Academic literature on the topic 'Transverse invariants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transverse invariants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transverse invariants"
Collari, Carlo. "Transverse invariants from Khovanov-type homologies." Journal of Knot Theory and Its Ramifications 28, no. 01 (January 2019): 1950012. http://dx.doi.org/10.1142/s0218216519500123.
Full textLópez Machí, Rafael, and José Martínez Alfaro. "Invariants of transverse foliations." Topology and its Applications 159, no. 2 (February 2012): 519–25. http://dx.doi.org/10.1016/j.topol.2011.09.027.
Full textLisca, Paolo, and András I. Stipsicz. "Contact surgery and transverse invariants." Journal of Topology 4, no. 4 (October 25, 2011): 817–34. http://dx.doi.org/10.1112/jtopol/jtr022.
Full textGRANT, MARK. "ON SELF-INTERSECTION INVARIANTS." Glasgow Mathematical Journal 55, no. 2 (August 2, 2012): 259–73. http://dx.doi.org/10.1017/s0017089512000481.
Full textDING, FAN, and HANSJÖRG GEIGES. "LEGENDRIAN KNOTS AND LINKS CLASSIFIED BY CLASSICAL INVARIANTS." Communications in Contemporary Mathematics 09, no. 02 (April 2007): 135–62. http://dx.doi.org/10.1142/s0219199707002381.
Full textPlamenevskaya, Olga. "Braid monodromy, orderings and transverse invariants." Algebraic & Geometric Topology 18, no. 6 (October 18, 2018): 3691–718. http://dx.doi.org/10.2140/agt.2018.18.3691.
Full textLipshitz, Robert, Lenhard Ng, and Sucharit Sarkar. "On transverse invariants from Khovanov homology." Quantum Topology 6, no. 3 (2015): 475–513. http://dx.doi.org/10.4171/qt/69.
Full textIto, Tetsuya. "Braids, chain of Yang–Baxter like operations, and (transverse) knot invariants." Journal of Knot Theory and Its Ramifications 27, no. 11 (October 2018): 1843009. http://dx.doi.org/10.1142/s0218216518430095.
Full textCALSAMIGLIA, GABRIEL, and YOHANN GENZMER. "Classification of regular dicritical foliations." Ergodic Theory and Dynamical Systems 37, no. 5 (March 23, 2016): 1443–79. http://dx.doi.org/10.1017/etds.2015.123.
Full textFreed, Alan D. "Transverse-Isotropic Elastic and Viscoelastic Solids." Journal of Engineering Materials and Technology 126, no. 1 (January 1, 2004): 38–44. http://dx.doi.org/10.1115/1.1631030.
Full textDissertations / Theses on the topic "Transverse invariants"
Tosun, Bulent. "Legendrian and transverse knots and their invariants." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44880.
Full textHill, Jonathan William. "Invariants of legendrian curves and transverse knots." Thesis, University of Liverpool, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367639.
Full textSong, Min Jae. "Direct tensor expression by Eulerian approach for constitutive relations based on strain invariants in transversely isotropic green elasticity - finite extension and torsion." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1667.
Full textParejas, Jorge Luis Crisostomo. "Medidas transversas, correntes e sistemas dinâmicos." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032013-160120/.
Full textIn this work, we make a study of currents and holonomy invariant transverse measure, and we will show the result of D. Sullivan [23] about the biunivocal correspondence between these two objects. In particular we show a known result of J. Plante [17] about the existence of invariant transverse measures under the hypothesis of sub-exponential growth. Also we will present, the result due to Ruelle-Sullivan [19] that the maximum entropy measure of a diffeomorphism topologically mixing can be expressed as the product of two invariant transverse measures for stable and unstable foliations. Finally, we show that the Anosov diffeomorphisms topologically mixing, which preserve the orientation of the leaves stable and unstable induce elements DeRham cohomology
Blyuss, Kostyantyn B. "Perturbed multi-symplectic systems : intersections of invariant manifolds and transverse instability." Thesis, University of Surrey, 2004. http://epubs.surrey.ac.uk/843502/.
