Academic literature on the topic 'Translation biology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Translation biology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Translation biology"
Keiler, Kenneth C. "Biology oftrans-Translation." Annual Review of Microbiology 62, no. 1 (October 2008): 133–51. http://dx.doi.org/10.1146/annurev.micro.62.081307.162948.
Full textWindgassen, Merle, Dorothée Sturm, Iván J. Cajigas, Carlos I. González, Matthias Seedorf, Holger Bastians, and Heike Krebber. "Yeast Shuttling SR Proteins Npl3p, Gbp2p, and Hrb1p Are Part of the Translating mRNPs, and Npl3p Can Function as a Translational Repressor." Molecular and Cellular Biology 24, no. 23 (December 1, 2004): 10479–91. http://dx.doi.org/10.1128/mcb.24.23.10479-10491.2004.
Full textDeans, Robert. "Engineering Biology—Accelerating Translation." Genetic Engineering & Biotechnology News 41, no. 1 (January 1, 2021): 44–45. http://dx.doi.org/10.1089/gen.41.01.10.
Full textAryanpur, Peyman P., David M. Renner, Emily Rodela, Telsa M. Mittelmeier, Aaron Byrd, and Timothy A. Bolger. "The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition." Molecular Biology of the Cell 30, no. 17 (August 2019): 2171–84. http://dx.doi.org/10.1091/mbc.e18-11-0702.
Full textGough, N. R. "Translation Required for Translational Repression." Science Signaling 2, no. 80 (July 21, 2009): ec249-ec249. http://dx.doi.org/10.1126/scisignal.280ec249.
Full textBania*, Allif Syahputra, Nuraini Nuraini, Nursamsu Nursamsu, and Muhammad Yakob. "The Quality of Taxonomy Translation in English Indonesian Latin by Biological Education Students." Jurnal Pendidikan Sains Indonesia 9, no. 4 (October 15, 2021): 694–710. http://dx.doi.org/10.24815/jpsi.v9i4.21562.
Full textZhang, Cuiling. "Neuroscience and Translation." International Journal of Translation and Interpreting Research 15, no. 2 (July 31, 2023): 180–83. http://dx.doi.org/10.12807/ti.115202.2023.r02.
Full textWeiner, George. "Cancer biology: Lost in translation?" Cancer Biology & Therapy 3, no. 7 (July 2004): 688–91. http://dx.doi.org/10.4161/cbt.3.7.959.
Full textGold, Larry. "Translation, genetics and cell biology." Trends in Genetics 3 (January 1987): 236–37. http://dx.doi.org/10.1016/0168-9525(87)90251-4.
Full textKiberstis, P. A. "MOLECULAR BIOLOGY: Translation by Entrapment." Science 299, no. 5606 (January 24, 2003): 475a—475. http://dx.doi.org/10.1126/science.299.5606.475a.
Full textDissertations / Theses on the topic "Translation biology"
Chew, Guo-Liang. "Non-Canonical Translation in Vertebrates." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467487.
Full textBiology, Molecular and Cellular
Lin, Chen-ju. "Targeting translation initiation for cancer therapy." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96981.
