 or sterically crowded ionic compounds [Co(CO-CR=CR′-O)(PMe3)4(3)]+ X-(X = ClO4) without opening of the (acyl)enolato chelate ring.
APA, Harvard, Vancouver, ISO, and other styles
13

Klein, Hans-Friedrich, Stefan Haller, Hongjian Sun, Xiaoyan Li, Thomas Jung, Caroline Röhr, Ulrich Flörke, and Hans-Jürgen Haupt. "Hydrido(acylphenolato)cobaIt(III)-Verbindungen mit Trimethylphosphan-Liganden / Hydrido(acylphenolato)cobalt(III) Compounds Containing Trimethylphosphane Ligands." Zeitschrift für Naturforschung B 53, no. 5-6 (June 1, 1998): 587–98. http://dx.doi.org/10.1515/znb-1998-5-617.

Full text
Abstract:
Abstract Salicylaldehyde derivatives and related β-hydroxo aldehydes CHO-CR=CR′-OH react with CoMe(PMe3)4 via oxidative substitution to form low-spin d6 complexes mer-CoH(CO-CR=CR-O)(PMe3)3. Reductive elimination of acyl and hydride functions from cis positions at the metal is less favourable than in carbonyl cobalt intermediates through a pronounced stabilization by neutral phosphane σ-donor and dianionic acylenolato chelate ligands. Reactions of the hydride complexes with iodomethane or with protic acids HX afford octahedral molecular complexes mer-CoX(CO-CR=CR′-O)(PMe3)3 (X =I, OAc) and mer-CoX(CO-CR=CR′-O)(PMe3)2 (X = OAc, O-CR′=CR-CHO) without opening of the acylenolato chelate ring.
APA, Harvard, Vancouver, ISO, and other styles
14

Wielandt, J. Wolfram, Simon Petrie, Nathan L. Kilah, Anthony C. Willis, Rian D. Dewhurst, Ferdinand Belaj, Andreas Orthaber, Robert Stranger, and S. Bruce Wild. "Self-Assembly of Square-Planar Halide Complexes of Trimethylphosphine-Stabilized Diphenyl-Arsenium, -Stibenium, and -Bismuthenium Hexafluorophosphates." Australian Journal of Chemistry 69, no. 5 (2016): 524. http://dx.doi.org/10.1071/ch15701.

Full text
Abstract:
Square-planar halide complexes in which four trimethylphosphine-stabilized diphenyl-stibenium or -bismuthenium ions surround a central halide ion in discrete centrosymmetrical structures of C4h symmetry have been isolated and their structures determined by X-ray crystallography. The structures are stabilized by electrostatic interactions between the halide ion and four positively charged trimethylphosphine-stabilized diphenyl-stibenium or -bismuthenium ions, as well as four edge-to-face phenyl–phenyl embraces above and below the plane containing the nine main group elements. The parent halide-free trimethylphosphine-stabilized diphenyl-arsenium, -stibenium, and -bismuthenium hexaflurophosphate complexes have also been prepared and structurally characterized.
APA, Harvard, Vancouver, ISO, and other styles
15

Hosokawa, Seijiro, and Haruka Sato. "Trimethylphosphine-Promoted Alcoholysis of α,β-Unsaturated Imides and α,β-Unsaturated Esters." Synthesis 50, no. 06 (January 16, 2018): 1343–49. http://dx.doi.org/10.1055/s-0036-1589162.

Full text
Abstract:
α,β-Unsaturated imides and α,β-unsaturated esters were found to undergo alcoholysis in the presence of trimethylphosphine. The reaction is initiated by nucleophilic addition of trimethylphosphine to the double bond of the α,β-unsaturated carbonyl compound. Saturated imides also undergo the alcoholysis in the presence of the corresponding α,β-unsaturated imide.
APA, Harvard, Vancouver, ISO, and other styles
16

Alt, H. G., and H. E. Engelhardt. "Trimethylphosphan-stabilisierte Monocyclopentadienylkomplexe des Niobs(III) und Tantals(III)/Trimethylphosphine Stabilized Monocyclopentadienyl Complexes of Niobium(III) and Tantalum(III)." Zeitschrift für Naturforschung B 44, no. 3 (March 1, 1989): 367–69. http://dx.doi.org/10.1515/znb-1989-0319.

