Academic literature on the topic 'Transport in fractured porous media'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transport in fractured porous media.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transport in fractured porous media"
XU, PENG, HAICHENG LIU, AGUS PULUNG SASMITO, SHUXIA QIU, and CUIHONG LI. "EFFECTIVE PERMEABILITY OF FRACTURED POROUS MEDIA WITH FRACTAL DUAL-POROSITY MODEL." Fractals 25, no. 04 (July 25, 2017): 1740014. http://dx.doi.org/10.1142/s0218348x1740014x.
Full textFumagalli, Alessio, and Eirik Keilegavlen. "Dual Virtual Element Methods for Discrete Fracture Matrix models." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 (2019): 41. http://dx.doi.org/10.2516/ogst/2019008.
Full textXU, PENG, CUIHONG LI, SHUXIA QIU, and AGUS PULUNG SASMITO. "A FRACTAL NETWORK MODEL FOR FRACTURED POROUS MEDIA." Fractals 24, no. 02 (June 2016): 1650018. http://dx.doi.org/10.1142/s0218348x16500183.
Full textShafabakhsh, Paiman, Marwan Fahs, Behzad Ataie-Ashtiani, and Craig T. Simmons. "Unstable Density-Driven Flow in Fractured Porous Media: The Fractured Elder Problem." Fluids 4, no. 3 (September 9, 2019): 168. http://dx.doi.org/10.3390/fluids4030168.
Full textSong, Jing Wen, Ming Yu Wang, and Da Wei Tang. "Experiment on Water Infiltration and Solute Migration in Porous and Fractured Media." Advanced Materials Research 955-959 (June 2014): 1993–97. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.1993.
Full textZHENG, QIAN, JINTU FAN, XIANGPENG LI, and SHIFANG WANG. "FRACTAL MODEL OF GAS DIFFUSION IN FRACTURED POROUS MEDIA." Fractals 26, no. 03 (June 2018): 1850035. http://dx.doi.org/10.1142/s0218348x18500354.
Full textNovikov, Mikhail A., and Vadim V. Lisitsa. "NUMERICAL ALGORITHM OF SEISMIC ATTENUATION ESTIMATION IN ANISOTROPIC FRACTURED POROUS FLUID-SATURATED MEDIA." Interexpo GEO-Siberia 2, no. 2 (May 21, 2021): 186–95. http://dx.doi.org/10.33764/2618-981x-2021-2-2-186-195.
Full textNair, R. N., T. M. Krishnamoorthy, and K. C. Pillai. "Radionuclede Transport Through Fractured Porous Media." Isotopenpraxis Isotopes in Environmental and Health Studies 29, no. 3 (September 1993): 225–36. http://dx.doi.org/10.1080/00211919308046689.
Full textSchery, S. D., D. J. Holford, J. L. Wilson, and F. M. Phillips. "The Flow and Diffusion of Radon Isotopes in Fractured Porous Media: Part 1, Finite Slabs." Radiation Protection Dosimetry 24, no. 1-4 (August 1, 1988): 185–89. http://dx.doi.org/10.1093/oxfordjournals.rpd.a080267.
Full textOwusu, Richard, Adu Sakyi, Peter Amoako-Yirenkyi, and Isaac Kwame Dontwi. "A New Multicontinuum Model for Advection-Diffusion Process of Single-Phase Nonlinear Flow in a Multiscale Fractured Porous Media." Journal of Applied Mathematics 2022 (March 31, 2022): 1–14. http://dx.doi.org/10.1155/2022/5731988.
Full textDissertations / Theses on the topic "Transport in fractured porous media"
Kang, Peter Kyungchul. "Anomalous transport through porous and fractured media." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90043.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 132-144).