Full textIl est généralement admis que le recrutement des ribosomes à l'extrémité 5' des ARN messagers (ARNm) est l'étape limitante de l'initiation de la traduction chez les eucaryotes. Cette étape est dépendante de l'activité du complexe d'initiation eIF4F qui comprend trois sous-unités: eIF4E, une protéine liant la coiffe des ARNm, eIF4A, une hélicase d'ARN et eIF4G, une grande protéine d'échafaudage dont le rôle est de coordonner la liaison du ribosome à l'ARNm. Le dérèglement du contrôle de l'initiation de la traduction suite à l'activation d'eIF4F est observé fréquemment chez les cancers humains. L'activité de ce complexe est contrôlée par plusieurs voies de signalisation clés qui sont impliquées dans la formation des tumeurs (tels que c-Myc et PI3K/Akt/mTOR). Donc, cibler l'initiation de la traduction représente une avenue attrayante pour contrer le cancer. Nous démontrons ici que l'oncogène c-Myc peut stimuler la synthèse protéique en favorisant l'expression et l'activité de non-seulement eIF4E, mais aussi des deux autres sous-unités du complexe eIF4F. En réponse à cela, les niveaux supérieurs d'eIF4F permettent une augmentation de la synthèse et donc de l'activité de c-MYC, établissant alors une boucle auto-stimulante. Nous avons utilisé le modèle de souris Eμ-myc pour démontrer que l'expression de chacune des sous-unités d'eIF4F est stimulée par c-Myc in vivo. Plus important encore, nous avons démontré que la réduction des niveaux d'eIF4E en utilisant la technique d'interférence à ARN (ARNi) de manière inductible et réversible freine considérablement le développement de lymphomes par c-Myc. Ces données suggèrent que cibler eIF4E in vivo est une approche thérapeutique viable et efficace. De plus, puisque l'assemblage d'eIF4E est contrôlé de mTOR, il en résulte donc que le couplage de c-Myc et d'eIF4F est donc aussi sous contrôle de cette voie de signalisation. Suite à un cribblage de molécules inhibitrices de la voie PI3K/Akt/mTOR, nous avons identifié deux molécules, la silibinine et l'anti-dépresseur sertraline, qui ont la propriété de bloquer la prolifération de cellules du cancer du sein. La silibinin et la sertraline inhibent efficacement l'activité du complexe eIF4F en ciblant la voie de signalisation de mTOR. Par surcroît, la sertraline accentue fortement la sensibilité des lymphomes PTEN (+/-)/Eμ-Myc à l'agent chimiothérapeutique doxorubicin in vivo. En conclusion, il appert que cibler le contrôle de la traduction par mTOR peut contrer efficacement le cancer dans ce modèle de cancer préclinique.
Kinney, Emma. "Decoupling of HSV1 Vhs protein mRNA decay and translation stimulation." Thesis, University of Missouri - Kansas City, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1543940.
Full textHerpes Simplex Virus Type 1 is a member of the alphaherpesvirinae subfamily within the family Herpesviridae. This virus has both a lytic and latent cycle. Primary infection occurs when the virus enters epithelial cells around the mucosal lining of the nose and mouth. Within the epithelial cells, the virus undergoes an active lytic infection, causing an ulcerated blister, more famously known as a 'cold sore' or 'fever blister'. Once HSV enters the nearby sensory neurons the genome is transported to the neuronal cell body where its latency associated transcripts are activated and the virus remains in a dormant latent cycle until reactivation, when the virus is transported back down the axon to the epithelial cells at or near the site of initial infection. The Virion Host Shutoff protein is a tegument protein from HSV1 and acts as a ribonuclease, degrading both cellular and viral mRNAs, making the course of viral infection more efficient. A study by Saffran, Read and Smiley uncovered an unexpected new function of Vhs: stimulation of translation from some IRESs. An IRES is a section of mRNA with a high level of secondary structure, capable of inducing cap-independent translation. In similar experiments utilizing a bicistronic reporter transcript, I sought to discover whether or not these two functions of the Vhs protein could be de-coupled. Experiments involved dually transfecting HeLa cells with different Vhs mutants across a range of Vhs plasmid concentrations and the bicistronic reporter construct. Levels of reporter activity were measured from cell lysates 36 hours after transfections and provided a measurement of the control at the level of translation. As the cellular Bip IRES element was present between the cistrons, the 3' cistron provided a measure of IRES stimulation. The Results revealed examples of Vhs mutants in which the two activities had been separated. It is unknown what role IRES stimulation could play during Herpesvirus infection, although it is interesting to note that some HSV1 genes have IRES like elements within the 5' UTR. Future experiments can be done to investigate whether or not Vhs is actively recruiting transcription initiation factors to these IRES elements.
