Academic literature on the topic 'Transmission mitochondriale'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transmission mitochondriale.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transmission mitochondriale"
Wilhelm, J. M., B. Mousson de Camaret, A. Derragui, R. Dukic, P. Thannberger, O. Saraceni, and P. Kieffer. "Ophtalmoplégie progressive chronique ≪ plus ≫d'origine mitochondriale à transmission autosomique dominante." La Revue de Médecine Interne 24 (December 2003): 465s. http://dx.doi.org/10.1016/s0248-8663(03)80555-6.
Full textAngers, Annie, Philip Ouimet, Assia Tsyvian-Dzyabko, Tanya Nock, and Sophie Breton. "L’ADN mitochondrial, un potentiel codant mésestimé." médecine/sciences 35, no. 1 (January 2019): 46–54. http://dx.doi.org/10.1051/medsci/2018308.
Full textPierry, C., T. Trian, E. Maurat, R. Marthan, P. O. Girodet, and P. Berger. "Ultrastructure mitochondriale du muscle lisse bronchique chez l’asthmatique sévère et non sévère : étude quantitative en microscopie électronique à transmission." Revue des Maladies Respiratoires 34 (January 2017): A328—A329. http://dx.doi.org/10.1016/j.rmr.2016.10.868.
Full textPierry, C., T. Trian, E. Maurat, R. Marthan, P. O. Girodet, and P. Berger. "Ultrastructure mitochondriale du muscle lisse bronchique chez l’asthmatique sévère et non sévère : étude quantitative en miscroscopie électronique à transmission." Revue des Maladies Respiratoires 34 (January 2017): A26—A27. http://dx.doi.org/10.1016/j.rmr.2016.10.056.
Full textWilhelm, J. M., B. Mousson de Camret, S. Rozan-Rodier, A. Derragui, P. Thannberger, and O. Saraceni. "P120 Diabète associé à une cytopathie mitochondriale à transmission autosomique dominante. À propos d’un cas de mutation du gène nucléaire Twinkle." Diabetes & Metabolism 35 (March 2009): A56. http://dx.doi.org/10.1016/s1262-3636(09)71918-4.
Full textYancey, Danielle M., Jason L. Guichard, Mustafa I. Ahmed, Lufang Zhou, Michael P. Murphy, Michelle S. Johnson, Gloria A. Benavides, James Collawn, Victor Darley-Usmar, and Louis J. Dell'Italia. "Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload." American Journal of Physiology-Heart and Circulatory Physiology 308, no. 6 (March 15, 2015): H651—H663. http://dx.doi.org/10.1152/ajpheart.00638.2014.
Full textMedler, Kathryn, and Evanna L. Gleason. "Mitochondrial Ca2+ Buffering Regulates Synaptic Transmission Between Retinal Amacrine Cells." Journal of Neurophysiology 87, no. 3 (March 1, 2002): 1426–39. http://dx.doi.org/10.1152/jn.00627.2001.
Full textKitazaki, Kazuyoshi, and Tomohiko Kubo. "Cost of Having the Largest Mitochondrial Genome: Evolutionary Mechanism of Plant Mitochondrial Genome." Journal of Botany 2010 (May 30, 2010): 1–12. http://dx.doi.org/10.1155/2010/620137.
Full textAretz, Ina, Christopher Jakubke, and Christof Osman. "Power to the daughters – mitochondrial and mtDNA transmission during cell division." Biological Chemistry 401, no. 5 (April 28, 2020): 533–46. http://dx.doi.org/10.1515/hsz-2019-0337.
Full textSu, Bo, Yun-Song Ji, Xu-lu Sun, Xiang-Hua Liu, and Zhe-Yu Chen. "Brain-derived Neurotrophic Factor (BDNF)-induced Mitochondrial Motility Arrest and Presynaptic Docking Contribute to BDNF-enhanced Synaptic Transmission." Journal of Biological Chemistry 289, no. 3 (December 3, 2013): 1213–26. http://dx.doi.org/10.1074/jbc.m113.526129.
Full textDissertations / Theses on the topic "Transmission mitochondriale"
Sternberg, Damien. "Contribution à trois aspects de la génétique mitochondriale humaine : étude de transmission de l'ADN mitochondrial lors de fécondations in vitro - caractérisation de mutations de l'ADN mitochondrial dans les maladies mitochondriales et le vieillissement musculaire." Paris 12, 2002. http://www.theses.fr/2002PA120010.
