Academic literature on the topic 'Transverse feedback linearization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transverse feedback linearization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transverse feedback linearization"
Nielsen, Christopher, and Manfredi Maggiore. "On Local Transverse Feedback Linearization." SIAM Journal on Control and Optimization 47, no. 5 (January 2008): 2227–50. http://dx.doi.org/10.1137/070682125.
Full textDoosthoseini, Alireza, and Christopher Nielsen. "Local nested transverse feedback linearization." Mathematics of Control, Signals, and Systems 27, no. 4 (August 29, 2015): 493–522. http://dx.doi.org/10.1007/s00498-015-0149-y.
Full textD’Souza, Rollen S., and Christopher Nielsen. "An Algorithm for Local Transverse Feedback Linearization." SIAM Journal on Control and Optimization 61, no. 3 (June 2, 2023): 1248–72. http://dx.doi.org/10.1137/21m1444588.
Full textBanaszuk, Andrzej, and John Hauser. "Feedback linearization of transverse dynamics for periodic orbits." Systems & Control Letters 26, no. 2 (September 1995): 95–105. http://dx.doi.org/10.1016/0167-6911(94)00110-h.
Full textFevre, Martin, Bill Goodwine, and James P. Schmiedeler. "Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control." International Journal of Robotics Research 38, no. 10-11 (August 26, 2019): 1307–23. http://dx.doi.org/10.1177/0278364919870242.
Full textde Souza Cardoso, Gildeberto, Leizer Schnitman, José Valentim dos Santos Filho, and Luiz Carlos Simões Soares Júnior. "Restriction of Transverse Feedback Linearization for Piecewise Linear Paths." Mathematical Problems in Engineering 2021 (January 29, 2021): 1–8. http://dx.doi.org/10.1155/2021/8270793.
Full textNielsen, Chris, and Manfredi Maggiore. "Maneuver regulation via transverse feedback linearization: Theory and examples." IFAC Proceedings Volumes 37, no. 13 (September 2004): 57–64. http://dx.doi.org/10.1016/s1474-6670(17)31200-4.
Full textNielsen, Christopher. "Transverse Feedback Linearization with Partial Information for Single-Input Systems." SIAM Journal on Control and Optimization 52, no. 5 (January 2014): 3002–21. http://dx.doi.org/10.1137/120900149.
Full textD’Souza, Rollen S., and Christopher Nielsen. "An exterior differential characterization of single-input local transverse feedback linearization." Automatica 127 (May 2021): 109493. http://dx.doi.org/10.1016/j.automatica.2021.109493.
Full textDovgobrod, G. M. "Generation of a highly-smooth desired path for transverse feedback linearization." Gyroscopy and Navigation 8, no. 1 (January 2017): 63–67. http://dx.doi.org/10.1134/s2075108717010023.
Full textDissertations / Theses on the topic "Transverse feedback linearization"
Falk, Olson Gustaf. "Power Electronic Stages for a TFPMSM in Wave Power Applications." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194201.
Full textDirektdrivna vågenergiomvandlingssystem har utpekats som en potentiellt starkt bidragande resurs för att tillgodose världens efterfrågan på energi med andelar på uppemot 25 % av energimixen förutspådda. Anders Hagnestål bedriver forskning och utveckling av en ny typ av linjär permanentmagnetiserad transversalflödesmaskin vid Kungliga Tekniska Högskolan. Konceptmaskinen är särskilt väl lämpad för de rådande marina förhållandena genom att kunna producera stora krafter vid låga hastigheter med utomordentligt låga resistiva förluster. Maskinen går emellertid i kraftig magnetisk mättnad och drar asymmetriska strömmar vid nominell drift. Dessutom är effektfaktorn låg i jämförelse med standardmaskiner. Alltsomallt inför detta hårda krav på det effektelektroniska systemet och kontrollalgoritmerna. Målet med detta examensarbete har varit att designa ett funktionellt effektkonditioneringssystem som sammanfogar maskinen med det angränsande elektriska nätet. För att åstadkomma detta föreslås att en tvånivås-trefasomriktare kopplas rygg-mot-rygg till tvånivås-enfasomvandlare (aktiva likriktare) som i sin tur är kopplade till varje maskinfas. Med den här konfigurationen visas det att spänningen på den mellanliggande DC-länken kan hållas konstant med begränsat rippel, alltmedan effekt tillförs nätet vid effektfaktor ett genom att dimensionera DC-kondensatorn på rätt sätt och använda en kontrollag baserad på exakt linjärisering. Maskinens fasströmmar kan kontrolleras effektivt med hjälp av en kaskadkopplad PID-regulator med schemalagda förstärkningsfaktorer. Genom att inkludera ett lågpassfilter förväntas det att järnförlusterna i maskinen kan begränsas även vid lägre switchfrekvenser. Genom att lösa ett kostnadsoptimeringsproblem visas det att den resulterande aktiva likriktaren kan uppnå en verkningsgrad på 99.1 %. Slutligen, med det här examensarbetet som grund, föreslås det att den termiska stressen på de valda halvledarkomponentsmodulerna och järnförlusterna i maskinen utvärderas för att ytterligare förbättra designen. Om högre verkningsgrad eftersträvas hos de aktiva likriktarna kan mer komplicerade omvandlartopologier övervägas.