Cho, Park 1975. "The Cap-binding inhibitor of translation, d4EHP /." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111819.
Full textEarly embryogenesis requires the activity of various maternal determinants called morphogens, whose spatial and temporal expressions are tightly regulated at the level of translation. Positional information encoded within these factors is thus important for the establishment of body polarity. For instance, in Drosophila, when maternal Caudal (Cad) and Hunchback (Hb) proteins are allowed to accumulate inappropriately in an embryo, anterior and abdominal segmentations are blocked. Hence, the precision of Cad and Hb expression domains is critical for normal development.
An eIF4E-related protein called eIF4E-Homologous protein (4EHP) was first described in 1998. However, the function, if any, of 4EHP in translation has been elusive, since it does not interact with any known initiation factors. In order to elucidate its biological function, the power of Drosophila genetics was used. In this thesis, I show that the Drosophila homolog of 4EHP (d4EHP) interacts with Bicoid (Bcd) and Brain tumor (Brat) proteins to inhibit the translation of maternal cad and hb mRNAs. Simultaneous interaction of d4EHP with the cap and Bcd or Brat results in mRNA circularization, which renders cad and hb mRNAs translationally inactive. This example of cap-dependent translational control that is not mediated by eIF4E defines a new paradigm for translational inhibition involving tethering of the mRNA 5' and 3' ends.
Malina, Abba. "The therapeutic potential in eukaryotic mRNA translation." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114176.
Full textLa compréhension du mécanisme global de la synthèse protéique a rapidement progressée en majeur partie grâce a l'utilisation d'inhibiteurs spécifiques qui bloquent ce processus. Contrairement aux inhibiteurs de la synthèse protéique procaryote, l'utilisation de molécules pouvant moduler la traduction des ARNm eucaryotes dans un but thérapeutique reste encore largement sous-évalué. Afin d'étudier cette possibilité et d'élargir le répertoire de composés chimiques pouvant interférer avec la synthèse protéique eucaryote, nous avons effectué plusieurs criblage différents. Deux d'entre eux sont décrits plus bas et formeront les fondements de cette thèse.Tel que décrit dans le chapitre 2, nous avons tout d'abord effectué un criblage à haut débit de molécules afin d'identifier de nouveaux inhibiteurs de la synthèse protéique eucaryote. Ceci nous a permis de découvrir que les molécules qui peuvent s'intercaler dans les structures en double brin des acides nucléiques possèdent des propriétés uniques d'inhibition de la traduction. En effet, à hautes concentrations, elles se comportent exactement comme des inhibiteurs de l'élongation et bloquent l'activité peptidyl-transférase des ribosomes, alors qu'à faibles concentrations, elles bloquent préférentiellement la traduction cap-indépendant sous contrôle de l'IRES de HCV sans affecter la traduction dépendante du cap. Cette activité semble être due à la capacité des molécules d'interférer avec la liaison de la sous-unité 40S à l'IRES de HCV. De plus, certaines molécules qui combinent une portion intercalatrice et une portion peptidique (connue pour pouvoir sonder et se lier spécifiquement des brins d'acides nucléiques de manière spécifique) ont été testées et une d'entre elles, nommé PAC-6, permet l'inhibition spécifique de l'initiation de la traduction sous contrôle de l'IRES de HCV.Dans le chapitre 3, nous avons effectué un criblage d'une librairie de shRNA afin d'identifier des gènes ou des voies de signalisation qui peuvent inverser la résistance de cellules à ABT-737. Des cellules de lymphomes Arf-/-Eµ-Myc génétiquement modifiées ont été infecté avec un groupe de shRNAs ciblant des gènes connus pour contrôler tous les aspects de la synthèse protéique et avons isolé l'ADN génomique de ces cellules après 10 jours de traitements avec, soit le véhicule, soit avec ABT-737. Suite à l'analyse de l'abondance relative des shRNAs par séquençage de nouvelle génération, nous en avons identifié plusieurs dont la représentation diminue sélectivement en présence d'ABT-737. Parmi ceux-ci, deux shRNAs uniques, ciblant l'hélicase à ARN/ADN DHX9 ont été identifiés et par la suite confirmés indépendamment. La diminution des niveaux de DHX9 permet la sensibilisation des cellules murines ou humaines à ABT-737 sans toutefois altérer les niveaux de Mcl-1. Plutôt, la perte de DHX9 semble activer un programme d'apoptose dépendant de p53 qui est nécessaire et suffisant pour cette interaction synthétique létale entre ABT-737 et DHX9.
