To see the other types of publications on this topic, follow the link: Transition metals; Catalytic systems.

Dissertations / Theses on the topic 'Transition metals; Catalytic systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 47 dissertations / theses for your research on the topic 'Transition metals; Catalytic systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Smith, Virginia Clare Moncrieff. "Mechanistic studies of catalytic C-C bond formation." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Landon, James Hugh Pearson. "Computational EPR, ENDOR and DFT studies of catalytic transition metal systems." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54786/.

Full text
Abstract:
The following thesis discusses the combined use of electron paramagnetic resonance (EPR) spectroscopy, electron nuclear double resonance (ENDOR) spectroscopy and density functional theory (DFT) calculations to investigate a number of transition metal catalyst systems the binding of epoxide molecules by a vanadyl analogue of the catalytically important metallosalen class of compounds the binding of a chiral aryl amine by a copper salen complex and the incorporation of copper(II) ions in aluminophosphate materials. Two classes of epoxide selectivity by a vanadyl salen derivative are presented here, the discrimination of the geometric isomers of 2,3-epoxybutane, cw-2,3-epoxybutane and /ra 5-2,3-epoxybutane by Ar,Ar'-bis(3,5-di-tert-butylsalicylidene)-l,2-diaminocyclohexa- ne-vanadium(IV) oxide ( VO(l) ) 1 and the stereoselectivity of epoxypropane, 1,2- epoxybutane, chloromethyloxirane and fluoromethyloxirane by VO(l) . In both cases it is shown that hydrogen-bonding interactions, including interactions between the epoxide oxygen atom and a hydrogen atom bonded to a stereocentre carbon atom of the complex are important in determining the binding mode, thus implicating the given stereocentre carbon atom in the transfer of chirality. In the geometric isomerism of 2,3-epoxybutane, steric arguments regarding the obstruction caused by the methyl groups made on the basis of the DFT structures explain the selectivity observed in the EPR/ENDOR spectra. In the chiral selectivity of the other epoxides, more complicated reasoning, based on tripodal weak hydrogen-bonding configurations involving the hydrogen atoms of the epoxide ring and the oxygen atoms of the complex ligand is required to fully explain the selectivity observed, with different selectivity effects in the more electronegative halogenated epoxides compared to the alkyl cases. The coordination of methyl benzyl amine to a series of analogues of Cu(l) with various levels of tert-butylation, to model the steric effects in this interaction is studied here using DFT methods to explain the coordination preference for heterochiral pairings observed in the EPR spectra. Reasoning based on the preference of each enantiomer of the MBA to become involved in % - n interaction with alternate benzene rings of the complex, along with a slightly increased crowding of one ring over the other caused by the same hydrogen atom as implicated in determining selectivity in the epoxide study (above), namely the hydrogen atom bonded to one of the stereocentre C atoms, explains the selectivity observed in terms of n n interactions, also identifying the role of the stereocentre C atoms in conferring chirality. In combination, these studies demonstrate the importance of weak interactions, namely hydrogen-bonding andn-n interactions, in determining the binding configurations, and by extension the selectivity of these transition metal complexes. They also describe the nature of the involvement of the stereocentres of the complex in directing that selectivity, delineating a link between the chirality of the complex and that of the bound species in each case. The importance of using both EPR/ENDOR and DFT techniques in such studies, namely of explaining selectivity observed by EPR in terms of ENDOR and DFT derived geometry parameters is further explored in this thesis in the development of genetic algorithm routines to modify DFT-derived structures, by means of the ENDOR spectra simulated with the hyperfine parameters derived from a simple point-dipole model applied to the coordinates. The application of this process to a sample axial system, VO(acac)2, demonstrates the effectiveness of exploiting the complementary nature of the ENDOR and DFT techniques in this manner. Finally, a second copper study is reported here. This example is of a microporous aluminophosphate material, and concerns the incorporation of Cu11 ions into framework vs. extra-framework sites, a subject of some controversy. Here, evidence is presented for the ability of copper to distort the tetrahedral lattice into a distorted octahedral and a square- based pyramidal environment in which one or both of the remaining coordination sites is/are occupied by the templating molecules and water molecules, without rendering the lattice unstable, arguing in favour of framework site incorporation.
APA, Harvard, Vancouver, ISO, and other styles
3

Robinson, Simon Jonathan. "Catalytic and selective transition metal mediated isomerisations of allylic alkoxides to enolates." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Riemer, Daniel. "Transition Metal-Free Catalytic Systems for the Utilization of CO2 to Achieve Valuable Chemicals." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-14D4-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Riemer, Daniel [Verfasser]. "Transition Metal-Free Catalytic Systems for the Utilization of CO2 to Achieve Valuable Chemicals / Daniel Riemer." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1220909319/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manrique, Salas Ester. "Development of new transition metal complexes for their use in sustainable catalytic processes and as antitumoral agents." Doctoral thesis, Universitat de Girona, 2018. http://hdl.handle.net/10803/668830.

Full text
Abstract:
In this thesis we present the synthesis and characterization of different types of ruthenium complexes containing N-donor ligands together with monodentate ligands, along with their complete characterization through spectroscopic and electrochemical techniques. The complexes have been evaluated as catalysts for olefin epoxidation and nitrile hydration in 2/1 homogeneous phase. On the other hand, taking into account the importance and advantages of the heterogeneous catalysis, we have carried out the immobilization of some of these complexes on silica-type supports and magnetic nanoparticles and we have evaluated their catalytic activity, comparing them with the analogous homogeneous systems, and have been reused for several runs maintaining high values of selectivity for the epoxide. Some of the complexes together with other complexes previously synthesized in our research group, have been tested as antitumoral agents
En aquesta tesi es presenta la síntesi de diferents tipus de complexos de ruteni i manganès que contenen lligands N-donadors en combinació amb altres lligands monodentats, i la seva completa caracterització mitjançant tècniques espectroscòpiques i electroquímiques. Els complexos han estat avaluats com a catalitzadors en epoxidació d'olefines i hidròlisi de nitrils en fase homogènia. Per altra banda, tenint en compte la importància i els avantatges de la catàlisi heterogènia, s’ha dut a terme la immobilització d’alguns d’aquests complexos sobre suports tipus sílice i nanopartícules magnètiques i se n'ha avaluat l'activitat catalítica, comparant-los amb els anàlegs en fase homogènia, i s'han pogut reutilitzar durant diversos cicles mantenint alts valors de selectivitat per l'epòxid. Alguns dels complexos, juntament amb d'altres sintetitzats anteriorment al grup de recerca, han estat avaluats com agents antitumorals
APA, Harvard, Vancouver, ISO, and other styles
7

Lesieur, Mathieu. "Cu and Pd complexes of N-heterocyclic carbenes : catalytic applications as single and dual systems." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7999.