Full textMitochondrial genetics is important to consider when dealing with infertility, mitochondrial diseases or ageing. Our work contributes to the clarification of the role and behaviour of mitochondrial DNA (mtDNA) in those three circumstances. First, we studied mtDNA inheritance in children born after a particular in vitro fertilisation technique, i. E. Intracytoplasmic injection of spermatozoon (ICSI). Although the risk of transmission of a paternal infertility-linked nuclear defect by this technique is well known, the possible transmission of the patemal mtDNA had never been addressed by means of highly sensitive detection assays. By using different sensitive techniques, we showed that there was no detectable paternally inherited mtDNA in the peripheral blood of the 27 children who were studied. Second, we aimed at determining the contribution of mtDNA tranfer RNA (tRNA) gene defects to the pathogenesis ofmitochondrial disorders. We set up an exhaustive scanning method to screen ah tRNA genes for mutations, and applied it to a large number of selected patients with mitochondrial disorders. We found numerous sequence variations of those genes, some of them already known to be pathogenic or polymorphie, others being questionable from a functional point of view. We performed an evaluation of each questionable sequence variation by all possible means, and were able to assign a precise significance to most of them. In retrospect, we tried to delineate the best indications for the screening ofmtDNA tRNA genes. Third, we wanted to determine the contribution of mtDNA mutations to the ageing process of human muscle, at a single fibre level. We looked for large-scale rearrangements and tRNA gene point mutations in a large number of fibres defective in cytochrome c oxidase (COX- fibres) activity and an equal number of normal fibres (COX+ fibres) from normal biopsy samples taken from ageing subjects. We detected large scale rearrangements in several fibres. Most interestingly, we detected, characterised and quantified tRNA gene point mutations in several COX- fibres, such mutations being absent from COX+ fibres. We showed that clonally expanded point mutations contribute toageing process in muscle, by a segmental alteration of the respiratory chain activity
Bertholet, Ambre. "Influence de la protéine de fusion mitochondriale OPA1 sur le métabolisme oxydatif neuronal et la transmission synaptique." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/2180/.
Full textIn the past few years, multiple findings have suggested that disruptions of mitochondrial functions and dynamics contribute to neurodegenerative diseases. Mitochondrial functions in neurons include regulation of calcium and redox signaling, developmental and synaptic plasticity as well as the arbitration of cell survival and death. Mitochondrial dynamics controls the organelle's morphology via a delicate balance of two opposing forces: mitochondrial fusion and fission that are regulated by large dynamin-related GTPases evolutionary conserved from yeast to human. We have previously demonstrated that the fusion protein OPA1 loss or mutations led to mitochondrial inner membrane dysfunctions and apoptosis of particular importance in optic nerve pathologies like ADOA1 (autosomal dominant optic atrophy). While links emerge between defects in mitochondrial fusion and neurodegeneration, the processes involved are still largely unknown. To understand the mechanisms by which alterations of mitochondrial dynamics could contribute to mitochondria dysfunction, eventually leading to neurodegeneration, we studied the effects of OPA1 loss of function in neurons ex vivo. In cortical neurons, RNA interference of the fusion protein OPA1 led to mitochondrial fragmentation without altering neither mitochondrial distribution nor neuronal death rate. While there was no incidence on dendrites and axon size and numbers, the quantity of several synaptic proteins was reduced, suggesting synaptic impairment. In these conditions, the redox state of OPA1 depleted-neurons was impaired and specific respiratory complex proteins quantities were decreased. Finally, electrophysiological recordings showed that OPA1 depletion induced changes in synaptic transmission, particularly in decreasing of EPSC frequency and by increasing IPSC frequency. Interestingly, forskolin treatment rescue these electrophysiological defaults. In conclusion, our data may offer new insights not only into mitochondrial dynamics-linked neurodegenerative diseases like ADOA1 but to other neurodegenerative pathologies correlated with oxidative metabolism such as Huntington's, Parkinson's and Alzheimer's diseases
Mignerot, Laure. "Caractérisation cellulaire et génétique de la parthénogenèse chez l’algue brune Ectocarpus sp." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS621.
Full textAlthough sexual reproduction predominates in eukaryotes, several hundred lineages have undergone the transition from sexuality to asexuality. Transitions between sexual and asexual reproduction are believed to have important evolutionary and ecological consequences, yet the molecular, genetic, and cytological foundations of such transitions remain elusive. One type of asexual reproduction is parthenogenesis, i.e., the development of an adult organism directly from gametes in the absence of fertilisation. Although many eukaryotes are capable of reproducing by parthenogenesis, we know very little about its genetic basis, and the evolutionary causes and consequences of transitions to asexuality are poorly understood. The brown algae are a group of multicellular eukaryotes, that show an extraordinary diversity of types of life cycle, sexual systems, modes of reproduction, and they provide excellent models to look at the origins, evolution and mechanisms underlying parthenogenesis. In this thesis, we have used a wide array of genomic and cell biology tools available for the model brown alga Ectocarpus to identify and characterize loci involved in parthenogenesis, shedding light on the causes and consequences of parthenogenesis at the organism level. Our results highlight the key role of the sex chromosome as a major regulator of asexual reproduction, together with two autosomal loci. Importantly, we identify several negative effects of parthenogenesis on male fitness, but also different fitness effects between parthenogenesis and life cycle generations, supporting the idea that parthenogenesis may be under both sexual selection and generation/ploidally-antagonistic selection (Chapter 2). Zygotic growth was significantly affected by the parthenogenetic capacity of the male parent and the putative role of mitochondrial inheritance patterns on the fitness of sporophytes was also investigated (Chapter 2 and 3). This work revealed an unusual transmission pattern of mitochondria specifically in Ectocarpus species 7 (Chapter 3). Finally, the QTL analysis (Chapter 2) required the construction of a genetic map for Ectocarpus siliculosus and a comparison with Ectocarpus species 7 genetic map (reference genome sequenced in 2010) showed that the synteny was highly conserved between the two species (Chapter 4). By investigating parthenogenesis in a multicellular organism that has independently evolved from plants and animals, the work presented in this thesis has helped to assess the diversity of evolutionary mechanisms that lead to parthenogenesis
Haars, Jonathan. "Inheritance patterns of mitochondrial DNA in Drosophila paulistorum: substantial paternal transmission and the possible role of mitochondria in speciation." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-382016.
Full textWai, Timothy. "Germline transmission of mitochondrial DNA in the mouse." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40735.
Full textLes mitochondries et l’ADN mitochondrial (ADNmt) sont des organites cellulaires qui ne sont transmis que par l'ovule de la mère. Chez les mammifères, l’ovocyte contient presque 200 000 copies d’ADNmt, avec 1-2 copies au sein de chaque mitochondrie. Malgré la grande quantité d’ADNmt, nous observons une ségrégation rapide des variants de séquences entre les générations qui nous amène à l’hypothèse d’un goulot d’étranglement génétique pour l’ADNmt. Par cette thèse, je démontre que ce phénomène est dû à un sous-groupe de génomes mitochondriaux qui se multiplient dans l’ovocyte postnatal de la souris. En outre, je démontre qu’une réduction d’ADNmt dans les cellules de souche germinale peut augmenter la vitesse à laquelle ces génotypes se séparent. Une très importante réduction d’ADNmt dans les ovocytes de ces souris mutantes les rend stériles. Or la fertilisation de ces ovocytes ainsi que le développement pré-implantatoire se déroulent normalement, par contre l’embryon qui provient d’un ovocyte avec une très faible quantité d’ADNmt ne peut compléter son développement post-implantatoire. Par cette thèse, je propose l’hypothèse suivante : que la grande quantité de mitochondries et génomes mitochondriaux sert à distribuer un nombre suffisant de ces organites aux cellules somatiques et germinales de la prochaine génération. Si cela est vrai, la quantité d’ADNmt pourrait être le plus important déterminant quant à la qualité de l’ovocyte, pas à cause de ses effets sur le métabolisme de l’ovocyte, mais par le fait qu’une quantité insuffisante empêcherait sa distribution dans les cellules de l’embryon.
Gooding, Christopher Michael. "Mitochondrial DNA replication and transmission in Saccharomyces cerevisiae." Thesis, University of Hertfordshire, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303447.
Full textVaccaro, V. "The role of presynaptic mitochondria in neuronal transmission and plasticity." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1468434/.
Full textLloyd, Rhiannon Eleanor Iris. "The regulation of mitochondrial DNA transmission to generate offspring that are genetically identical." Thesis, University of Birmingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433521.
Full textSullins, Jennifer Anne. "Accumulation and Transmission Dynamics of a Naturally-Occurring mtDNA Deletion in Caenorhabditis briggsae." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4729.
Full textChat, Joelle Catherine. "Transmission des génomes cytoplasmiques et phylogénie moléculaire chez Actinidia." Paris, Institut national d'agronomie de Paris Grignon, 2003. http://www.theses.fr/2003INAP0006.
Full textBooks on the topic "Transmission mitochondriale"
Kang, Eunji Ellen. Effects of mitochondrial dysfunction on synaptic transmission in rat hippocampal slices. 2005.
Find full textHill, Geoffrey E. Mitonuclear Ecology. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198818250.001.0001.
Full textJolly, Elaine, Andrew Fry, and Afzal Chaudhry, eds. Genetics. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199230457.003.0010.
Full textGaitanis, John, Phillip L. Pearl, and Howard Goodkin. The EEG in Degenerative Disorders of the Central Nervous System. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0013.
Full textBenarroch, Eduardo E. Neuroscience for Clinicians. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190948894.001.0001.
Full textBook chapters on the topic "Transmission mitochondriale"
Kelly, Richard D. W., Arsalan Mahmud, and Justin C. St. John. "Assisted Reproductive Technologies: The Potential to Prevent the Transmission of Mutant mtDNA from One Generation to the Next." In Mitochondrial DNA, Mitochondria, Disease and Stem Cells, 157–83. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-101-1_7.
Full textAllen, Carol A., Mark Van Der Giezen, and John F. Allen. "Origin, Function, and Transmission of Mitochondria." In Origin of Mitochondria and Hydrogenosomes, 39–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-38502-8_3.
Full textBrdiczka, Dieter, Volker Adams, Matthias Kottke, and Roland Benz. "Topology of Peripheral Kinases: its Importance in Transmission of Mitochondrial Energy." In Anion Carriers of Mitochondrial Membranes, 361–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74539-3_30.
Full textSrirattana, Kanokwan, and Justin C. St. John. "Transmission of Dysfunctional Mitochondrial DNA and Its Implications for Mammalian Reproduction." In Cellular and Molecular Basis of Mitochondrial Inheritance, 75–103. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/102_2018_3.
Full textSánchez-Calabuig, María Jesús, Noelia Fonseca Balvís, Serafín Pérez-Cerezales, and Pablo Bermejo-Álvarez. "Reproductive Approaches to Prevent the Transmission of Mitochondrial Diseases." In Mechanisms Linking Aging, Diseases and Biological Age Estimation, 217–26. Boca Raton, FL : CRC Press, 2016. | “A science publishers book.”: CRC Press, 2017. http://dx.doi.org/10.1201/9781315371382-24.
Full textHyslop, Louise. "Assisted Reproductive Technologies to Prevent Transmission of Mitochondrial DNA Disease." In In Vitro Fertilization, 861–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-43011-9_72.
Full textMiyamoto, Kiyoshi, and Keiichiro Yamaguchi. "Numerical Density, Estimation of Mitochondria in Thick Slice by Transmission Electron Microscopy." In Science on Form, 517–25. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3757-4_60.
Full textJohn, Justin C. St, and Keith H. S. Campbell. "The Consequences of Reprogramming a Somatic Cell for Mitochondrial DNA Transmission, Inheritance and Replication." In Nuclear Reprogramming and Stem Cells, 83–97. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-225-0_8.
Full textHill, Geoffrey E. "Coevolution, co-transmission, and conflict." In Mitonuclear Ecology, 77–95. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198818250.003.0004.
Full textTembe, Sanket. "Maneuvering Mitochondria for Better Understanding of Therapeutic Potential of mtDNA Mutation." In Mitochondrial Diseases [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96915.
Full textConference papers on the topic "Transmission mitochondriale"
Pinzetta, Giulia, Nicole Bernd Becker, Felipe Krimberg, Ângela Zanatta, Laura Siqueira, Gabriele Zanirati, Jaderson Costa da Costa, and Daniel Marinowic. "Effects of ZIKV + IgG+ complex on murine microglial cells." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.562.
Full textCarter, G., and J. B. Gavin. "THE EFFECTS OF ISCHAEMIC METABOLITES ON THE ENDOCARDIAL ENDOTHELIUM." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643355.
Full textKim, Dong Sik. "Intensity compensation of the mitochondria tilted image sequence obtained from the transmission electron microscopy." In 2009 16th IEEE International Conference on Image Processing (ICIP 2009). IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5414557.
Full textFrojmovic, Mony M., Truman Wong, Jane Wylie, and J. G. White. "PLATELET EXTERNAL SURFACE MEMBRANE IS OSMOTICALLY DOUBLED IRRESPECTIVE OF SIZE OR SPECIES (HUMAN/BOVINE): DYNAMICS AND MEMBRANE SOURCES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643905.
Full text