Anomalous transport, understood as the nonlinear scaling with time of the mean square displacement of transported particles, is observed in many physical processes, including contaminant transport through porous and fractured geologic media, animal and human foraging patterns, tracer diffusion in biological systems, and transport in complex networks. Understanding the origin of anomalous transport is essential, because it determines the likelihood of high-impact, low-probability events and therefore exerts a dominant control over the predictability of a system. The origin of anomalous transport, however, remains a matter of debate. In this thesis, we first investigate the pore-scale origin of anomalous transport through sandstone. From high-resolution (micron-scale) 3D numerical flow and transport simulation, we find that transport at the pore scale is markedly anomalous. We demonstrate that this anomalous behavior originates from the intermittent structure of the velocity field at the pore scale, which in turn emanates from the interplay between velocity heterogeneity and velocity correlation. Finally, we propose a continuous time random walk (CTRW) model that honors this intermittent structure at the pore scale and captures the anomalous 3D transport behavior at the macroscale. To show the generality of our finding, we study transport through lattice networks with quenched disorder. We again observe anomalous transport originating from the interplay between velocity heterogeneity and velocity correlation. We extend the developed CTRW model to capture the full multidimensional particle transport dynamics for a broad range of network heterogeneities and for both advection- and diffusion-dominated flow regimes. We then study anomalous transport through fractured rock at the field-scale. We show that the interplay between heterogeneity and correlation in controlling anomalous transport can be quantified by combining convergent and push-pull tracer tests because flow reversibility is strongly dependent on correlation, whereas late-time scaling of breakthrough curves is mainly controlled by velocity heterogeneity. Our transport model captures the anomalous behavior in the breakthrough curves for both push-pull and convergent flow geometries, with the same set of parameters. Moreover, the inferred flow correlation length shows qualitative agreement with geophysical measurements. Thus, the proposed correlated CTRW modeling approach furnishes a simple yet powerful framework for characterizing the impact of flow correlation and heterogeneity on transport in porous and fractured media. Finally, we propose a joint flow-seismic inversion methodology for characterizing fractured reservoirs. Traditionally, seismic interpretation of subsurface structures is performed without any account of flow behavior. With the proposed methodology, we reduce the uncertainty by integrating dynamic flow measurements into the seismic interpretation, and improve the predictability of reservoir models by this joint use of seismic and flow data. This work opens up many possibilities of combining geophysical and flow information for improving subsurface characterization.
by Peter Kyungchul Kang.
Ph. D. in Hydrology
Deng, Hailin. "Upscaling reactive transport parameters for porous and fractured porous media." Tallahassee, Florida : Florida State University, 2009. http://etd.lib.fsu.edu/theses/available/etd-10292009-103844/.
Full textAdvisor: Ming Ye, Zhenxue Dai, Florida State University, College of Arts and Sciences, Dept. of Geological Sciences. Title and description from dissertation home page (viewed on Apr. 26, 2010). Document formatted into pages; contains xxii, 167 pages. Includes bibliographical references.
ALVARENGA, JULIO ERNESTO MACIAS. "NUMERICAL MODELING OF VIRUS TRANSPORT IN FRACTURED-POROUS MEDIA." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11744@1.
Full textGRUPO DE TECNOLOGIA DE COMPUTAÇÃO GRÁFICA - PUC-RIO
A avaliação do potencial de contaminação de capatações de água, por causa das águas residuais provenientes dos sistemas de tanque séptico, é feita a partir da definição da distância de separação mínima que deve existir entre a captação e o local de infiltração do efluente. A determinação dessa distância define a zona de proteção da captação. Existem três metodologias para definir o tamanho dessa zona de proteção: metodologias baseadas em distâncias fixas e tempos de trânsito, metodologias baseadas na vulnerabilidade e metodologias baseadas no risco de infecção. No caso da Costa Rica, as avaliações são feitas através do uso da metodologia baseada no tempo de trânsito. O tempo de trânsito empregado corresponde ao tempo de sobrevivência dos vírus. Nesta análise determina-se a distância máxima percorrida pelos vírus durante esse tempo, e essa distância define a separação mínima. Esse método considera que o transporte ocorre por percolação vertical saturada através da zona não saturada, e por transporte ao longo da interface água-ar na zona saturada segundo o gradiente natural. Neste trabalho apresenta-se um novo procedimento, baseado no risco de infecção, para a determinação da distância de separação considerando os efeitos da saturação variável e o fraturamento. Este procedimento determina a distância máxima percorrida, a partir do cálculo das concentrações de vírus. A distância de separação mínima corresponde à distância entre a fonte de injeção e o ponto aonde a concentração atinge o valor máximo de concentração permitida. Para o desenvolvimento deste novo procedimento foi implementado um código de programação que inclui: fluxo saturado-não saturado e transporte explícito nos poros e nas fraturas, advecção, dispersão, decaimento, sorção na superfície dos sólidos, sorção nas interfaces água-ar e água-sólido, filtração mecânica e exclusão de poros. Foi realizada uma análise comparativa entre as metodologias acima descritas para três geometrias tipo representativas das condições estratigráficas de algumas áreas do Vale Central da Costa Rica. Os resultados obtidos indicaram que a metodologia normalmente empregada na Costa Rica pode ser inadequada para prever na maioria dos casos a possibilidade de contaminação.
