Dissertations / Theses on the topic 'Transmission neuronale'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Transmission neuronale.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Roux, Sébastien. "L'influence des aspects temporels dans la planification motrice : activité neuronale, interactions neuronales, potentiels de champs locaux." Aix-Marseille 2, 2006. http://theses.univ-amu.fr.lama.univ-amu.fr/2006AIX22068.pdf.
Full textNeuronal correlates of movement preparation and execution are generally studied by using tasks in which the different steps of the motor plan are triggered by stimuli. However in natural conditions, movements are rarely triggered. Time estimation processes play an important role in motor performance, but only a few studies take this fact in account. To study the influence of time estimation processes in motor cortical activity, we trained monkeys to estimate and discriminate durations in order to perform the required arm reaching movement. Movements were either self initiated or triggered by a signal. We also manipulated the probability of signal occurrence to induce signal expectancy. By using a multi-electrode device, we recorded multiple single-neuron activity and local field potentials (LFP) in primary motor cortex (MI). We found neuronal correlates of time estimation processes in motor cortical activity, such as single neuron activity, precise spike synchronizations and LFP patterns linked to signal expectancy. To better understand the relationship between spiking activity and LFPs, we also studied the correlation between the two. In general, we found that, for a given mouvement, neuronal activity is largely influenced by the temporal context of the task
Casassus, Guillaume. "La transmission glutamatergique cortico-accumbens : régulation et plasticité pré-synaptique." Bordeaux 2, 2004. http://www.theses.fr/2004BOR21131.
Full textThe nucleus accumbens forms the ventral part of the striatum. It has been proposed to serve as an interface between the limbic system and the motor system. Medium spiny neurons of the nucleus accumbens, that depend on excitatory afferents to generate action potentials, receive a dense glutamatergic innervation from the prefrontal cortex and form various limbic structures, including the hippocampal formation, the basolateral amygdala and the thalamus. Despite growing evidence that the nucleus accumbens is involved in important brain functions such as motivation, attention or reward, physiological regulation of the glutamatergic input in medium spiny neurons is still largely unknown. The efficacy of excitatory glutamatergic synaptic transmission is highly dependent on the activation of presynaptic autoreceptors and on the temporal pattern of activity of afferents. Using patch-clamp whole-cell recordings in acute slices of the mouse nucleus accumbens, we have highlighted new forms of synaptic modulation of the cortico-accumbens pathway : (1) functional presynaptic kainate receptors on cortical afferrents fibers inhibited glutamatergic synaptic transmission, (2) increase in tonic frequency stimulation of the cortical input to the nucleus accumbens induced a presynaptic facilitation or depression of the synaptic transmission depending on the initial release probability, (3) burst stimulation of cortical afferent fibers lead to a cumulative increase of the glutamatergic synaptic input through presynaptic increase in axonal reliability of action potentials propagation, and (4) sustained stimulation (14 Hz, 2 min) of cortical afferent fibers, induced long-term potentiation of glutamatergic synaptic transmission through presynaptic mechanisms and activation of ionotropic glutamate receptors. These results demonstrtate new original phenomenons that modulate cortico-accumbens glutamatergic synaptic strength in nucleus accumbens efferent neurons
Thévenot, Emmanuel. "Caractérisation des partenaires de la Kinase neuronale PAK3, et rôle de ces complexes dans la plasticité neuronale." Paris 11, 2009. http://www.theses.fr/2009PA11T058.
Full textChambet, Nicolas. "Modélisation physique des réseaux de neurones : étude de comportements collectifs : application au traitement de l'information." Angers, 1995. http://www.theses.fr/1995ANGE0014.
Full textRajalu, Mathieu. "Plasticité de la transmission synaptique inhibitrice dans le système nociceptif spinal de la souris." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. http://www.theses.fr/2008STR13193.
Full textThe synaptic inhibition is important in the control of neurons excitability. In the spinal lamina II, the balance between inhibitory and excitatory components regulates the transmission of the peripheral nociceptive inputs to supraspinal structures. During my PhD, I worked on the plasticity of inhibitory synaptic transmission in lamina II of mouse. Using the patch-clamp technique on acute slices, I first characterized the inhibitory synaptic transmission and then its plasticity throughout the postnatal development as in a transgenic model where a subunit of the glycine receptor is knocked-out. At last, I studied the short and long lasting positive modulation of inhibitory synaptic transmission by the oxytocinergic descending pathway that produces an impairment of thermal and mechanical hyperalgesia in an inflammatory model of pain
Carlier, Florent. "Nouvelle technique neuronale de détection multi-utilisateurs : Applications aux systèmes MC-CDMA." Rennes, INSA, 2003. http://www.theses.fr/2003ISAR0019.
Full textLegendre, Arnaud. "Modélisation fonctionnelle de l'activité neuronale hippocampique : Applications pharmacologiques." Thesis, Mulhouse, 2015. http://www.theses.fr/2015MULH7271/document.
Full textThe work of this thesis aims to apply modeling and simulation techniques to mechanisms underlying neuronal activity, in order to promote drug discovery for the treatment of nervous system diseases. The models are developed and integrated at different scales: 1) the so-called "elementary models" permit to simulate dynamics of receptors, ion channels and biochemical reactions in intracellular signaling pathways; 2) models at the neuronal level allow to study the electrophysiological activity of these cells; and 3) microcircuits models help to understand the emergent properties of these complex systems, while maintaining the basic mechanisms that are the targets of pharmaceutical molecules. After a bibliographic synthesis of necessary elements of neurobiology, and an outline of the implemented mathematical and computational tools, the manuscript describes the developed models, as well as their validation process, ranging from the neurotransmitter receptor to the microcircuit. Moreover, these developments have been applied to three studies aiming to understand: 1) pharmacological modulation of the long-term potentiation (LTP) of glutamatergic synapses in the hippocampus, 2) mechanisms of neuronal hyperexcitability in the mesial temporal lobe epilepsy (MTLE), based on in vitro and in vivo experimental results, and 3) cholinergic modulation of hippocampal activity, particularly the theta rhythm associated with septo-hippocampal pathway
Bosch, Clémentine. "Transmission et plasticité au sein de la voie hyperdirecte des ganglions de la base." Paris 6, 2011. http://www.theses.fr/2011PA066232.
Full textLavoie, Nathalie. "Étude sur le rôle physiologique du zinc endogène dans l'excitabilité neuronale et la transmission synaptique hippocampale." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/26859/26859.pdf.
Full textRobbe, David. "Régulation et plasticité de la transmission synaptique dans le noyau accumbens. Modulation par les drogues addictives." Montpellier 2, 2002. http://www.theses.fr/2002MON20076.
Full textBoubakar, Leila. "Rôle des Septines dans la transmission de traits morphologiques au cours de la neurogenèse des ganglions des racines dorsales." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1139.
Full textNeurite formation is a crucial step of neuronal differentiation. However, the mechanisms that determine how and at which position neurites emerge in the soma are still poorly understood. We postulated that a molecular polarity could prefigure the morphological differentiation, with some molecules that could accumulate at the future site of axon initiation. Interestingly, such molecular polarity has been evidenced in the contest of yeast budding, with bud forming at specific position relatively to the previous bud site. Genome-wide screen identified hundreds of proteins that control bud site location. Among the vertebrate molecules homologous to those involved in budding site selection, we selected the Septins as promising candidates. These GTP-ases form filaments that act as diffusion barriers and molecular scaffolds. We investigated the contribution of Septins to axon initiation using the chick dorsal root ganglion (DRG) neurons as a model. Monitoring of cell morphology in nascent ganglia indicates that DRG neurons form a single axon at the ventral pole and a second one at the dorsal pole and that these axons seem to emerge directly after their last division. This suggests that two initiation sites are selected at opposite pole of the soma.We found that Septins homologous with those controlling budding are expressed in the early DRG developmental stages. My analyses by time-lapse video-microscopy showed that Septin7 accumulate at the site of axon emergence, just before or during its formation.We observed that a pharmacological inhibitor and a dominant-negative construct block axon formation both in vitro and in vivo respectively. Furthermore, blocking Septin function leads to the appearance of uncommon round or sea urchin-like neurons. Thus, Septins appear to regulate early step of morphological differentiation of DRG neurons, possibly by controlling axon initiation site selection
Chameau, Pascal. "Le recepteur de la ryanodine de type 3 (ryr3) : localisation et role dans l'excitabilite neuronale et la transmission synaptique." Paris 6, 1999. http://www.theses.fr/1999PA066101.