Full text
Abstract:
Nowadays, the requirement to design highly valuable compounds is undoubtedly one of the major challenges in the field of organic and organometallic chemistry. The use of the versatile and efficient N-heterocyclic carbenes (NHCs) combined with transition metals represents a key feature in modern organometallic chemistry and homogeneous catalysis. In the course of this thesis, the straightforward design and synthesis of a library of Pd(0) bearing NHC ligands was achieved. Their catalytic performances (Chapter 1) and their phosphorescence properties in solution (Chapter 2) were disclosed. Currently, cross-couplings are some of the most important types of reaction in palladium catalysis. The formation of highly hindered biaryls substrates is one of the main requirements in cross-coupling chemistry. The design and synthesis of a palladium dimer bearing a bulky NHC ligand can fulfil this proposal (Chapter 4). The development of new classes of ligands is a topic of interest. For this reason, normal, abnormal, remote and mesoionic N-heterocyclic carbenes copper complexes were investigated and their reactivity compared in the [3+2] cycloaddition of azides and alkynes (Chapter 7). Air and moisture stable Cu(I)-NHC species have also been compared to their silver analogues for the alkynylation of ketones (Chapter 9). The different reactivity of the two latter organometallic species (Cu and Ag) with ethyldiazoacetate reagent via the formation of carbenes or C-H activated product is presented in Chapter 8. Recently, the development of a bimetallic catalytic system is strongly considered and has high impact. For this reason, two dual catalytic transformations (Pd-NHC and Cu-NHC) were studied for the C-H arylation (Chapter 5) and the synthesis of substituted alkenes products via a relay or cooperative mechanisms (Chapter 6). The isolation of intermediates and mechanistic studies were examined in each of these studies.
APA, Harvard, Vancouver, ISO, and other styles
8

González, Miera Greco. "Homogeneous and heterogeneous Cp*Ir(III) catalytic systems : Mechanistic studies of redox processes catalyzed by bifunctional iridium complexes, and synthesis of iridium-functionalized MOFs." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-143343.

Full text
Abstract:
The purpose of this doctoral thesis is to investigate and develop catalytic processes mediated by iridium(III) complexes. By understanding the mechanisms, the weaknesses of the designed catalysts can be identified and be overcome in the following generation. The thesis is composed of two general sections dedicated to the synthesis and applications of homogeneous catalysts and to the preparation of heterogeneous catalysts based on metal-organic frameworks (MOFs). After a general introduction (Chapter 1), the first part of the thesis (Chapters 2-4, and Appendix 1) covers the use of several homogeneous bifunctional [Cp*Ir(III)] catalysts in a variety of chemical transformations, as well as mechanistic studies. Chapter 2 summarizes the studies on the N-alkylation of anilines with benzyl alcohols catalyzed by bifunctional Ir(III) complexes. Mechanistic investigations when the reactions were catalyzed by Ir(III) complexes with a hydroxy-functionalized N-heterocyclic carbene (NHC) ligand are discussed, followed by the design of a new generation of catalysts. The chapter finishes presenting the improved catalytic performance of these new complexes.    A family of these NHC-iridium complexes was evaluated in the acceptorless dehydrogenation of alcohols, as shown in Chapter 3. The beneficial effect of a co-solvent was investigated too. Under these base-free conditions, a wide scope of alcohols was efficiently dehydrogenated in excellent yields. The unexpected higher activity of the hydroxy-containing bifunctional NHC-Ir(III) catalysts, in comparison to that of the amino-functionalized one, was investigated experimentally. In the fourth chapter, the catalytic process presented in Chapter 3 was further explored on 1,4- and 1,5-diols, which were transformed into their corresponding tetrahydrofurans and dihydropyrans, respectively. Mechanistic investigations are also discussed. In the second part of the thesis (Chapter 5), a Cp*Ir(III) complex was immobilized into a MOF. The heterogenization of the metal complex was achieved efficiently, reaching high ratios of functionalization. However, a change in the topology of the MOF was observed. In this chapter, the use of advanced characterization techniques such as X-ray absorption spectroscopy (XAS) and pair distribution function (PDF) analyses enabled to study a phase transformation in these materials.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Submitted.

APA, Harvard, Vancouver, ISO, and other styles
9

Dombrowski, James Michael. "Catalytic Cleavage of Carbon-Carbon Sigma Bonds Using Transition Metals." Thesis, Boston College, 2005. http://hdl.handle.net/2345/407.

Full text
Abstract:
Thesis advisor: Lawrence T. Scott
The focus of this project was to probe the ability of various transition metal complexes to cleave carbon-carbon bonds in a C30H12 hemifullerene. The hemifullerene was synthesized in our lab from commercial 1-tetralone and bromonaphthalene in six steps. Palladium and nickel complexes were used to open the five membered rings along the periphery of the C30H12 bowl. Diphosphine complexes of nickel were capable of opening either all three five membered rings or one of the periphery five membered rings and the central six membered ring
Thesis (BS) — Boston College, 2005
Submitted to: Boston College. College of Arts and Sciences
Discipline: Chemistry
Discipline: College Honors Program
APA, Harvard, Vancouver, ISO, and other styles
10

Morello, Glenn. "Modeling Transition Metal Chemistry for Catalytic Functionalization of Molecules." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc84255/.

Full text
Abstract:
The diversity of transition metal complexes allows for a wide range of chemical processes to be mediated by the metal, from catalysis to surface chemistry. Investigations into the structure and electronic configuration of transition metal complexes allow for tuning of desired species by modifications to the ligands and/or metals to achieve more efficient thermodynamics and kinetics for the process of interest. Transition metals, often used in catalysts for a number of important processes, require detailed descriptions of intermediates, transition states and products to fully characterize a reaction mechanism(s) in order to design more active and efficient catalysts. Computational investigations into inorganic catalysts are explored with the aim of understanding the activity of each species and how modifications of supporting ligands, co-ligands and metals vary the interaction along the reaction pathway. Reported results give important insight into the development of the most active complexes in addition to determining the least active complexes to aid experimental development. This report first investigates the mechanisms of two unique transfer reactions: 1) formation of low coordinate nickel-nitrene ((P~P)Ni=NR; P~P = 1,2-bis(dihydrophosphino)-ethane or 1,2-bis(difluoromethylphosphino)-ethane) complexes as catalysts for nitrogen atom transfer and 2) oxidation of a triphosphorus niobium complex, [(η2-P3SnPh3)Nb(OMe)3], for the transfer of the phosphorus synthon, Ph3SnP3. These reactions have utility in the synthesis of nitrogen and phosphorus containing molecules, respectively, and the results presented provide mechanistic insight into the synthesis of the organometallic intermediates. Additionally, a computational approach towards rational catalyst design was performed on the ruthenium based hydroarylation catalyst TpRu(CO)(Ph) [Tp = hydrido-tris(pyrazolyl)borate]. Targeted modifications at the Tp, metal and co-ligand (CO) sites were studied in order to tune the electronics and sterics of the catalyst. Modifications, through computational methods, provided a more cost- and time-efficient way to study the impact of modifications, which provided direct input into attractive synthetic targets. The research described heir in highlights the use of computational chemistry methodologies, specifically DFT, in collaboration with experimental results, for the accurate description of reaction geometries and factors influencing the thermodynamics and kinetics of the systems. Valuable insight is gained by treating inorganic complexes with theoretical methods and additionally provides a fast, cheap way to predict and understand the chemistry of such complex systems.
APA, Harvard, Vancouver, ISO, and other styles
11

Ekström, Jesper. "Transition Metal Hydrides : Biomimetic Studies and Catalytic Applications." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7187.