Setback distances of wellhead and catchments from septic tanks are establised by three aproaches: methods based on fixed setback distances or fixed travel times; methods based on vulnerability analysis and methods based on infection risk. In Costa Rica, the determination of setback distances is based on fixed travel times. This approach considers that during and specified travel time all microorganisms will be inactivated, and that the distance traveled during this time defines the minimum safe separation. In this approach a unitary hydraulic gradient and saturated hydraulic conductivity are considered for transport in the unsaturated zone and the natural hydraulic gradient and saturated conductivity for transport in the saturated zone. Only advection is considered as the responsible mechanism for virus transport. A new procedure is presented in this document to define the setback distance. This procedure is based on the infection risk approach. According to this approach the minimum required setback distance is defined as the distance between the injection point and the location where the contaminant reaches a maximum allowable concentration. This procedure was implemented in a computer code that considers variable saturated water flow, fractured-porous media, advection, dispersion, dynamic sorption, inactivation and mechanical filtration. A comparative analysis was performed for three hypothetical geometries using the two approaches described. The results indicate the approach normally used in Costa Rica may no reproduce adequately the possibility of catchments and wellhead contamination.
Botros, Farag Elia Farag. "On upscaling groundwater flow and transport parameters in porous and fractured media." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3275828.
Full textPollard, Adam Spencer. "A numerical study of flow and contaminant transport in fractured porous media." Thesis, University of Exeter, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284632.
Full textGraf, Thomas. "Modeling coupled thermohaline flow and reactive solute transport in discretely-fractured porous media." Thesis, Québec : Université Laval, 2005. http://www.theses.ulaval.ca/2005/23197/23197.pdf.
Full textGraf, Thomas. "Modeling coupled thermohaline flow and reactive solute transport in discretely-fractured porous media." Doctoral thesis, Université Laval, 2006. http://hdl.handle.net/20.500.11794/18230.