Full textTiganj, Zoran. "On the pertinence of a numerical transmission model for neural information." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2011. http://tel.archives-ouvertes.fr/tel-00699623.
Full textHesse, Janina. "Implications of neuronal excitability and morphology for spike-based information transmission." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18583.
Full textSignal processing in nervous systems is shaped by the connectome as well as the cellular properties of nerve cells. In this thesis, two cellular properties are investigated with respect to the functional adaptations they provide: It is shown that neuronal morphology can improve signal transmission under energetic constraints, and that even small changes in biophysical parameters can switch spike generation, and thus information encoding. In the first project of the thesis, mathematical modeling and data are deployed to suggest energy-efficient signaling as a major evolutionary pressure behind morphological adaptations of cell body location: In order to save energy, the electrical signal transmission from dendrite to axon can be enhanced if a relatively small cell body is located between dendrite and axon, while a relatively large cell body should be externalized. In the second project, it is shown that biophysical parameters, such as temperature, membrane leak or capacitance, can transform neuronal excitability (i.e., the spike onset bifurcation) and, with that, spike-based information processing. This thesis identifies the so-called saddle-node-loop bifurcation as the transition with particularly drastic functional implications. Besides altering neuronal filters and stimulus locking, the saddle-node-loop bifurcation leads to an increase in network synchronization, which may potentially be relevant for the initiation of seizures in response to increased temperature, such as during fever cramps.
Autillo-Touati, Amapola. "Etude in vitro de la morphogenèse et de la polarité neuronale : analyse en miscroscopie électronique à transmission et à balayage." Aix-Marseille 2, 1992. http://www.theses.fr/1992AIX21901.
Full textKhlghatyan, Jivan, and Jivan Khlghatyan. "Regulation of glutamatergic neurotransmission, synaptic plasticity, sleep and behavior by D2-GSK3B-FXR1." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/38090.
Full textLes études GWAS associent les variantes du gène Fxr1 à la schizophrénie, les maladies bipolaires, l’insomnie et la durée du sommeil. Gsk3β peut directement phosphoryler et ainsi réguler négativement Fxr1. De plus, les interactions fonctionnelles entre Gsk3β et Fxr1 sont associées avec la stabilité émotionnelle chez les humains. Comment Gsk3β-Fxr1 régule l’activité neuronale, la plasticité et le comportement reste inconnu. Gsk3β peut être activé en aval des récepteurs D2 de dopamine. L’activité de Gsk3β peut être modulée par les stabilisateurs d’humeur, les antipsychotiques et les antidépresseurs en régulant des comportements. Néanmoins, les corrélations neuroanatomiques de Gsk3β en aval des récepteurs D2 restent inexplorées. Nous avons étudié, en premier lieu, les relations de Gsk3β-Fxr1 avec l’activité neuronale et les comportements. Nous avons découvert que Fxr1 et son régulateur négatif Gsk3β affectent les comportements liés à l’anxiété ainsi que la neurotransmission glutamatergique via la régulation des récepteurs AMPA synaptiques. Deuxièmement, nous avons exploré l’Implication de Gsk3β-Fxr1 dans la plasticité synaptique et le sommeil. Nous avons constaté que Fxr1 est le régulateur central («maître») de la mise à l’échelle synaptique homéostatique. D’ailleurs, il est aussi engage dans l’homéostasie du sommeil et module la force synaptique en régulant les transcripts impliqués dans la synthèse locale des protéines et la structure synaptique. Troisièmement, dans le but de comprendre les corrélations neuroanatomiques nous avons généré une carte des neurones exprimant des récepteurs D2 de tout le cortex et leurs projections. En quatrième lieu, nous avons visé d’investiguer les fonctions de Gsk3β en aval des récepteurs D2 dépendamment de leur emplacement anatomique. L’invalidation (knockout) intersectoriel de Gsk3β dans les neurones D2 du cortex préfrontal murin par CRISPR/Cas9 nous a permis de révéler sa contribution dans la régulation des comportements cognitifs, sociaux et de ceux associés à l’humeur. En résumé, cette thèse de doctorat élucide les fonctions de Fxr1 dans le cerveau tout en démontrant l’utilité du CRISPR/Cas9 dans le ciblage génétique ayant pour but d’explorer les fonctions des gènes spécifiquement dans un circuit donné.
Variants in Fxr1 gene are GWAS-associated to schizophrenia, bipolar disorders, insomnia, and sleep duration. Gsk3β can directly phosphorylate and negatively regulate Fxr1. Moreover, functional interaction between Gsk3β and Fxr1 is associated with emotional stability in humans. How Gsk3β-Fxr1 regulates neuronal activity, plasticity and behaviors remains unclear. Gsk3β can be activated downstream of dopamine D2 receptors. Gsk3β activity can be modulated by mood stabilizers, antipsychotics and antidepressants to regulate behaviors. Nevertheless, neuroanatomical correlates of Gsk3β functions downstream of D2 receptors remain elusive. First, we investigated the relationship of Gsk3β-Fxr1 to neuronal activity and behaviors. We discovered that Fxr1 and its negative regulator Gsk3β affect anxiety-related behaviors and glutamatergic neurotransmission via regulation of synaptic AMPA receptors. Second, we addressed the involvement of Gsk3β-Fxr1 in synaptic plasticity and sleep. We discovered that Fxr1 is a master regulator of homeostatic synaptic scaling. Moreover, it is engaged during sleep homeostasis to modulate synaptic strength via regulation of transcripts involved in local protein synthesis and synaptic structure. Third, to understand neuroanatomical correlates of D2 receptor signaling we generated a cortex-wide map of D2 expressing neurons and their projection targets. Fourth, we aimed to understand anatomically defined functions of Gsk3β downstream of D2 receptors. CRISPR/Cas9 mediated intersectional knockout of Gsk3β in D2 neurons of mPFC elucidated its contribution to the regulation of cognitive, social and mood-related behaviors. Overall, this thesis sheds light on brain functions of a GWAS-identified risk gene Fxr1 and shows the utility of intersectional CRISPR/Cas9 mediated genetic targeting for the interrogation of circuitspecific functions of genes.
Variants in Fxr1 gene are GWAS-associated to schizophrenia, bipolar disorders, insomnia, and sleep duration. Gsk3β can directly phosphorylate and negatively regulate Fxr1. Moreover, functional interaction between Gsk3β and Fxr1 is associated with emotional stability in humans. How Gsk3β-Fxr1 regulates neuronal activity, plasticity and behaviors remains unclear. Gsk3β can be activated downstream of dopamine D2 receptors. Gsk3β activity can be modulated by mood stabilizers, antipsychotics and antidepressants to regulate behaviors. Nevertheless, neuroanatomical correlates of Gsk3β functions downstream of D2 receptors remain elusive. First, we investigated the relationship of Gsk3β-Fxr1 to neuronal activity and behaviors. We discovered that Fxr1 and its negative regulator Gsk3β affect anxiety-related behaviors and glutamatergic neurotransmission via regulation of synaptic AMPA receptors. Second, we addressed the involvement of Gsk3β-Fxr1 in synaptic plasticity and sleep. We discovered that Fxr1 is a master regulator of homeostatic synaptic scaling. Moreover, it is engaged during sleep homeostasis to modulate synaptic strength via regulation of transcripts involved in local protein synthesis and synaptic structure. Third, to understand neuroanatomical correlates of D2 receptor signaling we generated a cortex-wide map of D2 expressing neurons and their projection targets. Fourth, we aimed to understand anatomically defined functions of Gsk3β downstream of D2 receptors. CRISPR/Cas9 mediated intersectional knockout of Gsk3β in D2 neurons of mPFC elucidated its contribution to the regulation of cognitive, social and mood-related behaviors. Overall, this thesis sheds light on brain functions of a GWAS-identified risk gene Fxr1 and shows the utility of intersectional CRISPR/Cas9 mediated genetic targeting for the interrogation of circuitspecific functions of genes.