Full text
Abstract:
In this thesis, studies of the nature of different transition metal-hydride complexes are described. The first part deals with the enantioswitchable behaviour of rhodium complexes derived from amino acids, applied in asymmetric transfer hydrogenation of ketones. We found that the use of amino acid thio amide ligands resulted in the formation of the R-configured product, whereas the use of the corresponding hydroxamic acid- or hydrazide ligands selectively gave the S-alcohol. Structure/activity investigations revealed that the stereochemical outcome of the catalytic reaction depends on the ligand mode of coordination. In the second part, an Fe hydrogenase active site model complex with a labile amine ligand has been synthesized and studied. The aim of this study was to find a complex that efficiently catalyzes the reduction of protons to molecular hydrogen under mild conditions. We found that the amine ligand functions as a mimic of the loosely bound ligand which is part of the active site in the hydrogenase. Further, an Fe hydrogenase active site model complex has been coupled to a photosensitizer with the aim of achieving light induced hydrogen production. The redox properties of the produced complex are such that no electron transfer from the photosensitizer part to the Fe moiety occurs. In the last part of this thesis, the development of a protocol for the transfer hydrogenation of ketones to secondary alcohols without the involvement of transition metal catalysts is described. A variety of ketones were efficiently reduced in 2-propanol using catalytic amounts of alkali alkoxide under microwave irradiation.
APA, Harvard, Vancouver, ISO, and other styles
12

Suntivich, Jin. "Interplay between electronic structure and catalytic activity in transition metal oxide model system." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76134.

Full text
Abstract:
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 109-125).
The efficiency of many energy storage and conversion technologies, such as hydrogen fuel cells, rechargeable metal-air batteries, and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen electrochemical reactions. Transition-metal oxides can exhibit high catalytic activity for oxygen electrochemical reactions, which can be used to improve efficiency and cost of these devices. Identifying a catalyst "design principle" that links material properties to the catalytic activity can accelerate the development of highly active, abundant transition metal oxide catalysts fore more efficient, cost-effective energy storage and conversion system. In this thesis, we demonstrate that the oxygen electrocatalytic activity for perovskite transition metal oxide catalysts primarily correlates to the a* orbital ("eg") occupation. We further find that the extent of B-site transition metal-oxygen covalency can serve as a secondary activity descriptor. We hypothesize that this correlation reflects the critical influences of the a* orbital and transition metal-oxygen covalency on the ability of the surface to displace and stabilize oxygen-species on surface transition metals. We further propose that this ability to stabilize oxygen-species reflect as the rate-limiting steps of the oxygen electrochemical reactions on the perovskite oxide surfaces, and thus highlight the importance of electronic structure in controlling the oxide catalytic activity.
by Jin Suntivich.
Sc.D.
APA, Harvard, Vancouver, ISO, and other styles
13

Roe, Gerard. "Surface and catalytic chemistry of Ni/Sm systems." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Källström, Klas. "Catalytic asymmetric ketone and alkene reductions using transition metal complexes /." Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kulik, Heather J. "First-principles transition-metal catalysis : efficient and accurate approaches for studying enzymatic systems." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46389.

Full text
Abstract:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.
Includes bibliographical references (p. 211-221).
(cont.) We apply our approach to several paradigmatic systems: spin state splittings and structural properties of Fe2 and other small molecules as well as the addition-elimination reactions of hydrogen and methane on FeO+ to form water and methanol, respectively. We find that errors from common density functionals which are over 1.0 eV are greatly reduced to on average 0.1 eV when the DFT+U approach is implemented as compared against experiment and highly accurate but expensive quantum chemistry. We also improve structural and vibrational properties, ground state spin identification for a given configuration, and qualitative descriptions of reaction mechanism. Thanks to the minimal overhead of our DFT+U approach, we have also studied properties of systems of over one thousand electrons in size: in particular, the spin density profiles of functionalized cobalt porphyrins on a metal slab support and the reaction mechanism of the halogenating non-heme Fe(II) enzyme, SyrB2. Efficient and accurate study of transition metal chemistry paves the way for predictive and targeted design of catalysts that provide unique solutions for green chemistry and optimal harnessing of alternative energy sources.
Transition metals are ever-present as reactive centers in biological and inorganic catalytic cycles. However, the open shell character which gives 3d transition metals unique reactive properties also makes transition metal complexes challenging to study using traditional first principles approaches. Density functional theory is a widely popular computational approach because it recasts a many-body problem of interacting electrons into an equivalent problem of non-interacting electrons, greatly reducing computational cost. Each electron lives in the electric field of the total electron density, giving rise to a problem known as self-interaction; that is, each electron sees the total field including itself, and is therefore repelled by itself. Such an error is maximal in systems with highly localized electrons, in particular transition metals. We introduce an approach in which we augment standard density functionals with a Hubbard U term that helps to counteract the unphysical delocalization of electrons due to errors in exchange-correlation functionals. A Hubbard U approach has already been successfully applied to highly correlated systems in the solid state, but we introduce it for the first time to study the transition metal centers of molecules. This approach, we will show, is even more fitting for single-site molecules where the Hubbard U term need only counteract local effects (e.g. excessive hybridization with ligands) as opposed to multi-site systems where both short-range and long-range self-interaction problems are simultaneously present. The simplified, linear-response formulation we use in conjunction with density functional theory permits direct calculation of the Hubbard U, which is an intrinsic property of the system. We also extend this DFT+U approach by obtaining the linear-response U self-consistently as a property of the DFT+U density, further increasing accuracy.
by Heather J. Kulik.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
16

Korzyński, Maciej Damian. "Functionalization of metal-organic frameworks with early transition metals : from fundamental studies to catalytic applications." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121781.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 191-215).
Metal-organic frameworks (MOFs) have established themselves as some of the most versatile materials available, with applications ranging from gas sorption to separation to sensing to catalysis. With a large abundance of structural motifs published to date, research efforts have shifted towards further framework elaboration via post-synthetic modification (PSM), a method to alter the chemical structure of preformed MOFs. The secondary building units (SBUs) of MOFs, which are commonly small inorganic clusters, have been particularly interesting targets for this synthetic approach. The aim of this thesis is to further our understanding of how metal cations interact with these inorganic nodes. Additionally, the node functionalization approach is used to synthesize novel catalysts for the olefin metathesis reaction. In Chapter 1, the reader is introduced to post-synthetic modification of MOFs with a focus on early transition metal species. A review of pertinent literature is presented. Chapter 2 describes how a desire to challenge the limits of the well-precedented cation exchange process led to a serendipitous discovery of a long-sought binding mode in the iconic MOF-5 system using NbCl₄(THF)₂ as a precursor of niobium. In Chapter 3, attention shifts from fundamental studies to the development of new catalysts for olefin metathesis, a process that to (late has been not been extensively studied in MOFs. After a short introduction about the traditional olefin metathesis catalysis, the prospect of using the inorganic nodes of MOFs as supports akin to the classical platforms used in heterogeneous catalysis is explored. Chapter 4 expands the concepts developed in the previous chapter to rhenium oxide-based olefin metathesis, which is unique compared to catalysis using molybdenum and tungsten oxide systems.
by Maciej Damian Korzyński.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemistry
APA, Harvard, Vancouver, ISO, and other styles
17

Thu, Hung-yat. "Catalytic C-H bond functionalization reactions catalyzed by rhodium(III) porphyrin, palladium(II) and platinum(II) acetate complexes." View the Table of Contents & Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38027872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ceylan, Yavuz Selim. "Exploration of Transition Metal-Containing Catalytic Cycles via Computational Methods." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1505287/.