Full text
Abstract:
The reduction of Cp'MCl4 complexes (Cp' = η5-C5H5, η5-C5Me5; M = Nb, Ta) in the presence of excess PMe3, leads to the highly reactive products Cp'M (PMe3)3Cl2. One or two PMe3 ligands of these compounds can be substituted by CO or CO2 toyield Cp'M (PMe3)2(CO)Cl2, Cp'M(PMe3)(CO)2Cl2 and an oxo complex.
APA, Harvard, Vancouver, ISO, and other styles
17

Kameda, Mitsuaki, and Goji Kodama. "Reaction of bis(trimethylphosphine)-tetraborane(8) with trimethylphosphine." Inorganic Chemistry 29, no. 23 (November 1990): 4837–38. http://dx.doi.org/10.1021/ic00348a048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Berg, Michael A., Jesse Davidson, and Joseph S. Merola. "Trimethylphosphoniumtrans-tetrachloridobis(trimethylphosphane-κP)iridate(III)." Acta Crystallographica Section E Structure Reports Online 70, no. 3 (February 22, 2014): m103. http://dx.doi.org/10.1107/s160053681400350x.

Full text
Abstract:
The title compound, [HP(CH3)3][IrCl4{(H3C)3P}2], consists of a trimethylphosphonium cation and a tetrachloridobis(trimethylphosphane)iridate(III) anion. The anion has an octahedral arrangement of ligands, with the trimethylphosphane groups occupyingtranspositions. The IrIIIatom sits on an inversion center with one P(CH3)3ligand and two chloride ligands in the asymmetric unit. The trimethylphosphonium cation is disordered about a twofold rotation axis. The title compound is the first structurally characterized tetrachloridobis(phosphane)iridate complex.
APA, Harvard, Vancouver, ISO, and other styles
19

KAMEDA, M., and G. KODAMA. "ChemInform Abstract: Reaction of Bis(trimethylphosphine)-Tetraborane(8) with Trimethylphosphine." ChemInform 22, no. 9 (August 23, 2010): no. http://dx.doi.org/10.1002/chin.199109254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Geboes, Yannick, Elias De Vos, and Wouter A. Herrebout. "S⋯S and S⋯P chalcogen bonding in solution: a cryospectroscopic study of the complexes of 2,2,4,4-tetrafluoro-1,3-dithietane with dimethyl sulfide and trimethylphosphine." New Journal of Chemistry 42, no. 13 (2018): 10563–71. http://dx.doi.org/10.1039/c8nj01648h.

Full text
Abstract:
Experimental evidence on the formation of S⋯S and P⋯S chalcogen bonded complexes between 2,2,4,4-tetrafluoro-1,3-dithiethane and the Lewis bases dimethyl sulfide and trimethylphosphine is obtained using infrared spectroscopy of solutions in liquid krypton.
APA, Harvard, Vancouver, ISO, and other styles
21