Gleizes, Marie. "Ectonucléotidases, adénosine et transmission synaptique." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30306/document.
Full textThe functions of Tissue Nonspecific Alkaline Phosphatase (TNAP) in the brain are not clearly identified. The localization and expression of TNAP at the neuronal level, however, suggests that it plays a prominent role in the development and the function in the brain. This is supported by the presence of severe epileptic seizures in humans carrying TNAP mutation. These epileptic seizures are lethal in TNAP KO mice. Studies in mice show that TNAP could regulate GABA-mediated postsynaptic inhibition and may be involved in presynaptic inhibition mediated by adenosine. Adenosine is, partly, synthesized via the successive dephosphorylation of ATP to ADP and then to AMP by ectonucleotidases. Among them TNAP and ecto-5'-nucleotidase (NT5E) are able to hydrolyze AMP into adenosine. Adenosine acts mainly at the presynaptic level via A1 receptors activation. Adenosine has an influence on synaptic transmission and thus on synaptic plasticity. This could partly explain the epileptic seizures observed in TNAP knock-out mice. The two main purposes of my thesis were: (1) to evaluate the contribution of TNAP in adenosine production in the brain; (2) to study the influence of adenosine on synaptic plasticity. Firstly, the study of the contribution of TNAP in adenosine production in the brain was carried out using two complementary approaches. A metabolomic approach (proton NMR spectroscopy) on whole brains of TNAP KO mice showed that TNAP in involved in adenosine synthesis in the brain. In a second approach, in vitro electrophysiological recordings on mouse brain slices allowed us to examine the consequences of the inhibition of the ectonucleotidases involved in adenosine synthesis. This revealed that inhibition of ectonucleotidases (TNAP and NT5E) did not suppress the inhibitory effect of AMP mediated by A1 receptors. Secondly, we studied the influence of adenosine on short-term synaptic plasticity. Field potentials were recorded in response to electrical stimulations (3.125 to 100 Hz) applied with frequencies encompassing the range of physiological oscillation. Our results show that, with high adenosine concentrations, the facilitation is emphasized compared to that observed in the control situation. This effect is observed for frequencies greater than or equal to 25 Hz. In addition, the higher the frequency, the greater the facilitation. Finally, by blocking the action of endogenous adenosine, the opposite effect was observed: a deficient facilitation with respect to the control, whose defect was increasing with stimulation frequency. All these results converge towards the hypothesis that TNAP deficiency, expressed by absence of adenosine, could contribute to the maintenance of the epileptic processes generated by an imbalance of the neuronal inhibition and the excitation due to a decrease of GABA. AMP inhibitory effect mediated by A1 receptors, would not be sufficient to counteract epileptic seizures observed in hypophosphatasic patients and TNAP KO mice
Delgado, Zabalza Lorena. "Electrophysiological characterization of neuronal diversity in the substantia nigra pars reticulata in control and parkinsonian mice." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0052.
Full textThe substantia nigra pars reticulate (SNr) is the main output structure of the basal ganglia (BG), a subcortical network controlling the elaboration of motor programs as well as cognitive and associative learning functions. The identification of distinct cell-types within the BG has played a key role for understanding the properties and functions of this circuit. Recent studies suggest that the SNr is composed of several cell types but until now this neuronal diversity has never been taken into consideration regarding normal and pathological functioning of this nucleus, particularly in Parkinson’s disease (PD). By combining immunohistochemical and electrophysiological approaches in the PVCre::Ai9T mouse line, we have demonstrated that SNr neurons expressing the protein parvalbumin (PV+) exhibit different anatomical and electrophysiological properties than non PV-expressing (PV-) neurons. Our anatomical analysis reveal that PV+ and PV- neurons are present in equal proportion in the SNr, but with a distinct distribution, PV+ being enriched in the lateral part of the SNr, while PV- are found in the medial portion of the nucleus. In vitro electrophysiological recordings from identified PV+ and PV- neurons in the SNr also revealed that PV+ neurons fired at relatively higher rates than PV- cells. Additionally, our data revealed that DA loss and subsequent L-DOPA treatment induce a profound reduction of the excitability of PV+ SNr neurons in a 6-OHDA mouse model of PD while activity of PV- remains unchanged by these treatments.It is well known that the activity of SNr neurons is controlled by GABAergic inputs from striatal dSPN and the GP. We performed optogenetic manipulation of STR-SNr and GP-SNr inputs in order to determine whether PV+ and PV- SNr neurons received equivalent inputs from these two nuclei. We tested the impact of STR-SNr or GP-SNr activation on the activity of SNr neurons in cell-attached configuration and then switched to whole-cell voltage-clamp to characterize short-term plasticity of these synapses. Our results show that both PV+ and PV- SNr neurons are innervated by the STR and the GP. They also revealed that inhibition from dSPN was more powerful to silence activity of both subtypes of SNr neurons. Indeed, we observed that both STR-SNr and GP-SNr synapses displayed short-term depression in PV+ and PV- SNr neurons. DA loss affected GABA transmission in a different manner in PV+ and PV- SNr cells. On one hand, PV+ neurons were more sensible to striatal synaptic inhibition than PV- cells after DA depletion. On the other hand, PV-GP inputs were reduced on PV+ neurons and increased in PV- cells after DA loss suggesting a disequilibrium in pallidal inhibition between these two SNr populations.Furthermore, considering that rodent models of PD have shown elevated extracellular levels of GABA in the SNr which can exert a tonic extrasynaptic inhibition on SNr neurons, we decided to characterize GABAergic extrasynaptic transmission in the SNr of control and 6-OHDA lesioned mice. We studied GABAA mediated tonic inhibition by performing whole-cell patch-clamp recordings of PV+ and PV- SNr neurons in acute slices. We observed that PV- SNr neurons displayed larger GABAA receptor-mediated tonic currents than PV+ cells in the SNr of control mice. The presence and involvement of δ and/or α5 extrasynaptic subunits in GABAA receptors mediating this type of transmission was also studied, revealing a major presence and effect of α5-subunits on PV- neurons probably mediating the tonic currents observed in these neurons. However, contrary to expected, chronic DA-depletion did not trigger any increase in tonic inhibition neither in PV+ cells nor in PV- SNr neurons.All these findings highlight the importance of differentiating cell populations in the SNr to a better knowledge of the BG circuit in normal and pathological states such as in PD
Kadiri, Nabila. "Modulation de la transmission synaptique excitatrice glutamatergique et de l'excitabilité neuronale par la neurotensine et la galanine dans la corne dorsale de moelle épinière de rat." Strasbourg, 2010. http://www.theses.fr/2010STRA6249.
