Dissertations / Theses on the topic 'Travelling crane'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Travelling crane.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sjöberg, Ingrid. "Modelling and Fault Detection of an Overhead Travelling Crane System." Thesis, Linköpings universitet, Reglerteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150166.
Full textBrock, Mark William. "The influence of intermediate diaphragms in overhead travelling crane box-girders." Thesis, University of Leicester, 1988. http://hdl.handle.net/2381/34747.
Full textMcKenzie, Kim Anne. "The numerical simulation of wheel loads on an electric overhead travelling crane." Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/681.
Full textDymond, Juliet Sheryl. "Reliability based codification for the design of overhead travelling crane support structures." Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/1232.
Full textElectric overhead travelling bridge cranes are an integral part of many industrial processes, where they are used for moving loads around the industrial area
De, Waal Arthur William. "Development of a crane load software application for electric driven overhead travelling bridge cranes in accordance with SANS 10160-6:2010." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6622.
Full textENGLISH ABSTRACT: Electric driven overhead travelling bridge cranes (EOHTC) form a vital part of industrial plants where heavy objects require moving. Overhead travelling cranes aid in production by allowing an uninterrupted work process on the ground while heavy loads are moved to their required locations. Various factors need consideration in determining the loads induced by an EOHTC on its support structure. In order to design such a support structure, the designer must understand and take into account the various loads that the support structure will be subject to during its lifetime. The procedure for determining the loads induced by the EOHTC on its support structure is laid out in the SANS 10160-6:2010 code of practice. This document was published in June 2010 and as a result very few worked examples exist to test the coherence of the procedure. This thesis presents an investigation into the procedure for determining the actions induced by overhead travelling bridge cranes adopted in the SANS 10160-6:2010 code of practice. The investigation was conducted by developing a software application to automatically determine the necessary crane actions needed for the design of the crane support structure, given certain input parameters. The motivation behind this was to have a tool that can calculate the crane induced loads automatically. And by developing such a tool the procedure given in the code of practice is better understood. The Java programming language was used to code the calculations with an object oriented programming approach (OOP). NetBeans, the integrated development environment for developing with Java was used to generate the required graphical user interface of the application. In addition, a Microsoft Excel calculation sheet was also developed for the purpose of comparison and verification. Whilst developing the software application, it was found that the model for the acceleration or deceleration of the crane was specific for four wheel cranes only. This model was then extended to accommodate eight and sixteen wheel cranes and incorporated into the algorithm architecture of the application. The application was successfully completed and verified using benchmarked examples.
AFRIKAANSE OPSOMMING: Elektriese oorhoofse brugkrane vorm ‘n belangrike deel van baie nywerheidsprosesse, waar dit gebruik word om swaar laste in die nywerheidsaanleg te verskuif. Oorhoofse brugkrane voeg waarde by die produksie lyn deur te sorg dat die werksproses op die grond onversteurd voortgaan terwyl swaar laste na hul vereiste posisies verskuif word. Verskillende faktore moet in ag geneem word om die nodige kraanlaste te bepaal. Hierdie laste word benodig om die kraan se ondersteuningstruktuur te ontwerp. Die ontwerper moet die nodige kundigheid hê en moet ook die verskeie laste in ag neem wat die ondersteuningstruktuur gedurende sy leeftyd sal dra. SANS 10160-6:2010 verskaf riglyne vir die bepaling van die laste wat deur oorhoofse brugkrane uitgeoefen word. Hierdie dokument is in Junie 2010 gepubliseer dus bestaan daar min uitgewerkte voorbeelde om die korrektheid van die riglyne te toets en toepassing te demonstreer. Hierdie proefskrif ondersoek die riglyne vir die bepaling van oorhoofse brugkraan aksies soos uiteengesit in die SANS 10160-6:2010. Die navorsing is uitgevoer deur middel van die ontwikkeling van ‘n sagteware toepassing wat die nodige oorhoofse brugkraanlaste automaties bepaal, gegee sekere invoer waardes. Die rede hiervoor was om ‘n hulpmiddel te ontwikkel vir die outomatiese bepaling van oorhoofse brugkraan. Deur die bogenoemde hulpmiddel te ontwikkel word die riglyne, soos gegee in die kode beter verstaan. Java is gebruik as programmeringstaal waar die objek geörienteerde programeringstyl toegepas was. Die geintegreerde ontwikkelingsomgewing vir ontwikkeling met Java, naamlik NetBeans is gebruik om die nodige gebruikers koppelvlak op te bou. ‘n Microsoft Excel sigblad is ook ontwikkel vir kontrolerings doeleindes. Gedurende die ontwikkeling van die sagtewarepakket is dit bevind dat die lasmodel vir die versnelling of vertraging van die oorhoofse brugkraan slegs op vierwiel krane van toepasing is. Hierdie lasmodel is dus uitgebrei om agt- en sestienwiel krane ook te bevat. Die lasmodel aanpassing is dan ook in die program se algoritme-argitektuur ingebou. Die sagteware toepassing is suksesvol ontwikkel en gekontroleer met ‘n maatstaf voorbeeld.