Chiappetta, Margaret Elizabeth. "Knowledge translation in action : cancer biology and systems pharmacology at the National Center for Advancing Translational Science." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/50189.
Full textArts, Faculty of
Graduate
Yao, Xiaoquan. "Sequence features affecting translation initiation in eukaryotes: A bioinformatic approach." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27658.
Full textFung, Hiu Leong. "Human C7orf30 is a novel mitochondrial translation factor." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103744.
Full textLes mitochondries génèrent la majorité de l'énergie cellulaire grâce à l'oxydation phosphorylative. La chaîne respiratoire responsable de ce phénomène est composée de cinq complexes enzymatiques localisés dans la membrane interne de la mitochondrie. Certaines des sous-unités essentielles de ces complexes sont codées par l'ADN mitochondrial. Leur synthèse est assurée par la mitochondrie qui possède son propre système de traduction des protéines. Les déficiences de la traduction mitochondriale sont à l'origine de nombreuses maladies et les mécanismes qui régulent le processus de traduction restent à ce jour peu élucidés. Dans cette étude, nous avons identifié chez l'homme, C7orf30, une protéine probablement impliquée dans la régulation de la traduction mitochondriale. Il existe un homologue de cette protéine chez le maïs. Une étude suggère son rôle en tant que facteur d'assemblage des ribosomes des chloroplastes. Des programmes informatiques prédisent la localisation de la protéine C7orf30 humaine dans la mitochondrie ce que nous avons confirmé par des expériences d'immunocytochimie. L'utilisation de shRNA dirigés contre C7orf30 dans des fibroblastes humains révéle d'abord une réduction de l'activité cytochrome c oxydase (complexe IV). Des expériences de traduction ex vivo montrent ensuite une réduction globale de la synthèse des protéines codées par la mitochondrie dans les cellules déficitaires en C7orf30, la transcription étant normale. L'assemblage des complexes I, III, IV et V de la chaîne respiratoire est également affecté. La séparation des protéines par gradient de sucrose suggère que C7orf30 interagit avec la sous unité 39S des ribosomes mitochondriaux. Cependant, l'assemblage et les niveaux d'expression des rRNA 12S et 16S ne sont pas affectés par la diminution de la protéine ce qui suggère qu'elle n'est pas indispensable à l'assemblage des ribosomes mitochondriaux en soit. Dans cette étude, nous émettons l'hypothèse que C7orf30 est un composant du ribosome et agit comme un régulateur de la traduction mitochondriale.
Arribere, Joshua A. (Joshua Alexander). "Transcript leaders : annotation and insight into functions in translation." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83763.
Full textCD-ROM contains PDF of title page and .txt of tables.
Cataloged from PDF version of thesis. Vita.
Includes bibliographical references.