Full textUn modèle numérique tridimensionnel a été développé pour la simulation du système chimique quartz-eau couplé avec l’écoulement à densité et viscosité variable dans les milieux poreux discrètement fracturés. Le nouveau modèle simule aussi le transfert de chaleur dans les milieux poreux fracturés en supposant que l’expansion thermique du milieu est négligeable. Les propriétés du fluide, densité et viscosité, ainsi que les constantes chimiques (constant de taux de dissolution, constant d’équilibre, coefficient d’activité) sont calculées en fonction de la concentration des ions majeurs et de la température. Des paramètres de réaction et d’écoulement, comme la surface spécifique du minéral et la perméabilité sont mis jour à la fin de chaque pas de temps avec des taux de réaction explicitement calculés. Le modèle suppose que des changements de la porosite et des ouvertures de fractures n’ont pas d’impact sur l’emmagasinement spécifique. Des pas de temps adaptatifs sont utilisés pour accélérer et ralentir la simulation afin d’empêcher des résultats non physiques. Les nouveaux incréments de temps dépendent des changements maximum de la porosité et/ou de l’ouverture de fracture. Des taux de réaction au niveau temporel L+1 (schéma de pondération temporelle implicite) sont utilisés pour renouveler tous les paramètres du modèle afin de garantir la stabilité numérique. Le modèle a été vérifié avec des problèmes analytiques, numériques et physiques de l’écoulement à densité variable, transport réactif et transfert de chaleur dans les milieux poreux fracturés. La complexité de la formulation du modèle permet d’étudier des réactions chimiques et l’écoulement à densité variable d’une façon plus réaliste qu’auparavant possible. En premier lieu, cette étude adresse le phénomène de l’écoulement et du transport à densité variable dans les milieux poreux fracturés avec une seule fracture à inclinaison arbitraire. Une formulation mathématique générale du terme de flottabilité est dérivée qui tient compte de l’écoulement et du transport à densité variable dans des fractures de toute orientation. Des simulations de l’écoulement et du transport à densité variable dans une seule fracture implanté dans une matrice poreuse ont été effectuées. Les simulations montrent que l’écoulement à densité variable dans une fracture cause la convection dans la matrice poreuse et que la fracture à perméabilité élevée agit comme barrière pour la convection. Le nouveau modèle a été appliqué afin de simuler des exemples, comme le mouvement horizontal d’un panache de fluide chaud dans un milieu fracturé chimiquement réactif. Le transport thermohalin (double-diffusif) influence non seulement l’écoulement à densité variable mais aussi les réactions chimiques. L’écoulement à convection libre dépend du contraste de densité entre le fluide (panache chaud ou de l’eau salée froide) et le fluide de référence. Dans l’exemple, des contrastes de densité sont généralement faibles et des fractures n’agissent pas comme des chemins préférés mais contribuent à la dispersion transverse du panache. Des zones chaudes correspondent aux régions de dissolution de quartz tandis que dans les zones froides, la silice mobile précipite. La concentration de silice est inversement proportionnelle à la salinité dans les régions à salinité élevée et directement proportionnelle à la température dans les régions à salinité faible. Le système est le plus sensible aux inexactitudes de température. Ceci est parce que la température influence non seulement la cinétique de dissolution (équation d’Arrhenius), mais aussi la solubilité de quartz.
A three-dimensional numerical model is developed that couples the quartz-water chemical system with variable-density, variable-viscosity flow in fractured porous media. The new model also solves for heat transfer in fractured porous media, under the assumption of negligible thermal expansion of the rock. The fluid properties density and viscosity as well as chemistry constants (dissolution rate constant, equilibrium constant and activity coefficient) are calculated as a function of the concentrations of major ions and of temperature. Reaction and flow parameters, such as mineral surface area and permeability, are updated at the end of each time step with explicitly calculated reaction rates. The impact of porosity and aperture changes on specific storage is neglected. Adaptive time stepping is used to accelerate and slow down the simulation process in order to prevent physically unrealistic results. New time increments depend on maximum changes in matrix porosity and/or fracture aperture. Reaction rates at time level L+1 (implicit time weighting scheme) are used to renew all model parameters to ensure numerical stability. The model is verified against existing analytical, numerical and physical benchmark problems of variable-density flow, reactive solute transport and heat transfer in fractured porous media. The complexity of the model formulation allows chemical reactions and variable-density flow to be studied in a more realistic way than previously possible. The present study first addresses the phenomenon of variable-density flow and transport in fractured porous media, where a single fracture of an arbitrary incline can occur. A general mathematical formulation of the body force vector is derived, which accounts for variable-density flow and transport in fractures of any orientation. Simulations of variable-density flow and solute transport are conducted for a single fracture, embedded in a porous matrix. The simulations show that density-driven flow in the fracture causes convective flow within the porous matrix and that the highpermeability fracture acts as a barrier for convection. The new model was applied to simulate illustrative examples, such as the horizontal movement of a hot plume in a chemically reactive fractured medium. Thermohaline (double-diffusive) transport impacts both buoyancy-driven flow and chemical reactions. Free convective flow depends on the density contrast between the fluid (hot brine or cool saltwater) and the reference fluid. In the example, density contrasts are generally small and fractures do not act like preferential pathways but contribute to transverse dispersion of the plume. Hot zones correspond to areas of quartz dissolution while in cooler zones, precipitation of imported silica prevails. The silica concentration is inversely proportional to salinity in high-salinity regions and directly proportional to temperature in low-salinity regions. The system is the most sensitive to temperature inaccuracy. This is because temperature impacts both the dissolution kinetics (Arrhenius equation) and the quartz solubility.