Full text
Abstract:
Styrene production by a (FlDAB)PdII(TFA)(η2-C2H4) complex was modeled using density functional theory (DFT). Benzene C-H activation by this complex was studied via five mechanisms: oxidative addition/reductive elimination, sigma-bond metathesis, concerted metalation deprotonation (CMD), CMD activation of ethylene, and benzene substitution of ethylene followed by CMD of the ligated benzene. Calculations provided evidence that conversion of benzene and ethylene to styrene was initiated by the fifth pathway, arylation via CMD of coordinated benzene, followed by ethylene insertion into the Ru-Ph bond, and then β-hydrogen elimination. Also, monomer (active species)/dimer equilibrium concentrations were analyzed. The results obtained from present study were compared with that of a recently reported RhI complex to help identify more suitable catalysts for the direct production of styrene from ethylene and benzene. Second, theoretical studies of heterobimetallic {Ag–Fe(CO)5}+ fragments were performed in conjunction with experiments. The computational models suggested that for this first example of a heterodinuclear, metal-only FeAg Lewis pair (MOLP) that Fe(CO)5 acts as a Lewis base and AgI as a Lewis acid. The ῡCO bands of the studied molecules showed a blue shift relative to those measured for free Fe(CO)5, which indicated a reduction in Fe→CO backbonding upon coordination to silver(I). Electrostatic interaction is predicted via DFT as the dominant mode of Fe—Ag bonding augmented by a modest amount of charge transfer between Ag+ and Fe(CO)5. Third, computational analyses of hypothetical transition metal-terminal boride [MB(PNPR)] complexes were reported. DFT, natural orbital analysis (NBO), and multiconfiguration self-consistent field (MCSCF) calculations were employed to investigate the structure and bonding of terminal boride complexes, in particular the extent of metal dπ - boron pπ bonding. Comparison of metal-boride, -borylene and –boryl bond lengths confirms the presence of metal-boron π bonds, albeit the modest shortening (~ 3%) of the metal-boron bond suggests that the π-bonding is weak. Their instabilities, as measured by free energies of H2 addition to make the corresponding boryl complexes, indicate terminal boride complexes to be thermodynamically weak. It is concluded that for the boride complexes studied, covering a range of 4d and 5d metals, that the metal-boride bond consisted of a reasonably covalent σ and two very polarized π metal-boron bonds. High polarization of the boron to metal π-bonds indicated that a terminal boride is an acceptor or Z type ligand. Finally, anti-Markovnikov addition of water to olefins has been a long-standing goal in catalysis. The [Rh(COD)(DPEphos)]+ complex was found as a general and regioselective group 9 catalyst for intermolecular hydroamination of alkenes. The reaction mechanism was adapted for intermolecular hydration of alkenes catalyzed by a [Rh(DPEphos)]+ catalyst and studied by DFT calculations. Olefin hydration pathways were analyzed for anti-Markovnikov and Markovnikov regioselectivity. On the basis of the DFT results, the operating mechanism can be summarized as follows: styrene activation through nucleophilic attack by OHδ− of water to alkene with simultaneous Hδ+ transfer to the Rh; this is then followed by formation of primary alcohol via reductive elimination. The competitive formation of phenylethane was studied via a β-elimination pathway followed by hydrogenation. The origin of the regioselectivity (Markovnikov vs anti-Markovnikov) was analyzed by means of studying the molecular orbitals, plus natural atomic charges, and shown to be primarily orbital-driven rather than charge-driven.
APA, Harvard, Vancouver, ISO, and other styles
19

Güell, Serra Mireia. "Theoretical studies of systems of biochemical interest containing Fe and Cu transition metals." Doctoral thesis, Universitat de Girona, 2009. http://hdl.handle.net/10803/7941.

Full text
Abstract:
La presència de la química teòrica i computacional està augmentant en quasi tots els camps de la recerca en química. Els càlculs teòrics poden ajudar a entendre millor l'estructura, les propietats i la reactivitat de compostos metàl·lics d'àrees tan diferents com la química inorgànica, organometàl·lica i bioinorgànica. No obstant això, és imprescindible utilitzar la metodologia adequada per obtenir resultats teòrics fiables. Els estudis d'aquesta tesi es poden dividir en dos grups diferents. El primer grup inclou l'estudi teòric del mecanisme de reacció de diversos sistemes que contenen coure i tenen diferents estructures Cun-O2. Aquests estudies s'han dut a terme amb l'objectiu de profunditzar en la natura dels processos oxidants químics i biològics promoguts per sistemes que contenen coure. En la segona part de la tesi, s'estudia la fiabilitat de diferents tècniques utilitzades per estudiar l'estructura electrònica i la reactivitat de sistemes que contenen coure, ferro i altres metalls de transició.
The presence of computational and theoretical chemistry is increasing in chemical research in nearly all fields. Theoretical calculations can help to better explain structure, properties, and reactivity in metallic compounds, in such diverse areas as inorganic, organometallic and bioinorganic chemistry. However, it is essential to use the suitable methodology in order to obtain reliable theoretical results. The studies of this Thesis can be divided into two different groups. The first group includes the theoretical study of the reaction mechanism of several copper-containing systems with different Cun-O2 structures. These studies are carried out with the aim of providing some insight into the nature of the chemical and biological copper-promoted oxidative processes with 1:1 and 2:1 Cu(I)/O2-derived species. In the second part of this Thesis the reliability of different theoretical approaches used to study the electronic structure and reactivity of systems containing copper, iron or other transition metals is evaluated.
APA, Harvard, Vancouver, ISO, and other styles
20

Gade, Lutz Hans. "The systematic build up and modification of high nuclearity osmium and osmium-mercury clusters and their role as model systems for small metal particles." Thesis, University of Cambridge, 1991. https://www.repository.cam.ac.uk/handle/1810/271913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Thu, Hung-yat, and 杜鴻溢. "Catalytic C-H bond functionalization reactions catalyzed by rhodium(III) porphyrin, palladium(II) and platinum(II) acetatecomplexes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B38798268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Başaran, Duygu [Verfasser], Notker [Akademischer Betreuer] Rösch, and Klaus [Akademischer Betreuer] Köhler. "Theoretical Studies of Catalytic Transformations of Hydrocarbons over Transition Metals / Duygu Basaran. Gutachter: Notker Rösch ; Klaus Köhler. Betreuer: Notker Rösch." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1038787173/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Fernandez, Cristina Carcedo. "Chiral diphosphine ligands derived from 1, 4:3, 6-dianhydro-d-mannitol : synthesis, co-ordination to transition metals and catalytic applications." Thesis, Cardiff University, 2005. http://orca.cf.ac.uk/54551/.

Full text
Abstract:
The synthesis of a new chiral diphosphine, l,4:3,6-dianhydro-2,5-bis(diphenylphosphino)-D-mannitol (ddppm) is reported, ddppm is derived from the commercially available C2-symmetric l,4:3,6-dianhydro-D-mannitol (Isomannide). This new ligand exhibits a bend butterfly-like geometry with the two-phosphine groups on the concave side. PPh, I PPh, H H ddppm The chelating ability of ddppm is demonstrated with the synthesis of several complexes with transition metals such as Cu, Pd, Pt, Rh, Ru and Ir. Some of these complexes have been successfully crystallized and tested in different catalytic reactions. These complexes haven been characterized and their properties are reported. Their ability to catalyse a range of reactions is also discussed in detail. Chapter 2 reports the synthesis of ddppm. This synthesis requires only two steps with the choice of the solvent being crucial for the formation of this ligand. ddppg, an epimer of ddppm, was also isolated as a by-product from the ddppm synthesis. This diphosphine is a non-chelating ligand unlike ddppm. Crystal structures of both isomers are shown in this chapter. PPh, I H H ddppg: 1,4:3,6-dianhydro-2,5-bis(dipheny lphosphino)-D-glucitol.
APA, Harvard, Vancouver, ISO, and other styles
24

Lilova, Kristina Ilcheva. "Thermochemical and topological studies of systems constitued by transition metals (Co, Ni) with Sn and Bi." Nancy 1, 2007. http://www.theses.fr/2007NAN10016.