Kameda, Mitsuaki, and Goji Kodama. "Reactions of trimethylphosphine-pentaboranes with trityl cation. Formation of octahydrobis(trimethylphosphine)pentaboron(1+) and octahydro(trimethylphosphine)pentaboron(1+) cations." Inorganic Chemistry 26, no. 12 (June 1987): 2011–12. http://dx.doi.org/10.1021/ic00259a042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Charmant, Jonathan P. H., Nicholas C. Norman, A. Guy Orpen, and George R. Whittell. "Carbonyldichlorohydridobis(trimethylphosphine)iridium(III)." Acta Crystallographica Section E Structure Reports Online 60, no. 2 (January 17, 2004): m164—m165. http://dx.doi.org/10.1107/s1600536804000480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yu, Fengli, Qibao Wang, and Xiaoyan Li. "Cyanidophenyltris(trimethylphosphine)cobalt(II)." Acta Crystallographica Section E Structure Reports Online 64, no. 1 (December 6, 2007): m112. http://dx.doi.org/10.1107/s1600536807064781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chase, Preston A., Masood Parvez, and Warren E. Piers. "Trimethylphosphine–tris(pentafluorophenyl)borane." Acta Crystallographica Section E Structure Reports Online 62, no. 11 (October 25, 2006): o5181—o5183. http://dx.doi.org/10.1107/s1600536806043029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cao, Ruixia, Qibao Wang, and Hongjian Sun. "Dichloridotris(trimethylphosphine)nickel(II)." Acta Crystallographica Section E Structure Reports Online 64, no. 2 (January 11, 2008): m335. http://dx.doi.org/10.1107/s1600536808000317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Xu, Xiaofeng, Lei Feng, and Xiaoyan Li. "Cyanidotetrakis(trimethylphosphine)cobalt(I)." Acta Crystallographica Section E Structure Reports Online 67, no. 4 (March 26, 2011): m503. http://dx.doi.org/10.1107/s160053681101083x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Avent, Anthony G., F. Goeffrey N. Cloke, Jeremy P. Day, Elaine A. Seddon, Kenneth R. Seddon, and Stephen M. Smedley. "Tetrakis(trimethylphosphine)nickel(0)." Journal of Organometallic Chemistry 341, no. 1-3 (March 1988): 535–41. http://dx.doi.org/10.1016/0022-328x(88)89106-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jones, R. A., M. H. Seeberger, A. L. Stuart, B. R. Whittlesey, and T. C. Wright. "Structures of bis[tricarbonyl(trimethylphosphine)cobalt] (1) and dicarbonylchlorobis(trimethylphosphine)cobalt (2)." Acta Crystallographica Section C Crystal Structure Communications 42, no. 4 (April 15, 1986): 399–402. http://dx.doi.org/10.1107/s0108270186096026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Packett, Diane L., Ashfaquzzaman Syed, and William C. Trogler. "Associative reactions of dihydridobis(trimethylphosphine)platinum(II). Molecular structures of (diphenylacetylene)bis(trimethylphosphine)platinum and hydridotris(trimethylphosphine)platinum(II) tetraphenylborate." Organometallics 7, no. 1 (January 1988): 159–66. http://dx.doi.org/10.1021/om00091a025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Radu, Luana-Flavia, Amr A. A. Attia, Radu Silaghi-Dumitrescu, Alexandru Lupan, and R. Bruce King. "Reversible complexation of ammonia by breaking a manganese–manganese bond in a manganese carbonyl ethylenedithiolate complex: a theoretical study of an unusual type of Lewis acid." Dalton Transactions 48, no. 1 (2019): 324–32. http://dx.doi.org/10.1039/c8dt04217a.

Full text
Abstract:
The addition of bases such as ammonia and trimethylphosphine to H2C2S2Mn2(CO)6 to give yellow 1 : 1 adducts is shown to break the metal–metal bond rather than displace the coordinated double bond.
APA, Harvard, Vancouver, ISO, and other styles
31

Luong, Horace, Melanie D. Eelman, and Mark Stradiotto. "A new fluorous soluble Lewis acidic borane system." Canadian Journal of Chemistry 82, no. 4 (April 1, 2004): 533–38. http://dx.doi.org/10.1139/v04-018.

Full text
Abstract:
Treatment of trichlorovinylsilane with 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanol (3 equiv.) in the presence of excess triethylamine produces the fluorous vinylsilane, 1, which can be isolated in 74% yield as an analytically pure oil. The addition of bis(pentafluorophenyl)borane to 1 produces the fluorous boranes, 2a–2b, as an analytically pure, isomeric mixture of anti-Markovnikov and Markovnikov hydroboration products in 38% isolated yield. Compounds 2a–2b are soluble in both arene solvents and perfluoro(methylcyclohexane). Treatment of 2a–2b with excess trimethylphosphine generates a mixture of products, including the Lewis adduct, 3, which can be isolated as an analytically pure oil in 15% yield. When exposed to either dimethylaminopyridine or piperidine at room temperature, the trimethylphosphine donor in 3 is cleanly displaced, based on in situ 31P NMR studies; under similar conditions, triethylamine does not react with 3. Addition of either dimethylaminopyridine or piperidine to 2a–2b, followed by purification and subsequent treatment with an excess of either hydrogen chloride or p-toluenesulfonic acid, results in cleavage of the Si–O linkages and the regeneration of 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanol.Key words: fluorous, borane, silane, Lewis acid.
APA, Harvard, Vancouver, ISO, and other styles
32

Engelhardt, LM, CL Raston, CR Whitaker, and AH White. "Crystal-Structure of Trimethylphosphine Oxide." Australian Journal of Chemistry 39, no. 12 (1986): 2151. http://dx.doi.org/10.1071/ch9862151.