TELLES, ISABELLE DE ARAUJO. "DEVELOPMENT OF AN INTEGRATED SYSTEM FOR THE MODELLING OF FLOW AND TRANSPORT IN POROUS AND FRACTURED MEDIA." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8662@1.
Full textEste trabalho apresenta o desenvolvimento de um sistema integrado de modelagem, tridimensional, de fluxo e transporte em meios porosos e fraturados. O sistema é composto de seis programas computacionais, que são responsáveis pela geração de superfícies geológicas (Gocad), geração de sistemas de fraturas (FracGen3D), modelagem geométrica (MG), análise numérica de fluxo e transporte (soluto e partículas) (FTPF-3D) e visualização dos resultados (Pos3D e Matlab). Dos programas, dois foram desenvolvidos neste trabalho (FracGen3D e o FTPF-3D) e quatro foram integrados ao sistema (Gocad, MG, Pos3D e Matlab). O sistema é capaz de modelar os meios porosos, fraturados, porosos fraturados (meio poroso e fraturado interposto) e uma combinação entre os meios. Nos meios fraturados ou porosos fraturados, as fraturas geradas podem ser do tipo determinísticas e/ou estatísticas. As características das fraturas estatísticas podem ser geradas segundo distribuições probabilísticas ou com valores constantes. O programa de análise numérica utiliza o Método dos Elementos Finitos para resolver as equações governantes, considerando os regimes permanente e transiente, em condições saturadas e não saturadas. Para a solução da não linearidade da equação de fluxo, é adotado o método de Picard ou o método BFGS. No transporte de solutos, os mecanismos de advecção, dispersão, difusão, sorção e decaimento podem ser considerados. O trabalho apresenta exemplos numéricos utilizados na validação das implementações computacionais realizadas, e apresenta também, outros exemplos utilizados para demonstrar o sistema desenvolvido.
This work presents the development of an integrated system for the threedimensional modelling of flow and transport in porous and fractured media. The system is composed of six computational programs, which are responsible for the generation of geologic surface (Gocad), generation of fracture network (FracGen3D), geometric modelling (MG), numerical analysis of flow and transport (solute and particles) (FTPF-3D) and results visualization (Pos3D and Matlab). Of the programs, two had been developed in this work (FracGen3D and the FTPF-3D) and four had been integrated to the system (Gocad, MG, Pos3D and Matlab). The system is able to model the porous, fractured, fractured porous media (porous and fractured medias interposed) and a combination between the media. In the fractured or fractured porous media, the fractures generated can be of the type deterministic and/or statistical. The characteristics of the statistical fractures can be generated according to probabilistic distributions or with constant values. The numerical analysis program uses the Finite Element Method to solve the governance equations, considering steady-state and transient flow, in saturated and unsaturated conditions. For the solution of non linearity of the flow equation, the Picard scheme or the BFGS scheme are adopted. In the solute transport, the advection, dispersion, diffusion, sorption and decay mechanisms can be considered. This work also presents numerical examples used in the validation of the carried through computational implementations and other examples used to demonstrate the system that has been developed.
Koohbor, Behshad. "Modeling water flow and mass transport in fractured porous media : application to seawater intrusion and unsaturated zone." Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAH013.