De, Lange Johan Hendrik. "An experimental investigation into the behaviour of a 5 ton electric overhead travelling crane and its supporting structure." Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/414.
Full textIdowu, Ifeolu Mobolaji. "Numerical evaluation (FEA) of end stop impact forces for a crane fitted with hydraulic buffers." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5399.
Full textENGLISH ABSTRACT: End stop impact forces are horizontal longitudinal forces imposed by the crane on the end stops. Both the previous South African loading code SABS 0160:1989 and the current South African loading code SANS 10160 , classify end stop impact force as an accidental load case , hence they are not expected to occur within the expected lifetime when the guide lines for crane operation are strictly adhered to. In the estimation of end stop impact force, the previous South African loading code SABS 0160:1989 gives two guidelines for estimating the end stop impact force. The first guideline is simplistic in its approach and it’s based on the assumption that the crane and its supporting structure act as rigid bodies; hence calculation is based on rigid body mechanics. Literature reviewed reveals that this is not correct. The second guideline is more explicit in its approach as it takes into account the crane speed, resilience of the buffers and resilience of the end stops. The current South African loading code, SANS 10160 gives a better representation of the dynamics of the crane movement. However, the dynamic factor recommended for the estimation of end stop impact force is empirical in nature and thus lacks adequate scientific backing. One of the purposes of this research was to investigate the influence of the stiffness of the crane bridge on the end stop impact force. This was achieved by conducting a series of FEA simulations on the double bridge EOHTC fitted with elastomeric buffers. For this set of simulations, the effect of each influencing parameter on the end stop impact force was investigated, and the maximum end stop impact force was obtained using a constraint optimization technique. From the results obtained, comparison was then made with the existing maximum end stop impact force for a single bridge EOHTC fitted with elastomeric buffers. Another purpose of this research was to investigate the end stop impact force for an electric overhead travelling cranes (EOHTC) fitted with hydraulic buffers taking into account the dynamics involved in the movement of the EOHTC. This was achieved by a series of experimental and numerical investigation. The numerical investigation was conducted using an existing numerical model of an EOHTC which captures the crane and its supporting structure as a coupled system. Finite element analysis (FEA) impact force histories obtained were calibrated to the base experimental impact force histories. Thereafter, a series of FEA simulations were conducted by changing the parameters which have a substantial effect on the end stop impact forces. This yielded various maximum impact peaks for various parameters. The maximum impact force was then mathematical obtained from the FEA impact force histories for a given level of reliability using a constraint optimization technique. Also, codified end stop impact forces were calculated for the SABS 0160:1989 and SANS 10160-6:2010. From the results obtained, comparison was made between the codified end stop impact force and the maximum impact force obtained from the constraint optimization technique.