Full textDorsal horn of the spinal cord is the first place of integration of nociceptive information incoming from the periphery. The processing of such information involves excitatory and inhibitory interneurones, and the relative proportion of excitation or inhibition in the neuronal network will determine the intensity of the transmitted message. The activity of this network can be modulated by neuropeptides. Neurotensin (NT) and galanin (GAL) have antinociceptive or pronociceptifs effects which have been described in vivo. The purpose of my thesis was to characterize their cellular and molecular effects on the interneurones of layers I to III of the dorsal horn and glutamatergic synaptic transmission. Our results show that both neuropeptides exert opposite effects on neurones in the dorsal horn. At the presynaptic level, NT increases glutamate release while GAL inhibits it. At the postsynaptic level, NT induce an inward current, corresponding to a depolarizing current, whereas the GAL induce an outward current. By pharmacological approachs, we showed that these effects of NT and GAL are due to NTS1 and GAL1 receptors. Inhibition of PKC or ERK1 / 2 MAPK pathway completely prevents the effects of NT whereas the effects of GAL persist. Finally, NT and GAL exert their actions by acting on potassium channels. We showed that NT causes the closure of background channels (also named resting potential channels or K2P). This thesis showed that NT and GAL involved in fine regulation of glutamatergic synaptic transmission in the dorsal horn and contribute to the modulation of somatosensory information at the spinal level
Arbez, Nicolas. "Etude des effets des peptides amyloïdes : du fonctionnement de la synapse aux modifications du cytosquelette dans l'apoptose neuronale." Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00069706.
Full textphysiopathologie de la maladie d'Alzheimer.
Au cours de ce travail, nous avons montré différents effets de ces peptides.
Nous avons montré les effets de différents types de peptides amyloïdes sur les
courants calciques des neurones de l'hippocampe. Ainsi, l'Aβ(25-35) augmente les courants
calciques de type L alors que l'Aβ(1-40) ceux de types non-L.
Ensuite, l'application de peptide Aβ diminue les courants postsynaptiques excitateurs
évoqués mais également des courants miniatures spontanés. Ces diminutions seraient dues à
une internalisation des récepteurs AMPA et impliquent des processus inflammatoires et
l'activation de voies de transduction.
Enfin, lors de l'apoptose neuronale induite par le peptide amyloïde la β-tubuline de
classe III est exclue des microtubules et forme des agrégats cytoplasmiques. Ces effets ne sont
pas dus à des changements dans les modifications post-traductionnelles de la tubuline.
Droste, Felix. "Signal transmission in stochastic neuron models with non-white or non-Gaussian noise." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17294.
Full textThis thesis is concerned with the effect of non-white or non-Gaussian synaptic noise on the information transmission properties of single neurons. Synaptic noise subsumes the massive input that a cell receives from thousands of other neurons. In the framework of stochastic neuron models, this input is described by a stochastic process with suitably chosen statistics. If the overall arrival rate of presynaptic action potentials is high and constant in time and if each individual incoming spike has only a small effect on the dynamics of the cell, the massive synaptic input can be modeled as a Gaussian process. For mathematical tractability, one often assumes that furthermore, the input is devoid of temporal structure, i.e. that it is well described by a Gaussian white noise. This is the so-called diffusion approximation (DA). The present thesis explores neuronal signal transmission when the conditions that underlie the DA are no longer met, i.e. when one must describe the synaptic background activity by a stochastic process that is not white, not Gaussian, or neither. We explore three distinct scenarios by means of simulations and analytical calculations: First, we study a cell that receives not one but two signals, additionally filtered by synaptic short-term plasticity (STP), so that the background has to be described by a colored noise. The second scenario deals with synaptic weights that cannot be considered small; here, the effective noise is no longer Gaussian and the shot-noise nature of the input has to be taken into account. Finally, we study the effect of a presynaptic population that does not fire at a rate which is constant in time but instead undergoes transitions between states of high and low activity, so-called up and down states.
Sibille, Jérémie. "Activity-dependent astroglial potassium and calcium signals contribute to hippocampal short-term plasticity." Paris 7, 2013. http://www.theses.fr/2013PA077284.
Full textSaliba, Layal. "Etude de la transmission glutamatergique et des effets de l'ozone dans le noyau du tractus solitaire de rat adulte." Aix-Marseille 2, 2009. http://www.theses.fr/2009AIX20722.
Full textThis work joins within the framework of studies about the mechanisms of integration of the visceral information in response to environmental disturbances. In the first part of this work, our results suggest that neurons of the nucleus of tractus solitarii (NTS) could use different neurotransmission modes according to their projection pathway. In neurons involved in vital reflexes such as those regulating respiration, the lack of important iA current, as well as a synaptic transmission which depends mostly on AMPA receptors with less accessible NMDA receptors, would induce a very precise and highly reliable treatment of the information. On the contrary, in neurons implicated in the elaboration of visceral sensations such as respiratory distress, the presence of an important iA current, as well as a synaptic transmission involving perisynaptic NMDA receptors, would allow an easy modulation of the neurotransmission and a global activation of some brain areas. In the second part of this work, we show that ozone inhalation induces a neuronal activity in regions of adult rat NTS receiving pulmonary afferences, at doses causing a lung inflammation comparable to that provoked by atmospheric peaks of pollution to certain humans. Pulmonary inflammation and neuronal activity inferred by ozone inhalation increase from the first hours of exposure and remain high as long as stimuli is present. The continuation of this work aims to determine if ozone induces a neuronal inflammation, and to characterize its effects on the neurotransmission particularly in the NTS
Panatier, Aude. "Rôle des astrocytes dans le contrôle de l'activité des récepteurs NMDA et dans laplasticité synaptique à long terme dans le noyau supraoptique chez le rat." Bordeaux 2, 2006. http://www.theses.fr/2006BOR21384.
Full textIncreasing evidence indicates that beside pre- and postsynaptic neuronal elements, astrocyte is the third element of the synapse. Indeed, it can detect, integrate and modulate synaptic signals. My work focuses on the role of astrocytes in glutamatergic synaptic transmission and more precisely in NMDA receptor (NMDAR) activity. The NMDAR is a key player in excitatory transmission. I showed that NMDARs are responsible for the induction of long-term synaptic plasticity in hypothalamic supraoptic nuclei (SON). It is known that their activation depends on the binding of both, glutamate, and a co-agonist like glycine or D-serine. Interestingly, D-serine is synthezized and released by astrocyte. Thus, this amino acid offers a unique opportunity to test the influence of astrocytic coverage of synapses on glutamatergic synaptic transmission. To this end, I took advantage of the extensive reduction of astrocytic ensheathing of neurons and synapses that SON undergoes during lactation. By combining electrophysiological recordings with biochemistry and immunochemistry, I provided direct evidence that astrocytic D-serine is the only endogenous co-agonist of NMDARs in the SON. Thus, the activation of SON NMDARs requires the binding of glutamate and D-serine, but not glycine. Moreover, by comparing NMDAR activity under different astrocytic coverage of neurons and synapses, I found that astrocytes, by releasing D-serine at glutamatergic synapses, control not only the level of activation of synaptic NMDARs but also, the activity-dependence of long-term synaptic changes. Such a mechanism might be extended to all brain regions where D-serine is present. My work clearly identifies astrocytes as key players in signalling and storage of information in the brain
Huyghe, Déborah. "Étude du trafic polarisé de la sous-unité GluK3 des récepteurs du glutamate de type kaïnate." Thesis, Bordeaux 2, 2009. http://www.theses.fr/2009BOR21686/document.