For a eukaryotic mRNA to be properly expressed, it undergoes a series of several steps, including transcription, modification, splicing, packaging, export, localization, translation, and decay. Of these steps transcription is the most extensively studied, though the remaining steps are also indispensible for proper protein production. While we understand many of these steps in biochemical detail in vitro, we have a much poorer knowledge of how they occur and are regulated for a given gene in vivo. Posttranscriptional regulation is carried out primarily through the noncoding portions of the mRNA: the Transcript Leader (TL or 5'UTR) upstream of the Open Reading Frame (ORF), and the 3'Untranslated Region (3'UTR) downstream. To understand how these regions affect post-transcriptional gene expression, it is critical to have precise annotations of the mRNA(s) produced from a gene. In Chapter 2 I describe the development of Transcript Leader Sequencing (TL-seq), a technique to annotate TLs, and demonstrate its utility in yeast. TL-seq annotations reveal interesting TL-dependent regulation, including transcription within ORFs and short TLs that are associated with translation initiation at the second AUG of the ORE. To further study the roles of TLs in translation, I develop Translation-Associated Transcript Leader Sequencing (TATL-seq). TATL-seq works by applying TL-seq across fractions of a polysome gradient, generating TL-specific translational measurements. This approach demonstrates a widespread inhibitory function for upstream AUGs (uAUGs), and that ~6% of yeast genes express multiple TL species with distinct translational activities. This demonstrates that alternative TLs are prevalent and functional even in a relatively simple eukaryote like yeast. My interest in alternative TLs prompted me to explore TL variation in mammals, where many thousands of genes are known to have alternative TLs. In Chapter 3 I enumerate the contributions of alternative mRNA processing events to alternative TLs in mice. I observe alternative TLs produced by alternative Transcription Start Sites (TSSs), and also demonstrate that alternative splicing events, such as skipped exons and alternative splice sites, contribute substantially to functional TL diversity. To facilitate the future study of alternative TLs in mammals, in Appendix I I modify TL-seq to sequence longer TL fragments and optimize TL-seq's enzymatic steps to reduce input RNA requirements. This thesis is concerned with understanding post-transcriptional mRNA expression both globally and gene-specifically. In particular, I seek to understand the role the Transcript Leader has in affecting translation and degradation of its transcript. The findings detailed here define and analyze discernable features of TLs that relate to translational properties of the downstream message. Furthermore, the techniques developed enable analyses of TLs and translation that could not be carried out with previous technologies.
by Joshua A. Arribere.
Ph.D.
Cacan, Ercan. "Evolutionary synthetic biology: structure/function relationships within the protein translation system." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45838.
Full textBooks on the topic "Translation biology"
Molecular biology of cancer: Translation to the clinic. Amsterdam [etc.]: Elsevier Academic press, 2010.
Find full textParsyan, Armen, ed. Translation and Its Regulation in Cancer Biology and Medicine. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9078-9.
Full textZhao, Robert Chunhua, ed. Essentials of Mesenchymal Stem Cell Biology and Its Clinical Translation. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6716-4.
Full textZhao, Robert Chunhua. Essentials of mesenchymal stem cell biology and its clinical translation. Dordrecht: Springer, 2013.
Find full textJon, Lorsch, ed. Translation initiation: Cell biology, high-throughput methods, and chemical-based approaches. San Diego, Calif: Academic Press, 2007.
Find full textJ, Tymms Martin, ed. In vitro transcription and translation protocols. Totowa, N.J: Humana Press, 1995.
Find full textProtein synthesis and translational control: A subject collection from Cold Spring Harbor perspectives in biology. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 2012.
Find full textH.G. Bronn, Ernst Haeckel, and the origins of German Darwinism: A study in translation and transformation. Cambridge, Mass: MIT Press, 2008.
Find full textSophia, Kapetanaki, and Sharples R. W, eds. Supplementa problematorum: A new edition of the Greek text with introduction and annotated translation. Berlin: Walter de Gruyter, 2006.
Find full textCarus, Titus Lucretius. Lucy Hutchinson's translation of Lucretius, De rerum natura. London: Duckworth, 1996.
Find full textBook chapters on the topic "Translation biology"
Zlatanova, Jordanka, and Kensal E. van Holde. "Translation." In Molecular Biology, 395–420. 2nd ed. Boca Raton: Garland Science, 2023. http://dx.doi.org/10.1201/9781003132929-15.
Full textZlatanova, Jordanka, and Kensal E. van Holde. "Translation." In Molecular Biology, 421–46. 2nd ed. Boca Raton: Garland Science, 2023. http://dx.doi.org/10.1201/9781003132929-16.