Full textThis work addresses the numerical modeling of flow and mass transport in fractured porous media with a focus on two applications: seawater intrusion in coastal aquifers and flow in the fractured vadose zone. The main objectives of this work are to improve the efficiency and accuracy of numerical models to enhance their capacity in dealing with real-world studies. A significant part is dedicated to the development of semi-analytical solutions for seawater intrusion with the variable density flow model. These solutions are useful for benchmarking purposes and understanding the physical processes. An appropriate and robust technique based on surrogate modeling is also developed to investigate the uncertainties related to fractures on seawater intrusion. An efficient numerical scheme is developed for the simulation of variably saturated flow in fractured domains. The new developed scheme is used to investigate the effect of climate change on groundwater resources in a karst aquifer/spring system in Lebanon
Süß, Mia. "Analysis of the influence of structures and boundaries on flow and transport processes in fractured porous media." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11759360.
Full textBooks on the topic "Transport in fractured porous media"
P, Dietrich, ed. Flow and transport in fractured porous media. Berlin: Springer, 2005.
Find full textDietrich, Peter, Rainer Helmig, Martin Sauter, Heinz Hötzl, Jürgen Köngeter, and Georg Teutsch, eds. Flow and Transport in Fractured Porous Media. Berlin/Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/b138453.
Full textSahimi, Muhammad. Flow and Transport in Porous Media and Fractured Rock. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636693.
Full textSahimi, Muhammad. Flow and transport in porous media and fractured rock: From classical methods to modern approaches. Weinheim: VCH, 1995.
Find full textB, Sagar, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Regulatory Applications., Analytic and Computational Research, Inc., and Center for Nuclear Waste Regulatory Analyses (Southwest Research Institute), eds. PORFLOW: A multifluid multiphase model for simulating flow, heat transfer, and mass transport in fractured porous media : user's manual, version 2.41. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textMechanics of porous and fractured media. Singapore: World Scientific, 1990.
Find full textCivan, Faruk. Porous Media Transport Phenomena. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118086810.
Full textCivan, Faruk. Porous media transport phenomena. Hoboken, N.J: Wiley, 2011.
Find full textIchikawa, Yasuaki, and A. P. S. Selvadurai. Transport Phenomena in Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25333-1.
Full textFrimmel, Fritz H., Frank Von Der Kammer, and Hans-Curt Flemming, eds. Colloidal Transport in Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71339-5.
Full textBook chapters on the topic "Transport in fractured porous media"
Kolditz, Olaf. "Heat Transport in Fractured-Porous Media." In Computational Methods in Environmental Fluid Mechanics, 271–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04761-3_13.
Full textShapiro, Allen M. "Transport Equations for Fractured Porous Media." In Advances in Transport Phenomena in Porous Media, 405–71. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3625-6_10.
Full textLong, J. C. S., K. Hestir, K. Karasaki, A. Davey, J. Peterson, J. Kemeny, and M. Landsfeld. "Fluid Flow in Fractured Rock: Theory and Application." In Transport Processes in Porous Media, 203–41. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3628-0_4.
Full textNeretnieks, Ivars, Harald Abelin, Lars Birgersson, Luis Moreno, Anders Rasmuson, and Kristina Skagius. "Chemical Transport in Fractured Rock." In Advances in Transport Phenomena in Porous Media, 473–550. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3625-6_11.
Full textTorsaeter, Ole, Jon Kleppe, and Teodor Golf-Racht. "Multiphase Flow in Fractured Reservoirs." In Advances in Transport Phenomena in Porous Media, 551–629. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3625-6_12.
Full textSelyakov, V. I., and V. V. Kadet. "Methods for Determining Parameters of Fractured Rocks." In Percolation Models for Transport in Porous Media, 129–38. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8626-9_8.
Full textRumynin, Vyacheslav G. "Flow and Transport Through Unsaturated Fractured-Porous Rocks." In Theory and Applications of Transport in Porous Media, 259–84. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1306-2_7.
Full textSchwartz, Franklin W., and Leslie Smith. "An Overview of the Stochastic Modeling of Dispersion in Fractured Media." In Advances in Transport Phenomena in Porous Media, 727–50. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3625-6_16.
Full textRumynin, Vyacheslav G. "Analytical Models for Solute Transport in Saturated Fractured-Porous Media." In Theory and Applications of Transport in Porous Media, 219–58. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1306-2_6.