Elobaid, Mohamed. "A sampled-data approach in control problems involving partial dynamics cancellation." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG014.
Full textSeveral well studied control problems reduce to asking the output of a given process to track a desired signal while rejecting effects of undesired perturbations. In the rich body of knowledge dealing with problems of this type in continuous-time, the use of partial inversion-based controllers (i.e controllers that cancel part of the dynamics in the sense of rendering it unobservable) and their effectiveness is well established. Nowadays, however, sensing and actuation is done through digital devices so necessitating a suitable control design. In this setting, the control engineer works with systems referred to as sampled-data systems where measures of the output are available only at sporadic discrete-time instants while the control is piecewise constant over a fixed time interval. In this sampled-data context, systems that are originally minimum phase in continuous-time, and because of sampling and holding, may lose this property. The general argument of this thesis contributes to establishing constructive results, procedures and algorithms to the purpose of mitigating the issues caused by sampled-data design under partial inversion-based controllers. Since partial inversion-based controllers typically cancel the zero dynamics, the central idea is to mitigate the loss of the minimum-phase property. A first contribution in this direction stands in proposing a procedure for stable partial inversion for a class of continuous-time non-minimum phase Multi-Input Multi-Output systems. The procedure proposed, generalizing a previous result, works over the linear tangent model of a system factorizing a sub-set of the zero dynamics known to be minimum-phase a priori. This preliminary result is at the basis of control strategies which are herein proposed for model predictive control and digital transverse feedback linearization. Both control strategies under sampling are affected by the above-mentioned pathology linked to the loss of the minimum-phase property. In particular, for model predictive control, two solutions based on multi-rate sampling techniques, employed at the prediction, or the trajectory planning level are proposed and compared. Their validity is established through several case studies ranging from steering and tracking in systems admitting chained forms to quasi Halo orbits station-keeping for space-crafts in the Earth-Moon system. Concerning transverse feedback linearization, two sampled-data solutions preserving the in-variant subset specifying the control objectives are proposed. The former is based on single-rate sampling and, albeit approximate in nature, is computationally simple and outperforms zero-order holding of the continuous-time design. The later, an exact solution based on multi-rate sampling, improves upon the former solution and provides, in special cases, static state feedback solutions even when the problem is only solvable via dynamic feedback in continuous-time. Both solutions are validated over academic case studies as well as in solving path following for mobile robots and periodic orbits stabilization for underactuated mechanical systems
Nielsen, Christopher. "Set Stabilization Using Transverse Feedback Linearization." Thesis, 2009. http://hdl.handle.net/1807/17810.
Full textNielsen, Christopher. "Maneuver regulation, transverse feedback linearization and zero dynamics." 2004. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=95033&T=F.
Full textBooks on the topic "Transverse feedback linearization"
Nielsen, Christopher. Maneuver regulation, transverse feedback linearization and zero dynamics. 2004.
Find full textBook chapters on the topic "Transverse feedback linearization"
Banaszuk, Andrzej, and John Hauser. "Feedback Linearization of Transverse Dynamics for Periodic Orbits in R3 with Points of Transverse Controllability Loss**Research supported in part by NSF under grant PYI ECS-9396296, by AFOSR under grant F49620-94-1-0183, and by a grant from Hughes Aircraft Company." In Nonlinear Control Systems Design 1995, 269–74. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-08-042371-5.50050-2.
Full textConference papers on the topic "Transverse feedback linearization"
Elobaid, Mohamed, Salvatore Monaco, and Dorothee Normand-Cyrot. "Approximate transverse feedback linearization under digital control." In 2021 American Control Conference (ACC). IEEE, 2021. http://dx.doi.org/10.23919/acc50511.2021.9482951.
Full textDoosthoseini, Alireza, and Christopher Nielsen. "Local transverse feedback linearization for nested sets." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7403450.
Full textD'Souza, Rollen S., and Christopher Nielsen. "Dual Conditions for Local Transverse Feedback Linearization." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619815.
Full textD’Souza, Rollen S. "Discrete-Time Transverse Feedback Linearization⋆." In 2023 American Control Conference (ACC). IEEE, 2023. http://dx.doi.org/10.23919/acc55779.2023.10156159.
Full textNielsen, Christopher, and Manfredi Maggiore. "Further Results on Transverse Feedback Linearization of Multi-Input Systems." In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.376720.
Full textDoosthoseini, A., and C. Nielsen. "Stability problems associated with the transverse feedback linearization normal form." In 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2012. http://dx.doi.org/10.1109/ccece.2012.6334934.
Full textNielsen, Christopher, and Manfredi Maggiore. "Local transverse feedback linearization with partial information for single-input systems." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756435.
Full textD'Souza, Rollen S., and Christopher Nielsen. "Piecewise-Linear Path Following for a Unicycle using Transverse Feedback Linearization." In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147473.
Full textAkhtar, Adeel, Steven L. Waslander, and Christopher Nielsen. "Path following for a quadrotor using dynamic extension and transverse feedback linearization." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6425945.
Full textNielsen, Christopher, Cameron Fulford, and Manfredi Maggiore. "Path following using transverse feedback linearization: Application to a maglev positioning system." In 2009 American Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/acc.2009.5159998.
Full text