Full textPereira, Rodrigo Frehse. "Perturbações em sistemas com variabilidade da dimensão instável transversal." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2013. http://tede2.uepg.br/jspui/handle/prefix/902.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Unstable dimension variability (UDV) is an extreme form of nonhyperbolicity. It is a structurally stable phenomenon, typical for high dimensional chaotic systems, which implies severe restrictions to shadowing of perturbed solutions. Perturbations are unavoidable in modelling Physical phenomena, since no system can be made completely isolated, states and parameters cannot be determined without uncertainties and any numeric approach to such models is affected by truncation and/or roundoff errors. Thus, the lack of shadowability in systems exhibiting UDV presents a challenge for modelling. Aiming to unveil the effect of perturbations a class of nonhyperbolic systems is studied. These systems present transversal unstable dimension variability (TUDV), which means the dynamics can be split in a skew direct product form, i. e. the phase space is decomposed in two components: a hyperbolic chaotic one, called longitudinal, and a nonhyperbolic transversal one. Moreover, in the absence of perturbations, the longitudinal component is a global attractor of the system. A prototype composed of two coupled piecewise-linear chaotic maps is presented in order to study the TUDV effects. This system has an invariant subspace S which characterizes the complete chaos synchronization and UDV, when present, is transversal to it. Taking advantage of (piecewise) linearity of the equations, an analytical method for unstable periodic orbits’ computation is presented. The set of all unstable periodic orbits (UPOs) is one of the building block of chaotic dynamics and its properties provide valuable informations about the asymptotic behaviour of the system as, for instance, the invariant natural measure. Therefore, the TUDV’s intensity is analytically studied by computing the contrast measure, which quantifies the difference between the statistical weights associated to UPOs with different unstable dimension. The effect of perturbations is modelled by the introduction of a small parameter mismatch, instead of noise addition, in order to keep the model’s determinism. Consequently, the characterization of dynamics by means of UPOs is still possible. It is shown the existence of a dense set G of UPOs outside the invariant subspace consistent with a chaotic repeller. When perturbation takes place, G merges with the set H of UPOs previously in S, given rise to a new nonhyperbolic stationary state. The analysis of G ∪H provides a topological explanation to the behaviour of systems with TUDV under perturbations. Moreover, the relation between the set of UPOs embedded in a chaotic attractor and its natural measure, proven only for hyperbolic systems, is successfully applied to this system: the error between the natural measure estimated both numerically and by means of UPOs is shown to be decreasing with p, the considered UPOs’ period. It is conjectured the coincidence between both in limit. Hence, a positive answer to reliability of numerical estimation to natural measure in nonhyperbolic systems via unstable dimension variability is presented.
A variabilidade da dimensão instável (VDI) é uma forma extrema de não-hiperbolicidade. É um fenômeno estruturalmente estável, típico para sistemas caóticos de alta dimensionalidade, que implica restrições severas ao sombreamento de soluções perturbadas. As perturbações¸ s são inevitáveis na modelagem de fenômenos fíısicos, uma vez que nenhum sistema pode ser isolado completamente, os estados e os parâmetros não podem ser determinados sem incertezas e qualquer abordagem numérica dos modelos é afetada por erros de arredondamento e/ou truncamento. Portanto, a falta da sombreabilidade em sistemas exibindo VDI apresenta um desafio à modelagem. Visando revelar os efeitos das perturbações, uma classe desses sistemas não hiperbó licos é estudada. Esses sistemas apresentam variabilidade da dimensão instável transversal (VDIT), significando que a dinâmica pode ser decomposta na forma de um produto direto assimétrico, i. e. o espação de fase é dividido em dois componentes: um hiperbólico e caótico, dito longitudinal, e um transversal e não-hiperbólico. Mais ainda, na ausência de perturbações, o componente longitudinal é um atrator global do sistema. Um protótipo composto de dois mapas ca´oticos lineares por partes acoplados é apresentado para o estudo dos efeitos da VDIT. Esse sistema possui um subespaço invariante S que caracteriza a sincronização completa de caos e a VDI, quando presente, é transversal a esse subespaço. Valendo-se da linearidade (por partes) das equações, um método analítico para o cálculo das órbitas periódicas instáveis é apresentado. O conjunto de todas as órbitas periódicas instáveis (OPIs) é um dos fundamentos da dinâmica caótica e suas propriedades fornecem informaões, valiosas sobre o comportamento assintótico do sistema como, por exemplo, a medida natural invariante. Assim, a intensidade da VDIT é estudada analiticamente pelo cálculo da medida de contraste, que quantifica a diferença entre o peso estatístico associado às OPIs com dimensão instável distintas. O efeito das perturbações é modelado pela introdução de um pequeno desvio nos parâmetros, ao invés da adição de ruído, a fim de manter o determinismo do modelo. Consequentemente, a caracterização da dinâmica em termos das OPIs ainda é possível. Demonstra-se a existência de um conjunto denso G de OPIs fora do subespaço invariante consistente com um repulsor caótico. Na presença de perturbações, G se funde com o conjunto H das OPIs previamente em S, dando origem a um novo estado estacionario não-hiperbólico. A análise de G ∪H fornece uma explicação topológica ao comportamento de sistemas com variabilidade da dimensão instável sob a açãoo de perturbações. Mais ainda, a relação entre o conjunto de OPIs imersas em um atrator caótico e sua medida natural, provada apenas para sistemas hiperbólicos, é aplicada com sucesso nesse sistema: mostra-se que o erro entre as medidas naturais estimadas numericamente e pelas OPIs é decrescente com p, o período das OPIs consideradas. Conjectura-se, portanto, a coincidência entre ambas no limite . Logo, apresenta-se uma resposta positiva à estimativa numérica da medida natural em sistemas não-hiperbólicos via variabilidade da dimensão instável.
Moussa, Miled Hassan Youssef. "Eestudo do crossover no modelo XY com campo transverso." Universidade de São Paulo, 1990. http://www.teses.usp.br/teses/disponiveis/54/54131/tde-06092007-093907/.