Full text
Abstract:
The structure of [P(O)Me3] has been determined by X-ray diffraction: crystals are monoclinic, space group C2/m with a 10.86(1), b 9.026(6), c 5.394(4) Ǻ, β 92.09(8)° with Z =4. Molecules lie on crystallographic mirror planes; P-O 1.489(6), P-C 1.772(6) and 1.770(10)Ǻ, <O-P-C 112.2(2) and 114.0(4)°, <C-P-C 105.6(3) and 106.2(3)°.
APA, Harvard, Vancouver, ISO, and other styles
33

Alyea, Elmer C., Shanmugaperumal Kannan, and Paul R. Meehan. "Bis(trimethylphosphine)silver(I) hexafluorophosphate." Acta Crystallographica Section C Crystal Structure Communications 58, no. 7 (June 12, 2002): m365—m367. http://dx.doi.org/10.1107/s0108270102007734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Carson, C. C., R. D. Pike, and G. B. Carpenter. "Azidotetrakis(trimethylphosphine)nickel(II) Tetrafluoroborate." Acta Crystallographica Section C Crystal Structure Communications 51, no. 4 (April 15, 1995): 595–98. http://dx.doi.org/10.1107/s0108270194010553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mishra, S. P., and M. C. R. Symons. "Electron Addition to Trimethylphosphine Sulfide." Journal of Physical Chemistry A 101, no. 44 (October 1997): 8242–47. http://dx.doi.org/10.1021/jp9721356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Cotton, F. A., L. M. Daniels, and S. Herrero. "μ-Oxo-bis[dichlorooxo(trimethylphosphine-P)(trimethylphosphine oxide-O)molybdenum(V)] diethyl ether hemisolvate." Acta Crystallographica Section C Crystal Structure Communications 55, no. 3 (March 15, 1999): IUC9900018. http://dx.doi.org/10.1107/s010827019909976x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sandblom, Nicole, Tom Ziegler, and Tristram Chivers. "A density functional study of the bonding in tertiary phosphine chalcogenides and related molecules." Canadian Journal of Chemistry 74, no. 11 (November 1, 1996): 2363–71. http://dx.doi.org/10.1139/v96-263.

Full text
Abstract:
The nature of the phosphorus–tellurium bond in tertiary phosphine tellurides is not well understood. There is also controversy over the nature of multiple bonding in the lighter chalcogenides and the related ylides and imides. Density functional theory (DFT) was used to investigate the interactions in the molecule, Me3PE (E = O, S, Se, Te, BH3, CH2, NH). The calculated PE bond energies and orbital populations reveal contributions from both σ donation from the phosphine and π back-donation to the phosphine in all of the above cases. Down the group from oxygen to tellurium, the PE bond weakens from 544 kJ mol−1 to 184 kJ mol−1, but multiple bonding becomes more significant with respect to the single bond. For E = BH3, the PB bond energy is 166 kJ mol−1. Trimethylphosphine ylide was found to have a π-bond order of 0.5, while that of trimethylphosphine imine is 0.6. For comparison, the oxides of trimethylamine and trimethylarsine were also calculated to examine the pnictogen–oxygen bond; Me3N does not participate in multiple bonding with oxygen, while the π-bond orders for Me3PO and Me3AsO were calculated as 0.7 and 0.6, respectively. Key words: phosphine chalcogenides, phosphine ylides, phosphine imides, DFT calculations
APA, Harvard, Vancouver, ISO, and other styles
38

Rath, Nigam P., Meghan Stouffer, Matthew K. Janssen, and John R. Bleeke. "Dicarbonyldichloridobis(trimethylphosphane)iron(II)–carbonyldichloridotris(trimethylphosphane)iron(II)–tetrahydrofuran (1/1/2)." Acta Crystallographica Section E Structure Reports Online 67, no. 4 (March 19, 2011): m462. http://dx.doi.org/10.1107/s1600536811009305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Schwarz, Andreas, and Goji Kodama. "A method for trimethylphosphine-pentaborane(9) preparation utilizing facile formation of trimethylamine-trimethylphosphine-pentaborane(9)." Inorganic Chemistry 32, no. 18 (September 1993): 3970–72. http://dx.doi.org/10.1021/ic00070a034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Grundt, Peter, and Goji Kodama. "Formation of the Decahydro(trimethylphosphine)pentaborate(1-) Anion and an Isomer of Trimethylphosphine-Pentaborane(11)." Inorganic Chemistry 33, no. 9 (April 1994): 2056–59. http://dx.doi.org/10.1021/ic00087a051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