Full text
Abstract:
Ce travail avait pour but de déterminer des enthalpies de formation et des équilibres de phases dans des alliages susceptibles de remplacer la brasure au plomb, à base Bi-Sn avec des additions de Co ou Ni (souvent utilisés dans les substrats en électronique). Les expériences ont été menées dans deux calorimètres : Calvet et Gachon. D’autres techniques : DSC, ATD, EMPA, DRX ont été mises à contribution. Le système Co-Sn a été modélisé par la méthode CALPHAD. CoSn : La calorimétrie de réaction directe a donné les enthalpies de formation de Co3Sn2, CoSn, CoSn2 and CoSn3 à 1287, 1033, 629 et 605 K, et du liquide à 1010 et 1303 K. La calorimétrie de dissolution fut employée pour les enthalpies de formation du liquide à 991 et 1020 K. La dépendance de l’enthalpie de mélange Co-Sn en fonction de la température est confirmée, ainsi que la propension aux phases métastables de ce système. Les températures de transition entre les formes BT et HT de Co3Sn2 et CoSn3 sont données par ATD. NiSn : Les enthalpies de formation des composés du système NiSn (Ni3Sn_HT, Ni3Sn_LT, Ni3Sn2_HT, Ni3Sn2_LT and Ni3Sn4) ont été mesurées par calorimétrie de réaction directe à 1332, 943, 1288, 728 et 846 K respectivement. Il n’existait aucune information dans la littérature sur Ni3Sn2_BT et Ni3Sn4. Les températures de transitions entre Ni3Sn2 BT et HT ont été vérifiées par ATD. NiSnNi : Les équilibres de phases ont été étudiés à 733, 773, 903 et 1273 K et des coupes isothermes ont été construites. Un composé non signalé, de formule approximative Ni6Sn2Bi a été trouvé. Des enthalpies de formation ont été mesurées à 733, 1273 K (solide) et à 833,973 et 933 K (liquide)
The aim of this work is to determine some enthalpies of formation, and phase equilibria in prospective Sn and Bi based lead-free solders alloyed with transition metals (Ni, Co) often used as substrates in the electronics. Numerous calorimetric experiments were done, using Setaram–Calvet 800C and Gachon apparatus. Other techniques as DSC, DTA, EMPA, and X-ray diffraction were largely applied. The CALPHAD method was used for the optimization of the Co-Sn phase diagram. Co-Sn. Direct reaction calorimetry was used to determine of the compounds Co3Sn2, CoSn, CoSn2 and CoSn3 at 1287, 1033, 629 and 605 K, and of the liquid phase at 1010 and 1303 K. Drop solution calorimetry was used for measuring of the liquid phase at 991 and 1020 K. The existence of a temperature dependence of the Co–Sn enthalpy of mixing was confirmed. The willingness of the system Co-Sn to form metastable phases is confirmed. The transition temperatures between the respective low and high-temperature forms of Co3Sn2 and CoSn3 were verified by DTA. Ni–Sn. Of Ni–Sn compounds (Ni3Sn_HT, Ni3Sn_LT, Ni3Sn2_HT, Ni3Sn2_LT and Ni3Sn4) were measured by direct reaction calorimetry at 1332, 943, 1288, 728 and 846 K. No thermochemical information is available in the literature for the latter two compounds. The transition temperature and enthalpy between low and high-temperature forms of Ni3Sn2 were verified by DTA. Ni–Sn–Bi. Phase equilibria in Ni–Sn–Bi were studied at 733, 773, 903 and 1273 K and isothermal sections were constructed. A formerly unknown ternary compound with approximate formula Ni6Sn2Bi was found. Measurements of were done at 733 and 1273 K (solid phases); at 833, 873 and 933 K (liquid phases)
APA, Harvard, Vancouver, ISO, and other styles
25

Naftel, Steven. "Interactions of transition metals with silicon(100), the Ni-Si, Co-Si and Au/Si(100) systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/NQ42546.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nguyen, Duong Thuy. "Self-assembly Polymeric Nanoparticles Composed of Polymers Crosslinked with Transition Metals for Use in Drug Delivery." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc822738/.

Full text
Abstract:
A major drawback of chemotherapy is the lack of selectively leading to damage in healthy tissue, which results in severe acute side effects to cancer patients. The use of nanoparticles as a drug delivery system has emerged as novel strategy to overcome the barriers of immunogenic response, controlled release of therapeutic, and targeting the toxicity only to cancerous cells. In this study, polymeric nanoparticles composed of transition metals and particles derived from natural biopolymers have been generated via self-assembly. For example, nanoparticles composed of cobalt crosslinked with albumin (Co-alb NPs) via Co-amine coordination chemistry of lysine residue were syntheisized in various sizes. The method to generate Co-alb NPs involves no thermal heat, organic solvent or any surfactants, which is ideal for the production of large amounts in a timely manner. The Co-alb NPs displayed exceptional stability under physiological conditions (pH 7.4) for several days with minor changes in size; however degradation could be triggered by reductant (reduced glutathione (GSH), 10 mM) with complete disappearance of particles in less than 2 hour. Numerous therapeutics that are highly effective toward cancer cells have been developed; however, many cannot be administered to patients due to poor solubility in water and pH dependent properties. We have successfully encapsulated 7-ethyl-10-hydroxycampothecin (SN-38) into Co-alb NPs with encapsulation efficiency as high as 94% and loading capacities greater than 30%. We employed an emulsion-solvent evaporation method to incorporate SN-38 into Co-alb (SN38 Co-Alb NPs). Release of the drug from SN38 Co-Alb NPs was determined for particles incubated in PBS or PBS-GSH. SN38 Co-Alb NPs were exceptionally stable under physiological condition (PBS pH 7.4), but exhibited sustained release of SN-38 over time in the presence of GSH. Uptake and toxicity of the particles were also investigated in a gastric carcinoma cell line (SNU-5) where high degrees of macropinocytic uptake were observed. The particles displayed significant toxicity making them a prime candidate for further testing in animal models.
APA, Harvard, Vancouver, ISO, and other styles
27

Jones, Simon C. "Metal-metal coupling in bi- and multimetallic systems : organometallic pentalene and group 14-bridged cyclopentadienyl complexes of transition metals." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Afewerki, Samson. "Development of catalytic enantioselective C-C bond-forming and cascade transformations by merging homogeneous or heterogeneous transition metal catalysis with asymmetric aminocatalysis." Doctoral thesis, Mittuniversitetet, Avdelningen för naturvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-23605.

Full text
Abstract:
Chiral molecules play a central role in our daily life and in nature, for instance the different enantiomers or diastereomers of a chiral molecule may show completely different biological activity. For this reason, it is a vital goal for synthetic chemists to design selective and efficient methodologies that allow the synthesis of the desired enantiomer. In this context, it is highly important that the concept of green chemistry is considered while designing new approaches that eventually will provide more environmental and sustainable chemical synthesis.The aim of this thesis is to develop the concept of combining transition metal catalysis and aminocatalysis in one process (dual catalysis). This strategy would give access to powerful tools to promote reactions that were not successful with either transition metal catalyst or the organocatalyst alone. The protocols presented in this thesis based on organocatalytic transformations via enamine or iminium intermediates or both, in combination with transition metal catalysis, describes new enantioselective organocatalytic procedures that afford valuable compounds with high chemo- and enantioselectivity from inexpensive commercial available starting materials. In paper I, we present a successful example of dual catalysis: the combination of transition metal activation of an electrophile and aminocatalyst activation of a nucleophile via enamine intermediate. In paper II, the opposite scenario is presented, here the transition metal activates the nucleophile and the aminocatalyst activates the electrophile via an iminium intermediate. In paper III,we present a domino Michael/carbocyclisation reaction that is catalysed by a chiral amine (via iminium/enamine activation) in combination with a transition metal catalysts activation of an electrophile. In paper IV, the concept of dual catalysis was further extended and applied for the highly enantioselective synthesis of valuable structural scaffolds, namely poly-substituted spirocyclic oxindoles. Finally, in paper V the concept of dual catalysis was expanded, by investigating more challenging and environmentally benign processes, such as the successful combination of a heterogeneous palladium and amine catalysts for the highly enantioselective synthesis of functionalised cyclopentenes, containing an all carbonquaternary stereocenter, dihydrofurans and dihydropyrrolidines.
APA, Harvard, Vancouver, ISO, and other styles
29

Millan, Cabrera Reisel. "Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional Theory." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/161934.

Full text
Abstract:
[ES] En este trabajo estudiamos dos reacciones catalíticas relevantes para la industria y la localización del anión fluoruro en la zeolita RTH, sintetizada en medio fluoruro. El capítulo 3 es el primer capítulo de resultados, donde se estudia la reducción quimioselectiva del nitroestireno en las superficies Ni(111), Co(111), Cu(111) y Pd(111). El mecanismo generalmente aceptado de esta reacción está basado en el esquema propuesto por Haber en 1898, en el que la reacción puede transcurrir por dos rutas, la directa y la de condensación. En este capítulo exploramos ambas rutas, y observamos que la ruptura de los enlaces N-O y la consecuente formación de enlaces metal-O está más favorecida que la formación de enlaces N-H en las superficies Ni(111) y Co(111), debido al carácter oxofílico de ambos metales. Las etapas más lentas involucran la formación de enlaces N-H. En las superficies de metales nobles como Pt(111) y Pd(111) se observa el comportamiento contrario. La superficie Cu(111) es un caso intermedio comparado con los metales nobles y no nobles. Además, el nitroestireno interactúa con los átomos de Cu de la superficie solo a través de grupo nitro, con lo cual es un candidato ideal para alcanzar selectividades cerca del 100%. Sin embargo, la superficie Cu(111) no es capaz de activar la molécula de H2. En este sentido, proponemos un catalizador bimetálico basado en Cu, dopado con otro metal capaz de activar al H2, tales como el Pd o el Ni. En los capítulos 4 y 5 se ha estudiado la reducción catalítica selectiva de los óxidos de nitrógeno (SCR, en inglés) con amoníaco. Usando métodos de DFT, hemos encontrado rutas para la oxidación de NO a NO2, nitritos y nitratos con energías de activación relativamente bajas. También, hemos encontrado que la reducción de Cu2+ a Cu+ requiere la participación simultánea de NO y NH3. Posteriormente, hemos estudiado la influencia del NH3 en este sistema con métodos de dinámica molecular. El NH3 interacciona fuertemente con el Cu+ de forma que dos moléculas de este gas son suficientes para romper la coordinación del catión Cu+ con los oxígenos del anillo 6r, y formar el complejo lineal [Cu(NH3)2]+. Además, los cationes Cu2+ pueden ser estabilizados fuera de la red mediante la formación del complejo tetraamincobre(II). Debido a la presencia de los cationes Cu+ y Cu2+ coordinados a la red de la zeolita, aparecen bandas en la región entre 800-1000 cm-1 del espectro infrarrojo. El análisis de las frecuencias IR de varios modelos con Cu+ y Cu2+ coordinados al anillo 6r, o formando complejos con amoniaco indica que cuando los cationes Cu+ y Cu2+ están coordinados a los oxígenos del anillo 6r aparecen vibraciones entre 830 y 960 cm-1. Frecuencias en esta zona también se obtienen en los casos en que NO, NO2, O2 y combinaciones de dos de ellos están adsorbidos en Cu+ y Cu2+. Sin embargo, cuando los cationes Cu+ y Cu2+ están fuera del anillo (no hay enlaces entre los cationes de cobre y los oxígenos del anillo 6r) no se obtienen vibraciones de IR en esta región del espectro. Estos resultados indican que con el seguimiento del espectro IR durante la reacción SCR es posible determinar si los cationes Cu+ y Cu2+ están coordinados o no al anillo de 6r en las etapas de oxidación y reducción. Por último, hemos simulado el desplazamiento químico de 19F, δiso,, en la zeolita sintetizada RTH. El análisis del δiso de los distintos modelos utilizados nos ha permitido reconocer la simetría del material sintetizado, el cual pertenece al grupo espacial P1 y la nueva celda unidad ha sido confirmada experimentalmente por difracción de rayos X. Finalmente, hemos asignado la señal experimental que aparece en el espectro de 19F a -67.2_ppm, al F- localizado en un sitio T2, el cual es a su vez la posición más estable. Además, la señal a -71.8 ppm se ha asignado al anión F- localizado en un sitio T4.
[CA] En aquest treball estudiem dues reaccions catalítiques rellevants per a la indústria i la localització de l'anió fluorur en la zeolita RTH, sintetitzada al mig fluorur. El capítol 3 és el primer capítol de resultats, on s'estudia la reducció quimioselectiva del nitroestireno en les superfícies Ni(111), Co(111), Cu(111) i Pd(111). El mecanisme generalment acceptat d'aquesta reacció està basat en l'esquema proposat per Haver-hi en 1898, en el qual la reacció pot transcórrer per dues rutes, la directa i la de condensació. En aquest capítol explorem totes dues rutes, i observem que la ruptura dels enllaços N-O i la conseqüent formació d'enllaços metall-O està més afavorida que la formació d'enllaços N-H en les superfícies Ni(111) i Co(111), a causa del caràcter oxofílico de tots dos metalls. Les etapes més lentes involucren la formació d'enllaços N-H. En les superfícies de metalls nobles com Pt(111) i Pd(111) s'observa el comportament contrari. La superfície Cu(111) és un cas intermedi comparat amb els metalls nobles i no nobles. A més, el nitroestireno interactua amb els àtoms de Cu de la superfície sol a través de grup nitre, amb la qual cosa és un candidat ideal per a aconseguir selectivitats prop del 100%. No obstant això, la superfície Cu(111) no és capaç d'activar la molècula d'H2. En aquest sentit, proposem un catalitzador bimetàl·lic basat en Cu, dopat amb un altre metall capaç d'activar a l'H2, com ara el Pd o el Ni. En els capítols 4 i 5 hem estudiat la reducció catalítica selectiva dels òxids de nitrogen (SCR, en anglés) amb amoníac. Usant mètodes de DFT, hem trobat rutes per a l'oxidació de NO a NO2, nitrits i nitrats amb energies d'activació relativament baixes. També, hem trobat que la reducció de Cu2+ a Cu+ requereix la participació simultània de NO i NH3. Posteriorment, hem estudiat la influència del NH3 en aquest sistema amb mètodes de dinàmica molecular. El NH3 interacciona fortament amb el Cu+ de manera que dues molècules d'aquest gas són suficients per a trencar la coordinació del catió Cu+ amb els oxígens de l'anell 6r, i formar el complex lineal [Cu(NH3)2]+. A més, els cations Cu2+ poden ser estabilitzats fora de la xarxa mitjançant la formació del complex tetraamincobre(II). A causa de la presència dels cations Cu+ i Cu2+ coordinats a la xarxa de la zeolita, apareixen bandes a la regió entre 800-1000 cm-1 de l'espectre infraroig. L'anàlisi de les freqüències IR de diversos models amb Cu+ i Cu2+ coordinats a l'anell 6r, o formant complexos amb amoníac indica que quan els cations Cu+ i Cu2+ estan coordinats als oxígens de l'anell 6r apareixen vibracions entre 830 i 960 cm-1. Freqüències en aquesta zona també s'obtenen en els casos en què NO, NO2, O2 i combinacions de dues d'ells estan adsorbidos en Cu+ i Cu2+. No obstant això, quan els cations Cu+ i Cu2+ estan fora de l'anell (no hi ha enllaços entre els cations de coure i els oxígens de l'anell 6r) no s'obtenen vibracions d'IR en aquesta regió de l'espectre. Aquests resultats indiquen que amb el seguiment de l'espectre IR durant la reacció SCR és possible determinar si els cations Cu+ i Cu2+ estan coordinats o no a l'anell de 6r en les etapes d'oxidació i reducció. Finalment, hem simulat el desplaçament químic de 19F, δiso, en la zeolita sintetitzada RTH. L'anàlisi del δiso dels diferents models utilitzats ens ha permés reconéixer la simetria del material sintetitzat, el qual pertany al grup espacial P1 i la nova cel·la unitat ha sigut confirmada experimentalment per difracció de raigs X. Finalment, hem assignat el senyal experimental que apareix en l'espectre de 19F a -67.2 ppm, al F- localitzat en un lloc T2, el qual és al seu torn la posició més estable. A més, el senyal a -71.8 ppm s'ha assignat a l'anió F- localitzat en un lloc T4.
[EN] In this work, we have studied two heterogeneous catalytic reactions and the localization of the fluoride anion in the as-made RTH framework, synthesized in fluoride medium. The first results, included in chapter 3, correspond to the chemoselective reduction of nitrostyrene on different metal surfaces, i.e, Ni(111), Co(111), Cu(111) and Pd(111). Until very recently, the reduction of the nitro group was explained on the basis of the general mechanism proposed by Haber in 1898 where the reaction can follow two routes, the direct and condensation route. We have explored the relevant elementary steps of both routes and found that because of the oxophilic nature of Ni and Co, the steps involving the dissociation of N-O bonds and formation of metal-O bonds are significantly favored compared with the other steps on both metal surfaces. In addition, the most demanding steps in terms of energy involve the formation of N-H bonds. These findings are in contrast to those of noble metals such as Pt and Pd, where the opposite behavior is observed. The behavior of Cu(111) lies in between the aforementioned cases, and also no chemical bonds between the carbon atoms of the aromatic ring of nitrostyrene and the Cu(111) surface is formed. For this reason, it might be an ideal candidate to achieve nearly 100 % selectivity. However, the Cu(111) surface does not seem to activate the H2 molecule. In this regard, we propose a bimetallic Cu-based catalyst whose surface is doped with atoms of a H2-activating metal, such as Ni or Pd. On another matter, we have also investigated the selective catalytic reduction of nitrogen oxides (SCR-NOx) and the main results are presented in the following two chapters, 4 and 5. By using static DFT methods, we found pathways for the oxidation of NO to NO2, nitrites and nitrates with relatively low activation energies. We also found, in agreement with experimental reports, that the reduction of Cu2+ to Cu+ requires the simultaneous participation of NO and NH3. Later, molecular dynamics simulations allowed us to assess the influence of NH3. The strong interaction of NH3 with the Cu+ cation is evidenced by its ability to detach Cu+ from the zeolite framework and form the mobile linear complex [Cu(NH3)2]+. Cu+ is no longer coordinated to the zeolite framework in the presence of two NH3 molecules. This observation and the fact that the T-O-T vibrations of the framework produce bands in the 800-1000 cm-1 region of the IR spectrum when perturbed by the coordination of Cu+ and Cu2+ cations, indicate that bands in the 800-1000 cm-1 regions should be observed when both copper cations are bonded to the framework oxygens. Finally, we have also studied NMR properties of the as-made pure silica RTH framework, aiming at locating the compensating fluoride anion. The calculation of the 19F chemical shift in different T sites and comparison with the experimental NMR spectra shows that the as-made RTH belongs to the P-1 space group with 16 Si, 32 O atoms, one fluoride anion and one OSDA cation. These results have been confirmed experimentally by XRD. In addition, we have assigned the experimental signal of 19F at -67.2 ppm to the fluoride anion in a T2 site, which in turn is the most stable location found, and the signal of -71.8 ppm to a fluoride anion sitting in a T4 site.
My acknowledgements to “La Caixa foundation” for the financial support through “La Caixa−Severo Ochoa” International PhD Fellowships (call 2015), to the Spanish Supercomputing Network (RES), to the Centre de Càlcul de la Universitat de València, to the Flemish Supercomputer Center (VSC) of Ghent University for the computational resources and technical support, and to the Spanish Government through the MAT2017-82288-C2-1-P programme
Millan Cabrera, R. (2021). Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional Theory [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161934
TESIS
APA, Harvard, Vancouver, ISO, and other styles
30

Papadopoulos, Konstantinos. "Investigation of magnetic order in nickel-5d transition metal systems." Thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-383009.

Full text
Abstract:
Double perovskite materials exhibit alterations in magnetic order through manipulation oftheir crystal structure. Certain ultra thin metallic bilayers can create an exotic magnetic stateof confined spin textures called skyrmions. In both cases, new atomic arrangements leadto new electrical and magnetic properties. The following work comprises two studies, bothof which examine the magnetic properties of transition metals in either powder or thin filmsamples. The first part is dedicated to a series of muon spin rotation and relaxation (muSR)experiments on a LaSrNiReO6, double perovskite, powder sample. In the muSR technique, aspin polarized muon beam is focused onto a powder envelope in low pressure and temperatureconditions. The spins of the implanted muons evolve depending on the intrinsic or externallyapplied magnetic field according to Larmor precession. The measurement is based onthe detection of decay positrons that carry this precession information on their preferreddecay directions. Measurements that were realized in wTF, ZF and LF setups, reveal asecond transition to magnetic order at Tc ≃ 22K, below a transition that was observed at T =261K from magnetic susceptibility measurements. The experimental results point to threemagnetic phases, paramagnetic for T > 261K, dilute ferrimagnetic for 22 < T < 261K and amagnetically ordered state for T < 22K, that may implicate ferro- and antiferromagnetismfrom Ni sublattices and Ni-Re interactions. The second part follows an attempt to produce and characterize ultra thin bilayer filmsfor the observation of interfacial chiral structures and skyrmions. Co/Fe/MgO (100) andW/Ni/Cu (100) bilayers were grown with magnetron sputter deposition in various layerthicknesses and their structure was determined by X-ray reflectometry (XRR). The XRRscans presented a relatively thick-layered Co/Fe/MgO film, while extremely thin and roughW/Ni/Cu bilayers, for the purposes of studying films with broken interfacial inversionsymmetry. This study was concluded with indicative magneto-transport measurements thatalso point to the reconfiguration of the growth procedure.
APA, Harvard, Vancouver, ISO, and other styles
31

Lien, Wan-Fu. "Separation of Transition Metal Ions by HPLC, Using UV-VIS Detection." Thesis, North Texas State University, 1987. https://digital.library.unt.edu/ark:/67531/metadc501145/.