Full textIn view of the great advance attached from statistical mechanics due to the conformal invariance ideas introduced to the scale theories, we take over at this work, the study of the XY model in a transverse field. At first, we present a detailed analysis on the sample\'s typical crossover behavior. An improved calculation of the susceptibility and gap exponents early presented by dos Santos and Stinchcombe is included. Nest, a numerical analysis of the spectrum, regarding free boundary condi¬tions was developed and compared with conformal invariance predictions. Finally, the fundamental state energy corrections of finite chains were used to obtain the parameter which ,distingoishes the universality classes (the central charge c).
Batog, Guillaume. "Problèmes classiques en vision par ordinateur et en géométrie algorithmique revisités via la géométrie des droites." Phd thesis, Université Nancy II, 2011. http://tel.archives-ouvertes.fr/tel-00653043.
Full textCanales, Gonzalez Carolina. "Hypersurfaces Levi-plates et leur complément dans les surfaces complexes." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS249/document.
Full textIn this work we study analytic Levi-flat hypersurfaces in complex algebraic surfaces. These are real hypersurfaces that admit a foliation by holomorphic curves, called Cauchy Riemann foliation (CR). First, we show that if this foliation admits chaotic dynamics (i.e. if it doesn't admit an invariant transverse measure), then the connected components of the complement of the hypersurface are Stein. This allows us to extend the CR foliation to a singular algebraic foliation on the ambient complex surface. We apply this result to prove, by contradiction, that analytic Levi-flat hypersurfaces admitting a transverse affine structure in a complex algebraic surface have a transverse invariant measure. This leads us to conjecture that Levi-flat hypersurfaces in complex algebraic surfaces that are diffeomorphic to a hyperbolic tori bundle over the circle are fibrations by algebraic curves
Schapira, Barbara. "Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative." Phd thesis, Université d'Orléans, 2003. http://tel.archives-ouvertes.fr/tel-00163420.
Full textBook chapters on the topic "Transverse invariants"
"Invariants of Legendrian and transverse knots." In Mathematical Surveys and Monographs, 215–46. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/surv/208/12.
Full text"Appendix E. The Transverse Invariant Wn2/B." In Conversations on Electric and Magnetic Fields in the Cosmos, 167–68. Princeton University Press, 2007. http://dx.doi.org/10.1515/9781400847433-018.
Full textCotón, Carlos Meniño. "Transverse invariant measures extend to the ambient space." In Foliations 2012, 103–13. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814556866_0006.
Full textCamanho, P. P., A. Arteiro, G. Catalanotti, A. R. Melro, and M. Vogler. "Three-dimensional invariant-based failure criteria for transversely isotropic fibre-reinforced composites." In Numerical Modelling of Failure in Advanced Composite Materials, 111–50. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-08-100332-9.00005-0.
Full textConference papers on the topic "Transverse invariants"
Okamoto, Ruth J., Yuan Feng, Guy M. Genin, and Philip V. Bayly. "Anisotropic Behavior of White Matter in Shear and Implications for Transversely Isotropic Models." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14039.
Full textRomeo, Francesco, and Achille Paolone. "Propagation Properties of Three-Coupled Periodic Mechanical Systems." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85617.
Full textVairo, Antonio. "Transverse momentum broadening and gauge invariance." In QCD@WORK 2012: International Workshop on Quantum Chromodynamics: Theory and Experiment. AIP, 2012. http://dx.doi.org/10.1063/1.4763541.
Full textKappos, Efthimios. "Bifurcations on Control-Transverse Dynamics." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4141.
Full textGeorgiou, Ioannis T., and Ira B. Schwartz. "Decoupling the Free Axial-Transverse Motions of a Nonlinear Plate: An Invariant Manifold Approach." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0320.
Full textCheng, Yu Chieh, Pei Yu Wang, Ramon Herrero, Muriel Botey, and Kestutis Staliunas. "Meta-mirrors with transverse invariance for beam shaping." In Metamaterials, Metadevices, and Metasystems 2019, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2019. http://dx.doi.org/10.1117/12.2530176.
Full textRahn, Christopher D., and C. D. Mote. "Axial Force Stabilization of Transverse Beam Vibration." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0217.
Full textTsai, Juei-Hung, Bo-Zhi Huang, Zheng-Jia Zeng, Tzu-Yi Chuang, and Yu-Chieh Cheng. "Near-field flat focusing mirrors with an transverse invariance." In 2018 7th International Symposium on Next Generation Electronics (ISNE). IEEE, 2018. http://dx.doi.org/10.1109/isne.2018.8394653.
Full textMehtar-Tani, Yacine, and Renaud Boussarie. "On gauge invariance of transverse momentum dependent distributions at small x." In 10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.387.0182.
Full textEinstein, D. R., A. D. Freed, and I. Vesley. "Invariant Theory for Dispersed Transverse Isotropy: An Efficient Means for Modeling Fiber Splay." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61236.
Full text