AFRIKAANSE OPSOMMING: Ent buffer impak kragte is horisontale kragte wat deur die kraan op die entbuffers aangewend word. Beide die Suid Afrikaanse las kode SABS 0160:1989 en die voorgestelde Suid Afrikaanse las kode SANS 10160, klasifisseer die entbuffer impak kragte as ‘n ongeluks las geval, dus word die kragte nie verwag tydens die verwagte leeftyd van die kraan wanneer die riglyne van die kraan prosedures streng gevolg word nie. Volgens die Suid-Afrikaanse las kode SABS 0160:1989 word daar twee riglyne voorgestel om die entbuffer kragte te bepaal. Die eerste riglyn is ‘n eenvoudige riglyn en word gebaseer op die aaname dat die kraan en die ondersteunende struktuur as ‘n starre ligame reageer en dus word die kragte bereken deur star ligaam meganika, alhoewel, uit die literatuur word dit bewys as inkorrek. Die tweede riglyn is ‘n meer implisiete benadering aangesien dit die kraan snelheid, elastisiteit van die buffers sowel as die elastisiteit van die end stoppe in ag neem. SANS 10160-6:2019 gee ‘n beter benadering van die dinamiese beweging van die kraan. Die voorgestelde dinamiese faktor waarmee die ent_buffer_kragte bereken word, is empiries van natuur . Een van die doelstellings vir die navorsings projek was om te bepaal wat die invloed van die kraan brug se styfheid op die entbuffer kragte is. ‘n Aantal Eindige Element Analise (FEA) simulasies is uitgevoer op ‘n dubbel brug elektriese aangedrewe oorhoofse kraan met elastomeriese buffers. Van die stel FEA simulasies kan die invloed van elke parameter op die entbuffer impak_kragte bepaal word. Die maksimum entbuffer impak_kragte is bepaal met behulp van ‘n beperking optimiserings tegniek. Vanaf hierdie resultate is ‘n vergelyking gemaak met die bestaande maksimum ent_buffer impak_kragte vir ‘n enkel brug elektriese oorhoofse aangdrewe kraan met elastomeriese buffers. ‘n Tweede doel rede vir die navorsing was om te bepaal wat die ent buffer impak_kragte op ‘n elektriese aangedrewe oorhoofse kraan met hidrouliese buffers is. Dit is bepaal deur ‘n aantal eksperimentele en numeriese toetse uit te voer. Die numeriese toetse is uitgevoer deur gebruik te maak van ‘n huidige numeriese model van ‘n elektriese aangedrewe oorhoofse kraan wat die kraan en die ondersteunende struktuur as ‘n. Die Eindige Element Analise impak_kragte is gekalibreer teen die eksperimenteel bepaalde impak- kragte. Daarna is ‘n reeks Eindige Element Analise simulasies uitgevoer en sodoende die parameters te verander wat die mees beduidende invloed op die end stop impak_kragte het. Dit het verskeie impak_krag pieke vir verskillende parameters meegebring. Die maksimum impak kragte is bepaal van die impak kragte van die Eindige Element Analise vir ‘n gegewe vlak van betroubaarheid deur gebruik te maak van die beperking optimiserings tegniek. Daarmee saam is die gekodifiseerde ent buffer impak kragte bereken volgen SABS 0160:1989 en die SANS 10160- 6:2010. Vanaf hierdie resultate is ‘n vergelyking gemaak tussen die gekodifiseerde entbuffer impak_kragte en die maksimum impak_kragte wat bepaal is deur die (beperking optimiserings tegniek).
Solorzano, Mogollon Victor Alexis, and León Karen Jandira Vargas. "Guía de diseño de viga carrilera de naves industriales con puente-grúa con base en la norma norteamericana y algunas normativas latinoamericanas." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2019. http://hdl.handle.net/10757/626503.