WADEPOHL, Hubert. "Basic Metal Complexes: Crystal Structures of Cyclopentadienylcobalt(I)-bis(trimethylphosphine) and Cyclopentadienylcobalt(I)-(trimethylphosphine)(ethylene)." Analytical Sciences: X-ray Structure Analysis Online 24 (2008): x225—x226. http://dx.doi.org/10.2116/analscix.24.x225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sarbu, Laura G., Lucian G. Bahrin, Peter G. Jones, Lucian M. Birsa, and Henning Hopf. "[2.2]Paracyclophane derivatives containing tetrathiafulvalene moieties." Beilstein Journal of Organic Chemistry 11 (October 15, 2015): 1917–21. http://dx.doi.org/10.3762/bjoc.11.207.

Full text
Abstract:
The synthesis of [2.2]paracyclophane derivatives containing tetrathiafulvalene units has been accomplished by the coupling reaction of 4-([2.2]paracyclophan-4-yl)-1,3-dithiol-2-thione in the presence of trimethylphosphite. The 1,3-dithiol-2-thione derivative was in turn synthesized by the regioselective bromination of 4-acetyl[2.2]paracyclophane, then through the corresponding dithiocarbamates and 1,3-dithiolium salts.
APA, Harvard, Vancouver, ISO, and other styles
43

Gloede, Jörg, and Hans Groß. "Umwandlung von Trimethylphosphit in o-Phenylenmethanphosphonat." Zeitschrift für Chemie 24, no. 10 (August 31, 2010): 391–92. http://dx.doi.org/10.1002/zfch.19840241019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Ruomei, Andreas Schweighofer, Helmut Keck, Wilhelm Kuchen, and Hilkka I. Kenttamaa. "The radical cation of trimethylphosphine oxide." International Journal of Mass Spectrometry and Ion Processes 157-158 (December 1996): 293–303. http://dx.doi.org/10.1016/s0168-1176(96)04464-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Costa, Luciano T., Thaciana Malaspina, Eudes E. Fileti, and Mauro C. C. Ribeiro. "Molecular dynamics simulation of liquid trimethylphosphine." Journal of Chemical Physics 135, no. 6 (August 14, 2011): 064506. http://dx.doi.org/10.1063/1.3624408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Töfke, S., and U. Behrens. "Structure of tetracarbonyl(nitrosyl)(trimethylphosphine)vanadium." Acta Crystallographica Section C Crystal Structure Communications 42, no. 2 (February 15, 1986): 161–63. http://dx.doi.org/10.1107/s0108270186096920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Karsch, Hans H., and Andreas W. Leithe. "Fluorinated Heterobutadienes/Trimethylphosphine: A Reactivity Study." Phosphorus, Sulfur, and Silicon and the Related Elements 177, no. 6-7 (June 1, 2002): 1907–11. http://dx.doi.org/10.1080/10426500212312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Miyasato, Masataka, Takahiro Mukuda, Mao Minoura, Yohsuke Yamamoto, and Kin-ya Akiba. "Coordination of Trimethylphosphine with Pentaphenyltelluronium Salts." Phosphorus, Sulfur, and Silicon and the Related Elements 177, no. 8-9 (August 2002): 2043–44. http://dx.doi.org/10.1080/10426500213441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lyons, David, and Geoffrey Wilkinson. "Trimethylphosphine polyhydrides of tungsten and rhenium." Journal of the Chemical Society, Dalton Transactions, no. 3 (1985): 587. http://dx.doi.org/10.1039/dt9850000587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Green, J. H. S., and H. A. Lauwers. "The Vibrational Spectrum of Trimethylphosphine Oxide." Bulletin des Sociétés Chimiques Belges 79, no. 9-10 (September 2, 2010): 571–74. http://dx.doi.org/10.1002/bscb.19700790908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography