Academic literature on the topic 'Tree graphs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tree graphs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tree graphs"
Mandal, Subhrangsu, and Arobinda Gupta. "Convergecast Tree on Temporal Graphs." International Journal of Foundations of Computer Science 31, no. 03 (April 2020): 385–409. http://dx.doi.org/10.1142/s012905412050015x.
Full textGuo, Haiyan, and Bo Zhou. "On the α-spectral radius of graphs." Applicable Analysis and Discrete Mathematics, no. 00 (2020): 22. http://dx.doi.org/10.2298/aadm180210022g.
Full textHao, Long. "A Novel Algorithm Based on the Degree Tree for Graph Isomorphism." Advanced Materials Research 225-226 (April 2011): 417–21. http://dx.doi.org/10.4028/www.scientific.net/amr.225-226.417.
Full textBunke, H., and B. T. Messmer. "Recent Advances in Graph Matching." International Journal of Pattern Recognition and Artificial Intelligence 11, no. 01 (February 1997): 169–203. http://dx.doi.org/10.1142/s0218001497000081.
Full textSmirnov, Alexander Valeryevich. "NP-completeness of the Minimum Spanning Tree Problem of a Multiple Graph of Multiplicity k ≥ 3." Modeling and Analysis of Information Systems 28, no. 1 (March 24, 2021): 22–37. http://dx.doi.org/10.18255/1818-1015-2021-1-22-37.
Full textBHABAK, PUSPAL, and HOVHANNES A. HARUTYUNYAN. "Approximation Algorithm for the Broadcast Time in k-Path Graph." Journal of Interconnection Networks 19, no. 04 (December 2019): 1950006. http://dx.doi.org/10.1142/s0219265919500063.
Full textLYONS, RUSSELL. "Identities and Inequalities for Tree Entropy." Combinatorics, Probability and Computing 19, no. 2 (December 15, 2009): 303–13. http://dx.doi.org/10.1017/s0963548309990605.
Full textThenge, J. D., B. Surendranath Reddy, and Rupali S. Jain. "Contribution to Soft Graph and Soft Tree." New Mathematics and Natural Computation 15, no. 01 (December 25, 2018): 129–43. http://dx.doi.org/10.1142/s179300571950008x.
Full textMaksimov, Anatoliy G., Arsenii D. Zavalishin, Maxim V. Abramov, and Alexander L. Tulupyev. "Adjacency Tree Families and Complementarity Criteria." Computer tools in education, no. 1 (March 30, 2020): 28–37. http://dx.doi.org/10.32603/2071-2340-2020-1-28-37.
Full textSmirnov, Alexander V. "The Spanning Tree of a Divisible Multiple Graph." Modeling and Analysis of Information Systems 25, no. 4 (August 27, 2018): 388–401. http://dx.doi.org/10.18255/1818-1015-2018-4-388-401.
Full textDissertations / Theses on the topic "Tree graphs"
Mahoney, James Raymond. "Tree Graphs and Orthogonal Spanning Tree Decompositions." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/2944.
Full textAbu-Ata, Muad Mustafa. "Tree-Like Structure in Graphs and Embedability to Trees." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1397345185.
Full textBesomi, Ormazábal Guido Andrés. "Tree embeddings in dense graphs." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/164009.
Full textMemoria para optar al título de Ingeniero Civil Matemático
En 1995 Komlós, Sárközy y Szemerédi probaron que para cualquier $\delta>0$ y cualquier entero positivo $\Delta$, todo grafo $G$ de orden $n$, con $n$ suficientemente grande, que satisfaga $\delta(G)\geq (1+\delta)\frac{n}{2}$, contiene como subgrafo a todo árbol de $n$ vértices y grado máximo acotado por $\Delta$. En esta memoria se presentan dos posibles generalizaciones de este resultado, estableciendo condiciones suficientes para el \textit{embedding} de árboles de orden $k$ en grafos con grado mínimo al menos $(1+\delta)\frac{k}{2}$, donde $k$ es lineal en el orden del grafo anfitrión. En 1963 Erd\H{o}s y Sós conjeturaron que, dado un entero $k$, un grafo $G$ con grado promedio mayor que $k-1$ debería contener todos los árboles en $k$ aristas como subgrafos. Como consecuencia de uno de los resultados principales de esta memoria, se demuestra una versión parcial de la conjetura de Erd\H{o}s-Sós. Siguiendo la linea del \textit{embedding} de árboles en grafos con condiciones de grado mínimo, Havet, Reed, Stein y Wood conjeturaron el 2016 que todo grafo con grado mínimo al menos $\lfloor\frac{2k}{3}\rfloor$ y grado máximo al menos $k$ contiene todo árbol con $k$ aristas como subgrafo. Las técnicas aquí desarrolladas permiten, adicionalmente, probar una versión parcial de esta conjetura.
CMM - Conicyt PIA AFB170001
Naveed, Ahmed Azam. "On Enumeration of Tree-Like Graphs and Pairwise Compatibility Graphs." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263783.
Full textTarrés, Puertas Marta Isabel. "Direct tree decomposition of geometric constraint graphs." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/285011.
Full textL'evolució de models geomètrics basats en restriccions està fortament lligada al sistemes de Disseny Assistit per Computador (CAD) paramètrics i als basats en el paradigma de disseny per mitjà de característiques. Des de la introducció del disseny paramètric per part de Pro/Engineer en els anys 80, la major part de sistemes CAD utilitzaren com a tecnologia de base els models geomètrics basats en restriccions. Els models geomètrics basats en restriccions permeteren als sistemes CAD proporcionar un model d'informació més ampli i alhora oferir una interfície d'usuari intuitiva. Posteriorment, els mateixos models s'aplicaren en camps com el disseny de mecanismes, el modelatge químic, la visió per computador i la geometria dinàmica. Els models geomètrics basats en restriccions són models no avaluats. Un problema clau relacionat amb el models de restriccions geomètriques és el problema de la resolució de restriccions geomètriques, que es resumeix com el problema d'avaluar un model basat en restriccions. Entre els diferents enfocs de resolució de restriccions geomètriques, tractem els solvers de Descomposició-Recombinació (DR-solvers) basats en graphs. En l'enfoc constructiu basat en grafs, el problema geomètric es trasllada en un pas inicial a un graf, on els vèrtexs del graf representen el conjunt d'elements geomètrics i on les arestes corresponen a les restriccions geomètriques entre els elements. A continuació el problema de restriccions es resol descomposant el graf en un conjunt de subproblemes, cadascun dels quals es divideix recursivament fins a obtenir problemes bàsics, que sovint són operacions geomètriques realitzables, per exemple, amb regle i compàs, i que es resolen per mitjà d'un solver numèric específic. Finalment, la solució del problema inicial s'obté recombinant les solucions dels subproblemes. L'enfoc utilitzat pels DR-solvers ha esdevingut especialment interessant quan la descomposició en subproblemes i la posterior recombinació de solucions d'aquests subproblemes es pot descriure com un pla de construcció generat a priori, és a dir, un pla generat com a pas de pre-procés sense necessitat de resoldre realment els subsistemes. El pla generat pel DR-planner esdevé inalterable encara que els valors numèrics dels paràmetres canviin. Aquest pla es coneix com a DR-plan i la unitat en el solver que el genera és l'anomenat DR-planner. En aquest context, el DR-plan s'utilitza com a eina del procés de resolució en curs, és a dir, permet calcular les coordenades específiques que correctament posicionen els elements geomètrics uns respecte els altres. En aquesta tesi desenvolupem un nou algoritme que és la base del DR-planner per a DR-solvers constructius basats en grafs en l'espai bidimensional. Aquest DR-planner es basa en la descomposició en arbre d'un graf. La descomposició en triangles o arbre de descomposició d'un graf es basa en descomposar un graf en tres subgrafs tals que comparteixen un vèrtex 2 a 2. El conjunt de vèrtexs compartits s'anomenen \emph{hinges}. La descomposició en arbre d'un graf de restriccions geomètriques equival, en cert sentit, a resoldre el problema de restriccions geomètriques. L'algoritme del DR-planner en primer lloc transforma el graf proporcionat en un graf més simple i planar. A continuació, es calcula el dibuix en el pla del graf transformat, on les hinges, si n'hi ha, es calculen de manera directa. En aquest treball demostrem la correctesa del nou algoritme. Finalment, proporcionem l'estudi de la complexitat temporal de l'algoritme en cas pitjor i demostrem que és quadràtica en el nombre de vèrtexs del graf proporcionat. L'algoritme resultant és senzill d'implementar i tan eficient com altres algoritmes de resolució concrets
Rhodes, Benjamin Robert. "On the Discrete Number of Tree Graphs." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98536.
Full textMaster of Science
We study a generalization of the problem of finding bounds on the number of discrete chains, which itself is a generalization of the Erdős unit distance problem, a famous mathematics problem named after mathematician Paul Erdős. Given a set of points, and a tree graph of a much smaller amount of vertices, we study the maximum possible number of tree graphs which can be represented by a prescribed tree graph. We derive an algorithm for finding tight bounds for this family of problems up to chain bound discrepancy, and give upper and lower bounds in special cases.
Broutin, Nicolas. "Random trees, graphs and recursive partitions." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00842019.
Full textArbres aléatoires uniformes. Il s'agit ici de mieux comprendre un objet limite essentiel, l'arbre continu brownien (CRT). Je présente quelques résultats de convergence pour des modèles combinatoires ''non-branchants'' tels que des arbres sujets aux symétries et les arbres à distribution de degrés fixée. Je décris enfin une nouvelle décomposition du CRT basée sur une destruction partielle.
Graphes aléatoires. J'y décris la construction algorithmique de la limite d'échel-le des graphes aléatoires du modèle d'Erdös--Rényi dans la zone critique, et je fais le lien avec le CRT et donne des constructions de l'espace métrique limite. Arbres couvrant minimaux. J'y montre qu'une connection avec les graphes aléatoires permet de quantifier les distances dans un arbre convrant aléatoire. On obtient non seulement l'ordre de grandeur de l'espérance du diamètre, mais aussi la limite d'échelle en tant qu'espace métrique mesuré. Partitions récursives. Sur deux exemples, les arbres cadrant et les laminations du disque, je montre que des idées basées sur des théorèmes de point fixe conduisent à des convergences de processus, où les limites sont inhabituelles, et caractérisées par des décompositions récursives.
Leitert, Arne. "Tree-Breadth of Graphs with Variants and Applications." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1497402176814598.
Full textBertacchi, D., and Andreas Cap@esi ac at. "Random Walks on Diestel--Leader Graphs." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1004.ps.
Full textSanders, Daniel Preston. "Linear algorithms for graphs of tree-width at most four." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/30061.
Full textBooks on the topic "Tree graphs"
Dror, Moshe. Directed Steiner tree problem on a graph: Models, relaxations, and algorithms. Monterey, Calif: Naval Postgraduate School, 1988.
Find full textLorca, Xavier. Tree-based Graph Partitioning Constraint. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2011. http://dx.doi.org/10.1002/9781118604304.
Full textTree-based graph partitioning constraint. London: ISTE, 2011.
Find full textIrniger, Christophe-André Mario. Graph matching: Filtering databases of graphs using machine learning techniques. Berlin: AKA, 2005.
Find full textValiente, Gabriel. Algorithms on Trees and Graphs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
Find full textValiente, Gabriel. Algorithms on Trees and Graphs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04921-1.
Full textGupta, Arvind. Constructivity issues in tree minors. Toronto, Ont: Dept. of Computer Science, University of Toronto, 1990.
Find full textTree of love. New York: NBM Pub., 2005.
Find full textReading Graphs, maps & trees: Responses to Franco Moretti. Anderson, SC: Parlor Press, 2011.
Find full textCai, Jiazhen. Counting embeddings of planar graphs using DFS trees. New York: Courant Institute of Mathematical Sciences, New York University, 1992.
Find full textBook chapters on the topic "Tree graphs"
Bass, Hyman, and Alexander Lubotzky. "Graphs of Groups and Edge-Indexed Graphs." In Tree Lattices, 17–23. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-2098-5_3.
Full textAldous, Joan M., and Robin J. Wilson. "Tree Structures." In Graphs and Applications, 138–62. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0467-4_6.
Full textPrömel, Hans Jürgen, and Angelika Steger. "Basics I: Graphs." In The Steiner Tree Problem, 1–22. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80291-0_1.
Full textValiente, Gabriel. "Tree Traversal." In Algorithms on Trees and Graphs, 113–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04921-1_3.
Full textValiente, Gabriel. "Tree Isomorphism." In Algorithms on Trees and Graphs, 151–251. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04921-1_4.
Full textBruni, Roberto, Ugo Montanari, and Matteo Sammartino. "Algebras for Tree Decomposable Graphs." In Graph Transformation, 203–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51372-6_12.
Full textFekete, Sándor P., and Jana Kremer. "Tree Spanners in Planar Graphs." In Graph-Theoretic Concepts in Computer Science, 298–309. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/10692760_24.
Full textDragan, Feodor F., Chenyu Yan, and Irina Lomonosov. "Collective Tree Spanners of Graphs." In Algorithm Theory - SWAT 2004, 64–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27810-8_7.
Full textAbola, Benard, Pitos Seleka Biganda, Christopher Engström, John Magero Mango, Godwin Kakuba, and Sergei Silvestrov. "PageRank in Evolving Tree Graphs." In Stochastic Processes and Applications, 375–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02825-1_16.
Full textManuel, Paul, Bharati Rajan, Indra Rajasingh, and Amutha Alaguvel. "Tree Spanners, Cayley Graphs, and Diametrically Uniform Graphs." In Graph-Theoretic Concepts in Computer Science, 334–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39890-5_29.
Full textConference papers on the topic "Tree graphs"
Mayhew, Gregory L. "Rooted tree graphs and de Bruijn graphs." In 2010 IEEE Aerospace Conference. IEEE, 2010. http://dx.doi.org/10.1109/aero.2010.5446922.
Full textNagoya, Takayuki. "Variants of Graph Matching for Tree-like Graphs." In 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity). IEEE, 2015. http://dx.doi.org/10.1109/smartcity.2015.168.
Full textJiang, Qiang-rong, and Yuan Gao. "Spanning-Tree Kernels on Graphs." In 2010 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA 2010). IEEE, 2010. http://dx.doi.org/10.1109/icmtma.2010.69.
Full textHong, Seok-Hee, Quan Nguyen, Amyra Meidiana, Jiaxi Li, and Peter Eades. "BC Tree-Based Proxy Graphs for Visualization of Big Graphs." In 2018 IEEE Pacific Visualization Symposium (PacificVis). IEEE, 2018. http://dx.doi.org/10.1109/pacificvis.2018.00011.
Full textAkiba, Takuya, Yoichi Iwata, Yosuke Sameshima, Naoto Mizuno, and Yosuke Yano. "Cut Tree Construction from Massive Graphs." In 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016. http://dx.doi.org/10.1109/icdm.2016.0089.
Full textDa San Martino, Giovanni, Nicolò Navarin, and Alessandro Sperduti. "A Tree-Based Kernel for Graphs." In Proceedings of the 2012 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2012. http://dx.doi.org/10.1137/1.9781611972825.84.
Full textAIZENMAN, MICHAEL, and SIMONE WARZEL. "DISORDER-INDUCED DELOCALIZATION ON TREE GRAPHS." In Proceedings of the QMath11 Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350365_0008.
Full textMa, Cherng-Min, Shu-Yen Wan, and Jiann-Der Lee. "Skeletonization on 3D tree-embedded graphs." In Medical Imaging 2003, edited by Milan Sonka and J. Michael Fitzpatrick. SPIE, 2003. http://dx.doi.org/10.1117/12.480126.
Full textKARUNO, YOSHIYUKI, and HIROSHI NAGAMOCHI. "MINIMIZING CAPACITATED TREE COVERS OF GRAPHS." In Proceedings of the 3rd Asian Applied Computing Conference. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2007. http://dx.doi.org/10.1142/9781860948534_0012.
Full textDa Silva, Thiago Gouveia. "The Minimum Labeling Spanning Tree and Related Problems." In XXXII Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/ctd.2019.6333.
Full textReports on the topic "Tree graphs"
Mahoney, James. Tree Graphs and Orthogonal Spanning Tree Decompositions. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2939.
Full textFlowerday, Kaelyn. Unfolding Trees and Symmetrically-Associated Graphs. Portland State University Library, November 2015. http://dx.doi.org/10.15760/honors.210.
Full textSullivan, Blair D., Dinesh P. Weerapurage, and Christopher S. Groer. Parallel Algorithms for Graph Optimization using Tree Decompositions. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1042920.
Full textBlair, J. R. S., and B. W. Peyton. An introduction to chordal graphs and clique trees. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10145949.
Full textBlair, J. R. S., and B. W. Peyton. An introduction to chordal graphs and clique trees. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6560471.
Full textSonderman, David L., Everette D. Rast, and Everette D. Rast. Changes in hardwood growing-stock tree grades. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experimental Station, 1987. http://dx.doi.org/10.2737/ne-rp-608.
Full textDror, Moshe, Bezalel Gavish, and Jean Choquette. Directed Steiner Tree Problem on a Graph: Models, Relaxations, and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada199769.
Full textPawagi, S., and I. V. Ramakrishnan. On Using Inverted Trees for Updating Graph Properties. Fort Belvoir, VA: Defense Technical Information Center, May 1985. http://dx.doi.org/10.21236/ada160135.
Full textPawagi, Shaunak, and I. V. Ramakrishnan. On Using Multiple Inverted Trees for Parallel Updating of Graph Properties. Fort Belvoir, VA: Defense Technical Information Center, May 1985. http://dx.doi.org/10.21236/ada166058.
Full textQi, Fei, Zhaohui Xia, Gaoyang Tang, Hang Yang, Yu Song, Guangrui Qian, Xiong An, Chunhuan Lin, and Guangming Shi. A Graph-based Evolutionary Algorithm for Automated Machine Learning. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ser.v1i2.77.
Full text