Full textZlatanova, Jordanka, and Kensal E. van Holde. "Regulation of Translation." In Molecular Biology, 447–76. 2nd ed. Boca Raton: Garland Science, 2023. http://dx.doi.org/10.1201/9781003132929-17.
Full textAsano, Katsura. "Translation Initiation." In Encyclopedia of Systems Biology, 2263–67. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_820.
Full textAsano, Katsura, and Koichi Ito. "Translation Elongation." In Encyclopedia of Systems Biology, 2259–63. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_821.
Full textSaito, Kazuki, and Koichi Ito. "Translation Termination." In Encyclopedia of Systems Biology, 2271–75. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_822.
Full textNickelsen, Jörg, Alexandra-Viola Bohne, and Peter Westhoff. "Chloroplast Gene Expression—Translation." In Plastid Biology, 49–78. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1136-3_2.
Full textShreve, Gregory M. "Chapter 2. The strange attractions of translation." In American Translators Association Scholarly Monograph Series, 15–38. Amsterdam: John Benjamins Publishing Company, 2023. http://dx.doi.org/10.1075/ata.xx.02shr.
Full textPeled-Zehavi, Hadas, and Avihai Danon. "Translation and translational regulation in chloroplasts." In Cell and Molecular Biology of Plastids, 249–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/4735_2007_0234.
Full textRomano, M. Carmen, and Ian Stansfield. "Release Factor, Translation." In Encyclopedia of Systems Biology, 1844–45. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1280.
Full textConference papers on the topic "Translation biology"
Jung, Gyoo Yeol, Sang Woo Seo, Jina Yang, and Byung Eun Min. "Synthetic Biology around Translation Process." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_072.
Full textsuzuki, kakeru. "Establishment of an in vitro translation system from rice callus extracts." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1052637.
Full textKhlebodarova, T. M., V. V. Kogai, and V. A. Likhoshvai. "On the Chaotic Potential of the Local Translation at Activated Synapses." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2018. http://dx.doi.org/10.17537/icmbb18.6.
Full textMinaee, Shervin, and Yao Wang. "Fingerprint recognition using translation invariant scattering network." In 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE, 2015. http://dx.doi.org/10.1109/spmb.2015.7405471.
Full textCho, Hsing-Yi. "Ethylene modulates the dynamics of translation via GCN2 and EIN2 in Arabidopsis under submergence." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1332526.
Full textKitney, Richard I. "Synthetic Biology – a Key Driver of the BioEconomy through BioDesign and Industrial Translation." In The 4th World Congress on New Technologies. Avestia Publishing, 2018. http://dx.doi.org/10.11159/icbb18.1.
Full textHou, Yuemin, and Ji Linhong. "Gene Transcription and Translation in Design." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46128.
Full textLi, Yulin, Jun Seita, Dean Felsher, and David Dill. "Abstract A2-35: Discovery of differentiation therapeutics using a systems biology approach." In Abstracts: AACR Special Conference: Translation of the Cancer Genome; February 7-9, 2015; San Francisco, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.transcagen-a2-35.
Full textWendel, Hans-Guido. "Abstract IA06: Oncogenic translation programs." In Abstracts: AACR Special Conference on Translational Control of Cancer: A New Frontier in Cancer Biology and Therapy; October 27-30, 2016; San Francisco, CA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.transcontrol16-ia06.
Full textOgier, Stephen E., and Steven M. Wright. "A frequency translation approach for multichannel 13C spectroscopy." In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7318671.
Full textReports on the topic "Translation biology"
Eckdahl, Anthony J., Rachel Neal, A. Malcolm Campbell, and Todd T. Eckdahl. rClone: A Synthetic Biology Tool That Enables the Research of Bacterial Translation. Journal of Young Investigators, March 2017. http://dx.doi.org/10.22186/jyi.32.3.7-12-19.
Full textKriegel, Francesco. Learning General Concept Inclusions in Probabilistic Description Logics. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.220.
Full text