Full textGlutamate is the principal excitatory neurotransmitter in the brain. Glutamatergic synaptic transmission is mediated by three types of ionotropic receptors that have been classified according to their preferential affinity for the agonists NMDARs (N- methyl-D-aspartate receptors), AMPARs (a-amino-3-hydroxy- 5-methylisoazol-4- propionate receptors) and KARs (kainate receptors). Kainate receptors (KARs) are widely expressed in the brain and are present both at pre- and postsynaptic sites and are involved in several physiological functions. There are five subunits of KAR (GluR5-7, KA1 and KA2 or GluK1-5). One of the main project of my laboratory is to understand the function, the traffic and the regulation of GluK3 subunit, that has been involved in different neuronal desorders such as schizophrenia and depression. GluK3(GluR7)-containing KARs are thought to compose pre-synaptic autoreceptors that facilitate hippocampal mossy fiber synaptic transmission. There are two splice variants of GluK3, named GluK3a and GluK3b . GluK3a shares the same export motif as GluK2a in its C-terminal cytoplasmic domain which allows high expression at the plasma membrane in heterologous cell systems and in primary cultured neurons. In contrast, GluK3b seems to be retained in the endoplasmic reticulum (ER) and is only detected at the plasma membrane in substantial amounts when co-expressed with GluK3a. In my thesis, I have been interested in the mechanisms of polarized trafficking of GluK3 with a main focus on GluK3b. I have been able to identify molecular mechanisms that underlie the polarized trafficking of KARs composed of the GluK3b splice variant. Endocytosis followed by degradation is driven by a di-leucine motif on the cytoplasmic C-terminal domain of GluK3b both in heterologous cells and in cultured hippocampal neurons. The internalization of GluK3b is clathrin and Dynamin2 dependent. Moreover, endocytosis of GluK3b in neurons is regulated by bath application of the KAR agonist kainate. Interestingly, the preferential subcellular localization of GluK3b in dendrites or axons depends on the endocytotic process. We submitted a paper to J. of Neurosciences that show that the subcellular localization of GluK3b depends on the dynamic regulation of an endocytic process that could control the polarized trafficking of KARs in neurons in an activity- dependent manner. I also developped a second project focus on the traffic of KARs expressed as heteromers (GluK3b assembled with GluK3a). I am actually working on this project in my lab in order to send a second paper in the next months
Inglebert, Yanis. "Règle de STDP en calcium physiologique." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0642/document.
Full textThe use of calcium in physiological concentration may be able to reduce or eliminate any plasticity phenomenon induced by the STDP rule with standard protocols. In the CA1 region of the hippocampus, at a calcium concentration of 1.8 mM we observed an absence of LTP after positive correlation. Instead, LTD is observed for all the delays that were tested. At 1.3 mM, neither LTP nor LTD were observed under our experimental conditions. In addition to calcium, activity is an important component in the induction of plasticity by STDP. Notably, an increase in stimulation frequency during pairing or an increase in the number of postsynaptic action potential allowed us to rescue LTP induced by positive correlation at 1.3 and 1.8 mM. Similarly, an increase in the number of postsynaptic action potentials or the frequency of stimulation allowed us to rescue the LTD window at 1.3 mM. In parallel with activity modulation, we tested a third factor that showed a noticeable impact: neuromodulation. The STDP rule appeared to be predominantly modulated by the activation of dopaminergic and noradrenergic receptors. The perfusion of Isoprenaline, a noradrenergic receptor agonist, allowed us to rescue the LTP window whereas dopamine application at 1.8 mM did not rescue LTP. This study demonstrates that the STDP rule is profoundly changed under physiological calcium conditions; however, the use of specific activities or the application of neuromodulators restores a normal STDP profile
Suberbielle, Elsa. "Dysfonctionnement neuronal ou inflammation, les deux facettes des conséquences de la persistance du Bornavirus dans le système nerveux central : étude à l'aide d'outils de proteomique et d'immunologie." Toulouse 3, 2008. http://www.theses.fr/2008TOU30027.
Full textBorna disease virus (BDV) is an ideal model system for investigating the diverse pathological consequences of viral infections of the central nervous system (CNS). BDV persists in the CNS of a wide range of animal species and induces diverse neurological diseases. This work was aimed at studying two different aspects of BDV infection. First, we analyzed BDV-induced inflammation by assessing the interaction between antiviral cytotoxic T lymphocytes and primary cultures of neurons. Our results provide further evidence about the modalities of neuronal insult caused by CTL, a feature that characterizes also several neuroinflammatory diseases. Second, we performed a global analysis of the impact of BDV infection on the neuronal proteome. Taken as a whole, our results reveal selective interference with biological functions implicated with neuronal remodeling and provide further insight about the physiopathology of BDV persistence in neurons
Guimond, Damien. "Les signaux extracellulaires modèlent la transmission GABAergique dans l'hippocampe en développement : le cas de la leptine." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4030/document.
Full textThe present dissertation tackles the larger question of how external cues impact the development of the central nervous system. Our specific aim was to explore the effect of leptin, an adipocyte-derived hormone, on GABAergic plasticity in the developing rodent hippocampus. We used acute hippocampal slices of newborn rats to show that leptin induces a long lasting potentiation of the frequency of miniature GABAergic activity. Using pharmacological tools we found that this event requires a postsynaptic increase in intracellular calcium as well as specific postsynaptic signaling pathways. To address the mechanistic action of leptin we confirmed the leptin-induced plasticity on hippocampal cultures and began to develop a method to measure the morphological correlate of GABAergic synapses in culture. Applying this method suggested that the leptin-induced GABAergic plasticity might occur with a constant density of postsynaptic GABAA receptor puncta. Taken together, these data show that leptin induces a potentiation of GABAergic activity in developing hippocampal neurons, perhaps by recruiting clusters of GABAA receptors expressed at the membrane to form newly functional GABAergic synapses. In addition we found that CA3 pyramidal neurons of leptin-deficient ob/ob mice exhibit lower miniature GABAergic activity compared to wild type littermates, which suggests that leptin contributes to the development of the hippocampal GABAergic circuitry in vivo. Overall, these studies shed a new light on the development of admittedly "higher-level" cerebral regions which were found here to integrate "lower-level", peripheral signals to shape their development
Gajowa, Marta. "Synaptic and cellular mechanisms underlying functional responses in mouse primary visual cortex." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB125.
Full textFeature selectivity of cortical neurons, one example of functional properties in the brain, is the ability of neurons to respond to particular stimulus attributes - e.g. the receptive field of a neuron in the primary visual cortex (V1) with respect to object movement direction. This thesis contributes to understanding how feature selectivity arises in mouse V1. It is divided into two parts, each based on distinct approaches to elucidate visual processing mechanisms, the first at a population level and the second at the single neuron level. First, on a population level, I have developed tools towards an eventual project that combines 2-photon optogenetics, 2-photon imaging and traditional whole-cell electrophysiology to map functional connectivity in V1. This map will provide a link between cell tuning (i.e. cell function) and network architecture, enabling quantitative and qualitative distinction between two extreme scenarios in which cells in mouse V1 are either randomly connected, or are associated in specialized subnetworks. Here I describe the technical validation of the method, with the main focus on finding the appropriate biological preparation and reagents. Second, based on whole-cell patch recordings of single mouse V1 neurons in vivo, I characterize the neuronal input-output (I/O) transfer function using current and conductance inputs, the latter intended to mimic the biophysical properties of synapses in a functional context. I employ a novel closed-loop in vivo protocol based on a combination of current, voltage and dynamic clamp recording modes. I first measure the basic I/O transfer function of a given neuron with current and conductance steps, under current and dynamic clamp, respectively. I then measure the visually evoked spiking output, under current clamp, and the synaptic conductance input, under voltage clamp, to that neuron. Finally, I reintroduce variations of the visually-evoked conductance input to the same cell under dynamic clamp. In that manner, I describe an I/O transfer function which allows a characterization of the mathematical operations performed by the neuron during functional processing. Furthermore, modifications of the relative scaling and the temporal characteristics of the excitatory and inhibitory components of the reintroduced synaptic input, enables dissection of each component's role in shaping the spiking output, as well as to infer overall differences between various physiological cell types (e.g. regular-adapting, presumably excitatory, versus fast-spiking, presumably inhibitory, neurons). Finally, examination of the transfer functions, in particular their dependence on temporal modifications, provides insights on the relationship between the neuronal code and the biophysical properties of neurons and their network
Compans, Benjamin. "Rôle physiologique de l’organisation des récepteurs AMPA à l’échelle nanométrique à l’état basal et lors des plasticités synaptiques." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0700/document.
Full textThe brain is a complex network of interconnected neurons responsible for all our cognitive functions and behaviors. Neurons receive inputs at specialized contact zones named synapses which convert an all or none electrical signal to a chemical one, through the release of neurotransmitters. This chemical signal is then turned back in a tunable electrical signal by receptors to neurotransmitters. However, a single neuron receives thousands of inputs coming from several neurons in a spatial- and temporal-dependent manner. The precise mechanism by which neurons receive, integrate and transmit this synaptic inputs is highly complex and is still not perfectly understood. At excitatory synapses, AMPA receptors (AMPARs) are responsible for the fast synaptic transmission. With the recent developments in super-resolution microscopy, the community has changed its vision of synaptic transmission. One breakthrough was the discovery that AMPARs are not randomly distributed at synapses but are organized in nanodomains of ~80 nm of diameter containing ~20 receptors. This content is an important factor since it will determine the intensity of the synaptic response. Due to their mM affinity for glutamate, AMPARs can only be activated when located in an area of ~150 nm in front of the neurotransmitter release site. Recently, AMPAR nanodomains have been shown to be located in front of glutamate release sites and to form trans-synaptic nanocolumns at basal state. Thus, the nanoscale organization of AMPARs regarding release sites seems to be a key parameter for the efficiency of synaptic transmission. Another breakthrough in the field was the observation that AMPARs diffuse at the cell surface and are immobilized at synapses to participate to synaptic transmission. The dynamic exchange between AMPAR diffusive pool and the receptors immobilized into the nanodomains participates to maintain the efficiency of synaptic response upon high-frequency stimulation.The overall aim of my PhD has been to determine the role of each above listed parameters on the intimate properties of synaptic transmission both at basal state and during synaptic plasticity. First, we identified the crucial role of Neuroligin in the alignment of AMPAR nanodomains with glutamate release sites. In addition, we managed to break this alignment to understand its impact on synaptic transmission properties. In parallel, we demonstrated that, due to a decrease in their affinity for synaptic traps, desensitized AMPARs diffuse more at the plasma membrane than opened or closed receptors. This mechanism allows synapses to recover faster from desensitization and ensure the fidelity of synaptic transmission upon high-frequency release of glutamate. Finally, synapses can modulate their strength through long-term synaptic plasticity, in particular, Long-Term Depression (LTD) corresponds to a long-lasting weakening of synaptic strength and is thought to be important in some cognitive processes and behavioral flexibility through synapse selective elimination. Following the previous discoveries about the impact of AMPAR dynamic nano-organization at synapses on the regulation of the synaptic transmission strength and reliability, I decided to investigate their role in the weakening of synapses. I found that AMPAR nanodomain content drops down rapidly and this depletion last several minutes to hours. The initial phase seems due to an increase of endocytosis events, but in a second phase, AMPAR mobility is increased following a reorganization of the post-synaptic density. This change in mobility allows depressed synapses to maintain their capacity to answer to high-frequency inputs. Thus, we propose that LTD-induced increase in AMPAR mobility allows to conduct a reliable response in synapses under high-frequency stimulation and thus to selectively maintain them while eliminating the inactive ones
Jiang, Nan. "Plasticité de la transmission synaptique dans l’hippocampe et excitabilité intrinsèque dans un modèle murin de la maladie d’Alzheimer." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0137/document.
Full textAzheimer's disease (AD) is a neurodegenerative disease that is linked in its early stage to synaptic dysfunction and loss of synapses. Numerous clinical data obtained from patients but also experimental data obtained on mouse models of AD show that there is a sexual dimorphism evidenced by a higher amyloid plaque deposition and an early onset of memory disorders in female mice compared to male mice.In this work, we investigated the molecular and cellular alterations of AD as well as the associated cognitive deficits in female APP/PS1 mice, a double transgenic murine model of AD. In parallel we studied the alterations of hippocampal synaptic transmission and plasticity in the stratum moleculare, a layer in the vicinity of the dentate gyrus (DG) which specifically displayed a high density of amyloid plaques. We showed the presence of numerous amyloid plaques in the DG in a larger amount in 6 month old females compared to age-matched males as well as a strong activation of astrocyte and microglia glial cells. These molecular and cellular alterations are accompanied by hippocampo-dependent memory deficits (contextual fear conditioning and novel object place recognition task) from the age of 4 months in females whereas males have no deficit until the age of 12 months. We then studied the electrical properties of DG neurons, the transmission and the plasticity of the perforant pathway - DG neurons (PP-DG synapse) in the 6-month old female mouse by comparing the two genotypes APP/PS1 vs wild type (WT).In both genotypes, DG neurons displayed two distinct populations in terms of input resistance and action potential discharge pattern (APs). In contrast, the resting membrane potential, the input resistance, the activation threshold and the amplitude PAs were not modified in APP/PS1 vs WT. The frequency of discharge of APs was increased in APP/PS1 without shift of E-S curve which relates EPSP-slopes to the associated AP firing probability.Basal transmission at the PP-DG synapse was altered in the APP/PS1 mouse vs WT without alterations in the AMPA/NMDA ratio or the AMPA rectification index. The frequency of the NMDA miniature currents was increased in APP/PS1 DG neurons vs WT which suggests the unmasking of silent synapses that express almost no AMPA receptors. The long term potentiation (LTP) of population spike amplitude was decreased by approximately 50% in APP/PS1 mice. The decrease in LTP observed in APP/PS1 was partly related to alterations in the intrinsic properties of DG neurons as evidenced by LTP-induced shifts of E-S curves, which reflects an increased excitability for APP/PS1 mice.In conclusion our results show a prominent sexual dimorphism with much earlier amyloid plaque deposition, neuroinflammatory glial activation in female vs male APP/PS1. In parallel, significant deficits in hippocampal-dependent memory are observed as well as alterations of synaptic transmission and plasticity at the PP-DG synapse, a key synapse of the integration of mnesic informations originated from the entorhinal cortex
Sargolini, Francesca. "Rôle du noyau accumbens dans la mémoire spatiale et non spatiale : implications des récepteurs glutamatergiques NMDA et AMPA." Toulouse 3, 2002. http://www.theses.fr/2002TOU30207.
Full textAllouch, Samar. "Modélisation inverse du système neuromusculosquelettique : application au doigt majeur." Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2157.
Full textWith the need to develop an artificial organ replacing the human finger in the case of a deficiency and the need to understand how this physiological system works, an inverse physical model of the finger system for estimating neuronal activations from the movement, is necessary. Despite the large number of studies in the human hand modeling, almost there is no inverse physical model of the middle finger system that focuses on search neuronal activations. Al most all existing models have focused on the research of the muscle forces and muscle activations. The purpose of the manuscript is to present a neuromusculoskeletal model of the human middle finger system for estimating neuronal activations, muscle activations and muscle forces of all the acting muscles after movement analysis. The aim of such models is to represent the essential characteristics of the movement with the best possible realism. Our job is to study, model and simulate the movement of the human finger. The innovation of the proposed model is the coupling between the biomechanical and neurophysiological aspects to simulate the complete inverse movement chain from dynamic finger data to neuronal intents that control muscle activations. Another innovation is the design of a specific experimental protocol that treats both the multichannel sEMG and kinematic data from a data capture procedure of the movement
Hazime, Mahmoud. "Etude de l’effet de l’octadécaneuropeptide sur l’activité du cortex cérébral : intérêt pour la récupération fonctionnelle post-ischémique The gliopeptide ODN, a ligand for the benzodiazepine site of GABAA receptors, boosts functional recovery after stroke Prolonged deficit of gamma oscillations in the peri-infarct cortex of mice after stroke Bi-directional effect of the endozepine ODN on neuronal activity in vivo." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR127.
Full textCerebral ischemia remains a major public health problem for which there is a lack of a therapeutic solution to promote the recovery of lost functions. The research team in which this thesis was conducted found that octadecaneuropeptide (ODN), an endogenous ligand of the GABAᴀ receptor, improves sensory-motor recovery after cerebral ischemia in mice. The aim of this thesis was to characterize the effects of ODN in neural activity in vivo in order to better understand by what mechanism this peptide can act on the repair of neural circuits. In a first part, we showed that ODN, in vivo, behaves as an excitability enhancer at micromolar concentration (the concentration at which it improves functional recovery). On the other hand, at low concentrations (10¯¹² M) ODN inhibits the activity of neurons in the cortex. Based on complementary in vitro experiences, we propose that this inhibition is induced by an astrocytic release of GABA. In a second part of the thesis, we demonstrated that the oscillatory regimen of the peri-lesional cortex (rythmic fluctuations of neural excitability) is depressed in gamma oscillation 7 and 21 days after cerebral ischemia. However, ODN has no effect on the oscillatory spectral power. This work confirms the value of enhancing the excitability of the cortex after a stroke and shows that for this purpose ODN can be an effective pharmacological tool
Masoliver, Vila Maria. "Neuronal encoding and transmission of weak periodic signals." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/668855.
Full textLes neurones sensorials disparen seqüències d'impulsos elèctrics (coneguts com a potencials d'acció) per codificar i transmetre informació d'estímuls temporals externs. La codificació neuronal és el camp d'investigació que estudia la relació entre els estímuls externs i les respostes neuronals. Atès que no hi ha una relació única entre ells, els mecanismes subjacents a la codificació neural encara no es comprenen plenament. No obstant això, se sap que les neurones utilitzen diferents mecanismes per codificar els estímuls externs, que poden ser complementaris en diferents situacions. Una qüestió important és com el soroll neuronal (fluctuacions elèctriques estocàstiques que no transmeten cap informació) influeix en la codificació neuronal. Aquí ens centrem en com les neurones responen a un senyal feble i periòdic. El senyal es considera prou feble com per ser subumbral, és a dir, per si sol no indueix a les neurones a disparar. No obstant això, el soroll neuronal desencadena potencials d'acció que codifiquen la informació del senyal feble. En aquesta situació s'ha proposat un mecanisme de codificació basat en patrons simbòlics per a neurones desacoblades; en aquesta tesis tractarem de determinar si aquest mecanisme és plausible per a neurones acoblades. Hem fet servir, primerament, el model neuronal Fitzhugh-Nagumo per estudiar dues neurones acoblades. Hem considerat la situació en la qual només una neurona percep el senyal feble (l'anomanem neurona 1). Hem caracteritzat el paper de l'acoblament en la codificació del senyal i hem analitzat les seqüències d'intervals entre potencials d'acció de la neurona 1 utilitzant el mètode anàlisi simbòlic, el qual pot capturar patrons d'impulsos elèctrics preferits i infreqüents (definits pel temps relatiu entre impulsos). De fet, hem demostrat que el mecanisme de codificació és robust a l'acoblament: la neurona que percep el senyal dispara una seqüència d'impulsos elèctrics, la qual conté patrons preferits i infreqüents que depenen de l'amplitud i freqüència del senyal. Segon, hem aplicat l'anàlisi simbòlic a les seqüències intervals entre potencials d'acció generats per dues neurones acoblades simulades amb el model neuronal Morris-lecar. Hem investigat si diferents tipus de neurones (pel que fa al tipus d'excitabilitat neuronal, classe 1 o classe 2) generen seqüències de potencials d'acció similars, i hem caracteritzat les diferències en la codificació i transmissió del senyal en canviar el tipus d'acoblament (sinapsis elèctriques o químiques excitatòries) . Establim que depenent de la freqüència del senyal, combinacions específiques de neurona/classe i tipus d'acoblament permeten una codificació més efectiva, o una transmissió més efectiva del senyal. Hem analitzat, per últim, l'activitat d'un conjunt de neurones, quan totes elles perceben el senyal feble. L'anàlisi simbòlic l'hem aplicat a les seqüències d'accions de potencials de totes les neurones i hem demostrat que un conjunt neuronal també codifica la informació del senyal en forma de patrons d'accions de potencials preferits o poc freqüents, com ho fan una sola o dues neurones acoblades. A més, hem establert que l'acoblament neuronal és beneficiós per a la codificació de senyals (el conjunt neuronal detecta senyals d'amplitud més feble) i que només uns pocs enllaços entre neurones poden millorar significativament la codificació de senyals (les probabilitats dels patrons preferits i dels poc freqüents prenen valors més extrems). En conjunt, els resultats presentats en aquesta tesi suggereixen que un codi neuronal temporal basat no en el temps precís sinó en el temps relatiu dels potencials d'acció de les neurones individuals és un mecanisme plausible per codificar la informació dels estímuls externs periòdics febles.
Canady, Karen S. "Regulation of astrocytic structure by neuronal activity /." Thesis, Connect to this title online; UW restricted, 1991. http://hdl.handle.net/1773/9096.
Full textBuehlmann, Andrés. "Information processing in the cortex: the relevance of coherent oscillations for neuronal communication." Doctoral thesis, Universitat Pompeu Fabra, 2010. http://hdl.handle.net/10803/7566.
Full textOscillatory neuronal activity is an omnipresent phenomenon in the cerebral cortex. However, the actual function of these oscillations remains unclear. Are they just an epiphenomenon of elevated firing rates or do they represent a fundamental process on their own? Based on experimental work, we apply computational modeling to address this question. We first study the role of oscillations in attentional processes and then in a more general, information theoretical context. Our results support the idea that oscillations represent an independent mechanism. In particular, we show that attention modulates gamma oscillations independently of rates and that the flow of information between brain areas depends both on the phase and on the spectral power of oscillations. Moreover, we show that the speed of information exchange increases as a function of spectral power in specific frequency bands. Taken together, these results suggest that oscillations are a mechanism employed by the brain to control actual interactions between brain areas and thus likely have a link to behavior.
Kruscha, Alexandra. "Information transmission by the synchronous activity of neuronal populations." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18391.
Full textPopulations of sensory neurons encode information about the environment into electrical pulses, so called action potentials or spikes. Neurons in the brain process these pulses further by using different readout strategies. Integrator cells sum up all incoming action potentials and are thus sensitive to the overall activity of a presynaptic population. Coincidence detectors, on the other hand, are activated by the synchronous firing of the afferent population. The main question of this thesis is: What information about a common time-dependent stimulus is encoded in the synchronous spikes of a neuronal population in comparison to the sum of all spikes? We approach this question within the framework of spectral analysis of stochastic processes, which allows to assess which frequency components of a signal are predominantly encoded. Here, in contrast to earlier studies, a synchronous event does not necessarily mean that all neurons of the population fire simultaneously, but that at least a prescribed fraction ('synchrony threshold') needs to be active within a small time interval. We derive analytical expressions of the correlation statistics which are compared to numerical simulations and experiments on weakly electric fish. We show that the information transmission of the synchronous output depends highly on the synchrony threshold. We uncover a symmetry in the synchrony threshold, unveiling the similarity in the encoding capability of the common firing and the common silence of a population. Our results demonstrate that the synchronous output can act as a band-pass filter of information, i.e. it extracts predominantly fast components of a stimulus. If signals in different frequency regimes are concurrently present, the selection of synchronous firing events can thus be a tool to separate these signals.
Emhemmed, Yousef Mohammed. "Maximum likelihood analysis of neuronal spike trains." Thesis, University of Glasgow, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326019.
Full textBerthoux, Coralie. "Rôle des récepteurs 5-HT2A et 5-HT6 du cortex préfrontal dans la modulation de la transmission synaptique, la plasticité et la cognition." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT166.
Full textSerotonin is involved in many physiological functions, such as the control of appetite, sleep, pain, mood and cognition. This major neuromodulator acts via different receptors, which are, for the most part, coupled to G-proteins. Among these, 5-HT2A and 5-HT6 receptors are of particular interest since they are the target of many therapeutic drugs, such as antidepressants and last-generation antipsychotics. These are administered to treat schizophrenia and have beneficial effects on positive (hallucinations, delusions) and negative (lack of motivation) symptoms. Nevertheless, they poorly control cognitive deficits (impaired working memory, decreased attention, alteration in social cognition) which severely compromise the social integration of patients and their quality of life. These deficits are also found in chronic cannabis users during adolescence, suggesting common pathological mechanisms. Therefore, the discovery of new therapeutic strategies to treat these cognitive deficits is a major public health issue.During my thesis work, I studied the role of serotonin receptors, focusing on 5-HT2A and 5-HT6 receptors, in the modulation of synaptic transmission and plasticity in the prefrontal cortex. By combining biochemical approaches with electrophysiological and behavioral analyses, I initially demonstrated that 5-HT2A receptors expressed at thalamocortical synapses play a crucial role in the induction of synaptic plasticity and in associative memory. Secondly, I demonstrated the benefits of early blockade of 5-HT6 receptors for preventing cognitive deficits induced in a neurodevelopmental model of schizophrenia and a model of chronic cannabis abuse during adolescence. These studies offer new therapeutic strategies to prevent the emergence of cognitive deficits and conversion to schizophrenia in at-risk subjects
Blanc, Jean-luc. "Transmission de l'information et complexité des activités de populations neuronales." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4720/document.
Full textIn this thesis, we address the problem of transmission and information processing by neuronal assemblies, in terms of the interdisciplinary approach of complex systems by referring mainly to the formalisms of information theory and dynamical systems. In this context, we focus on the mechanisms underlying sensory information representation by neuronal activity through neural coding. We explore the structure of this code under several scales through the study of different neuronal population electrophysiological signals (singel unit, LFP and EEG). We have implemented various indices in order to extract objectively information from neural activity, but also to characterize the underlying dynamics from finite size time series (the entropy rate). We also defined a new indicator (the mutual information rate), which quantifies self-organization and relations of coupling between two systems. Using theoretical and numerical approaches, we analyze some characteristic properties of these indices and propose their use in the context of the study of neural systems. This work allows us to characterize the complexity of different neuronal activity associated to information transmission dynamics
Long, Jiafu. "Supramodular nature of neuronal scaffolding proteins /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?BICH%202004%20LONG.
Full textIncludes bibliographical references (leaves 167-184). Also available in electronic version. Access restricted to campus users.
Vaccaro, V. "The role of presynaptic mitochondria in neuronal transmission and plasticity." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1468434/.
Full textKintis, Efthalia. "Stochastic modelling of the neuronal membrane potential in response to synaptic input." Connect to e-thesis, 2007. http://theses.gla.ac.uk/145/.
Full textMSc(R) thesis submitted to the Department of Mathematics, Faculty of Information and Mathematical Sciences, University of Glasgow, 2007. Includes bibliographical references.
Poulain, Bernard. "Mécanismes moléculaires modulant la transmission cholinergique sur les synapses neuro-neuronales." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37600469f.
Full textPoulain, Bernard. "Mécanismes moléculaires modulant la transmission cholinergique sur les synapses neuro-neuronales." Paris 6, 1986. http://www.theses.fr/1986PA066134.
Full textFeng, Wei. "Structural studies of supramolecular complex assembly by neuronal scaffold proteins /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?BICH%202005%20FENG.
Full textTassin, Valériane. "Nouveaux mécanismes d'action du récepteur mGlu7a dans le thalamus : de la synapse au comportement." Thesis, Montpellier 1, 2014. http://www.theses.fr/2014MON13509/document.
Full textBrain functionning is gouverned by two master forces : excitation, mainly supported by glutamatergic transmission, and inhibition, mainly supported by GABAergic transmission. The mutual and balanced influence of these two forces is instrumental to establish and maintain a physiological neuronal activity, particulary in neuronal networks involving several interconnected brain area and neuron types. The metabotropic glutamate receptor type 7, mGlu7, modulates both glutamatergic and GABAergic transmission, but its precise localization andsynaptic role are still widly unknown. Recently, a genetic mouse model has highlighted mGlu7a receptor's involvement into the functionning of a particular network supporting somatosensory perception during arousal and loss of consciousness during sleep, as well as absence epileptic seizures : the thalamo-cortical network. This thesis aims at understanding physiological functions mediated by the mGlu7a receptor in the thalamo-cortical circuit. I have dissected localization and electrophysiologicalprocesses triggered by the receptor in thalamic synapses. The mGlu7a receptor was proved as essential to control oscillatory rythmes in the thalamus, associated with both sleep-related waves (spindles) and absence epileptic seizures.This receptor was supposed to function only during high neuronal activities. In addition, our study highlights a constitutive activity of mGlu7a receptor in excitatory and inhibitory synapses. It thus exerts a permanent brake on Ca2+ presynaptic entry, which is crucial for neuronal developpement, synaptic transmission, excitability and plasticity. I found that this mechanism modulates glutamate and GABA release, but also short term plasticity in thestudied network. Moreover, mGlu7a receptor slows down the inhibitory tonus in the thalamus and thalamic excitability.Surprisingly for a glutamate receptor, these data suggest that the physiological action of mGlu7a receptor is highly involved in the control of the excitability of inhibitory thalamic and cortical neurons. By decreasing synchronous activities of the network, its action leads in fine to the maintenance of a conscious, awake state of a subject, that is necessary for sensorial informations processing, learning and memory
Dulac, Amina. "Identification and functional characterization of the neuronal protein VhaAC45L in Drosophila." Thesis, Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS035.
Full textThe V-ATPases are highly conserved protein complexes of eukaryotic cells, associated with the membranes of many vesicular or vacuolar organelles, whose function is to ensure an appropriate level of acidification. While the general functioning mechanism of this proton pump has been well studied, in contrast relatively little is known about the specific properties of neuronal V-ATPase. In synapses, this complex is essential to acidify synaptic vesicles, thus allowing neurotransmitter transporters to properly fill them. Our team identified a novel protein essential for Drosophila survival, predicted from its sequence to belong to the family of V-ATPase-associated proteins. According to several databases, this protein, that we named Lome, and then VhaAC45L, appears to be expressed specifically in the nervous system. Our work confirmed that Lome is specific to the nervous system, and further revealed that its presence is only required in neurons. Its cellular localization showed an enrichment in synaptic areas in both adult flies and larvae. We have therefore focused the next part of our study on the synaptic function of Lome, using the larval neuromuscular junction as a model. Consistent with the hypothesis of a V-ATPase dysfunction, larvae with a decreased level of Lome in motoneurons presented an aberrant increase in the internal pH of synaptic vesicles, associated with a decrease in quantal size, which is the amplitude of the postsynaptic response to the release of a single vesicle. Overall, our results identified Lome, alias VhaAC45Like (VhaAC45L) in reference to its closest homolog VhaAC45, as a specific regulator of the neuronal V-ATPase
Patra, Kalicharan. "Modulation of Neuronal Functions : the Role of SLC10A4." Doctoral thesis, Uppsala universitet, Genetisk utvecklingsbiologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-214162.
Full text