Full textBai, M., H. I. Inyang, C. C. Chien, and C. Bruell. "Factors for Assessing Flow and Transport in Fractured Porous Media." In Remediation in Rock Masses, 12–27. Reston, VA: American Society of Civil Engineers, 2000. http://dx.doi.org/10.1061/9780784400159.ch02.
Full textConference papers on the topic "Transport in fractured porous media"
Chen, Songhua, Xiaoli Yao, Jinli Qiao, and A. T. Watson. "NMRI Characterization of Fractures and Multiphase Transport in Fractured Porous Media." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/28369-ms.
Full textZijl, Wouter. "LIQUID-LIQUID MOTION IN POROUS AND FRACTURED MEDIA." In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.430.
Full textMartinez, M. J. "Slug Flow Model for Infiltration Into Fractured Porous Media." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1022.
Full textEl-Amin, Mohamed F., Jisheng Kou, and Shuyu Sun. "A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media." In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/188001-ms.
Full textFomin, Sergei A., Vladimir A. Chugunov, and Toshiyuki Hashida. "Mathematical modeling of non-Fickian mass transport in fractured porous media." In Nano-Design, Technology, Computer Simulations, edited by Alexander I. Melker and Vladislav V. Nelayev. SPIE, 2008. http://dx.doi.org/10.1117/12.837011.
Full textDong, Chen, and Shuyu Sun. "Simulation of Contaminant Transport in Fractured Porous Media on Triangular Meshes." In 2010 International Conference on Computational and Information Sciences (ICCIS). IEEE, 2010. http://dx.doi.org/10.1109/iccis.2010.39.
Full textRamasomanana, Fanilo Heninkaja, Marwan Fahs, Husam Baalousha, Nicolas Barth, and Said Ahzi. "A new ELLAM implementation for modeling solute transport in fractured porous media." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2018. http://dx.doi.org/10.5339/qfarc.2018.eepd602.
Full textKaslusky, Scott F., Kent S. Udell, and Glenn E. McCreery. "Numerical Modeling of Steam Injection Into Saturated Porous Media." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1568.
Full textFomin, Sergei, Vladimir Chugunov, and Toshiyuki Hashida. "Derivation of Fractional Differential Equations for Modeling Diffusion in Porous Media of Fractal Geometry." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68499.
Full textYurukcu, Mesut, Baki Ozum, Sebahattin Ziyanak, Jorge Leonardo Saldana, Cengiz Yegin, Hande Yondemli, Mehmet Melih Oskay, and Cenk Temizel. "Nanoparticles for the Transport of Fluids in Porous Media." In SPE Western Regional Meeting. SPE, 2023. http://dx.doi.org/10.2118/212996-ms.
Full textReports on the topic "Transport in fractured porous media"
Conca, J. L. Transport in porous and fractured media of the Creede Formation. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/10107134.
Full textZhang, Yong, Eric LaBolle, Donald M. Reeves, and Charles Russell. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1091944.
Full textTaylor, G., C. Dong, and S. Sun. NUMERICAL MODELING OF CONTAMINANT TRANSPORT IN FRACTURED POROUS MEDIA USING MIXED FINITE ELEMENT AND FINITE VOLUME METHODS. Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/974328.
Full textLehua Pan and G.S. Bodvarsson. Modeling Transport in Fractured Porous Media with the Random-Walk Particle Method: The Transient Activity Range and the Particle-Transfer Probability. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/805566.
Full textMoridis, G. User's Manual of the TOUGH+ Core Code v1.5: A General-Purpose Simulator of Non-Isothermal Flow and Transport through Porous and Fractured Media. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1165988.
Full textFiroozabadi, A. Multiphase flow in fractured porous media. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/10117349.
Full textDickenson, Eric. Transport in porous media. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/576744.
Full textJoel Koplik. Transport processes in porous media. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/877708.
Full textS. Finsterle, J. T. Fabryka-Martin, and J. S. Y. Wang. Migration of Water Pulse Through Fractured Porous Media. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/786566.
Full textMcCarthy, J. F. Colloid Transport and Retention in Fractured Media. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/777619.
Full text