Full textThe presence of travelling cranes in industrial buildings means an additional effort for the structure of the ship due to the additional loads. Thus, a specific and complete analysis is required, both static and dynamic, to design a structure resistant to the efforts generated by the load coming from the travelling crane. The objective of this article is to elaborate a document that serves as a guide for a correct analysis and design of the beam that supports the travelling crane, known as the rail beam; from the comparison of regulations of some Latin American countries and the North American norms. This analysis includes the set of efforts generated by the operation of a bridge crane. Finally, the proposal or method will be validated with an example of a crane lifting capacity of up to 10 tons.
Trabajo de investigación
Peprník, Pavel. "Mostový jeřáb 125t." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230007.
Full textDaňhel, Oldřich. "Jeřáb mostový 50t - 27m." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228800.
Full textMilichovský, Karel. "Pomocná jeřábová kočka 10000 kg." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-399557.
Full textKočařová, Jindřiška. "K problematice efektivního a spolehlivého navrhování nosné konstrukce jeřábových drah." Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-233807.
Full textStanec, Stanislav. "Jeřáb mostový jednonosníkový." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318639.
Full textSoares, João Oliveira. "Projecto e optimização de pontes rolantes." Master's thesis, 2011. http://hdl.handle.net/1822/21787.
Full textCom este trabalho, foi desenvolvido o projeto estrutural de uma ponte rolante, fazendo a otimização das suas dimensões em função das exigências inerentes ao espaço de implantação e tipo de utilização, evitando assim a utilização de modelos standardizados sujeitos a sobredimensionamento e consequentemente custos mais elevados. Neste projeto consta o dimensionamento da estrutura das vigas principais e das vigas de suporte da ponte, incluindo todos os desenhos técnicos, listas de materiais e listas de operações para o fabrico e montagem deste equipamento. Foram também sugeridos os equipamentos não estruturais tais como o carro guincho, os motores, equipamento elétrico, botoneiras e todos os restantes elementos essenciais para o funcionamento da ponte rolante. Estes equipamentos foram selecionados diretamente nos catálogos dos fornecedores, em função dos requisitos necessários para a correta operação da ponte.
With this work, we developed the structural design of a crane, causing an optimization of their dimensions depending on the inherent requirements of the area of deployment and usage, thus avoiding the use of standardized models subjected to excessive size and consequently higher costs. This project included the design of the structure of main beams and support beams of the bridge, including all technical drawings, materials lists and lists of operations for manufacture and assembly of this equipment. We also suggested the non-structural equipment such as car winch, motors, electrical equipment, control pendants and all other elements essential to the operation of the crane. These equipment were selected directly into the suppliers catalogs, based on the requirements necessary for the proper operation of the bridge.
Ching-MingLin and 林敬銘. "Structure Analysis and Box-Girder Design Optimization of Overhead Travelling Cranes." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/85645092961441339284.
Full text國立成功大學
機械工程學系專班
98
Cranes is one of the essential and necessary machines to move the materials within the plant. With the features of great energy and high-risk characteristics, any inadequate design of the cranes will be likely to cause the big problems such as serious mechanical damages and threatening lives to labors. For this reason, cranes are one of the major dangerous machines restricted by the government. Traditionally, crane-makers simplified the model to calculate the structure of cranes, it will lead to the accuracy diminishes and causes the different stress on situations. In general, the makers determine the relevant size of cranes in box-girders designing by virtue of experience, they did not assess the influences of the structural strength respectively, so they could not achieve the optimum designs effectively, for poor design、materials- waste、high manufacturing costs and so on, the competitiveness of manufactures might be reduced. This paper was divided into three parts. The first part obtained information of produced cranes on market, supplemented by 3-D graphics software-SolidWorks to establish a sample of crane models, analyzed structural stress and deflection by finite element software ANSYS Workbench 12 and comparatively analyzed the stiffeners how to influence the cranes, so we could understand the differences between the simplified formulas and the actual stress conditions. The second part optimized to get optimum designs for box-girders of cranes by using Taguchi methods and got dimensions which fit in with codes and regulations and at the minimum of material cost. The last part studied the local buckling, stress concentration and fatigue problems of the cranes, so the designed cranes could be ensured safety and met the demands of market.