Full text
Abstract:
HPLC has been used and can quickly determine several ions simultaneously. The method of determination described for transition metals [Cr(III), Fe(III), Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Mn(II)] and [Ca(II), Pb(II)] using HPLC with UV-VIS detection is better than the PAR complexation method commonly used. The effects of both eluent pH and detector wavelength were investigated. Results from using different pHs and wavelengths, optional analytical conditions for the separation of [Ni(II), Co(II), Cu(II)], [Cr(III), Fe(III), Ca(II), Ni(II), Cu(II)], and [Ca(II), Zn(II), Pb(II)] in one injection, respectively, are described. The influence of adding different concentrations of Na_2EDTA solvent to the sample is shown. Detection limits, linear range, and the comparisons between this study and a post-column PAR method are given.
APA, Harvard, Vancouver, ISO, and other styles
32

Peterson, Charles Campbell. "Accurate Energetics Across the Periodic Table Via Quantum Chemistry." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc822822/.

Full text
Abstract:
Greater understanding and accurate predictions of structural, thermochemical, and spectroscopic properties of chemical compounds is critical for the advancements of not only basic science, but also in applications needed for the growth and health of the U.S. economy. This dissertation includes new ab initio composite approaches to predict accurate energetics of lanthanide-containing compounds including relativistic effects, and optimization of parameters for semi-empirical methods for transition metals. Studies of properties and energetics of chemical compounds through various computational methods are also the focus of this research, including the C-O bond cleavage of dimethyl ether by transition metal ions, the study of thermochemical and structural properties of small silicon containing compounds with the Multi-Reference correlation consistent Composite Approach, the development of a composite method for heavy element systems, spectroscopic of compounds containing noble gases and metals (ArxZn and ArxAg+ where x = 1, 2), and the effects due to Basis Set Superposition Error (BSSE) on these van der Waals complexes.
APA, Harvard, Vancouver, ISO, and other styles
33

Rêgo, de Vasconcelos Bruna. "Phosphates-based catalysts for synthetic gas (syngas) production using CO2 and CH4." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2016. http://www.theses.fr/2016EMAC0004/document.

Full text
Abstract:
Parmi les produits issus de la biomasse ou de la transformation des déchets organiques, le CO2 et le CH4 sont des intermédiaires chimiques importants qui ont de forts impacts environnementaux. En effet, ils sont les principaux gaz responsables de l'effet de serre et leur atténuation est un enjeu majeur. Une voie intéressante pour la valorisation de ces gaz est le reformage à sec du méthane (DRM), qui convertit le CO2 et le CH4 en gaz de synthèse (mélange d'hydrogène et de monoxyde de carbone). Ce mélange peut être utilisé pour plusieurs applications telles que la production de méthanol, d'éther diméthylique, d'hydrogène et des hydrocarbures liquides. Malgré cet intérêt, l'exploitation du DRM à l'échelle industrielle n'a pas encore vu le jour. La raison principale est la désactivation rapide des catalyseurs en raison des conditions sévères de fonctionnement du procédé (température élevée, dépôt de carbone). Cette thèse porte sur le développement de nouveaux catalyseurs à base de phosphate de calcium (CaP) dopés avec des métaux de transition pour la valorisation du CO2 et du CH4 en gaz de synthèse par DRM. Les CaP sont utilisés car ils possèdent des propriétés avantageuses en catalyse hétérogène comme la présence simultanée de sites acides et basiques, bonne stabilité thermique, large gamme de surface spécifique ... Dans un premier temps, des études sur les méthodes de synthèse de catalyseurs et sur la performance de différents métaux de transition (Zn, Fe, Co, Cu, Ni) ont été effectuées dans le but de sélectionner le catalyseur et sa méthode de préparation. Un réacteur à lit fixe capable de fonctionner à hautes température et pression a ensuite été testé pour un long temps de réaction afin d'évaluer correctement la performance des catalyseurs préparés. Ensuite, une étude paramétrique détaillée a été menée. L'influence des paramètres tels que le prétraitement des catalyseurs, la température (T = 400-700°C) et la pression (P = 1-25bar) de la réaction et les différents supports (hydroxyapatite, alumine) ont été étudiés. Enfin, la stabilité thermique et catalytique a été étudiée durant 300h de réaction. Les catalyseurs à base de CaP ont montré des rendements plus élevés en gaz de synthèse en comparaison aux catalyseurs commerciaux. Ces catalyseurs sont donc compétitifs dans les mêmes conditions opératoires (T = 700°C, P = 1bar, WHSV = 12272mLh-1gcat-1, t = 300h). Ce travail a montré l'intérêt des catalyseurs à base de CaP pour des processus à haute température, tel que le reformage à sec du méthane
Among the products resulting from biomass or organic waste transformation, CO2 and CH4 are important chemical intermediates. They also have a strong environmental impact since they are primarily responsible for the greenhouse effect and their mitigation is a key issue. An attractive way of valorization of such gases is the dry reforming of methane (DRM), which converts CO2 and CH4 into syngas (mixture of hydrogen and carbon monoxide). This mixture can be used for several applications, such as the production of methanol, dimethyl ether, hydrogen and liquid hydrocarbons. Despite such interest, the exploitation of DRM on industrial scale has not emerged yet. The main reason is the rapid deactivation of the catalysts due to the severe operating conditions of the process (high temperature, carbon deposition). This thesis focuses on the development of new catalysts based on calcium phosphate (CaP) doped with transition metals for the valorization of CO2 and CH4 through DRM. Actually,CaP has advantageous properties in heterogeneous catalysis, as the simultaneous presence of acid and basic sites, good thermal stability, and wide range of surface area... Initially, a study on the catalyst synthesis methods and an investigation of the performance of different transition metals (Zn, Fe, Co, Cu, Ni) were carried out in order to select the catalyst system and the preparation method. Secondly, a fixed-bed reactor capable of operating at high temperature and pressure and for log time on stream was built and implemented during this work in order to properly evaluate the performance of the preparedcatalysts. Then, a detailed parametric study was conducted. The influence of parameters such as catalyst pre-treatment, temperature (T = 400-700°C) and pressure (P = 1-25bar) of the reaction and support (hydroxyapatite, alumina-based supports) were investigated. Finally, the catalytic stability was studied for 300h of time on stream (TOS). The CaP catalysts showing higher yields on syngas were compared to commercial catalysts. Our catalysts showed to be competitive in the same operating conditions (T = 700°C, P = 1bar, WHSV = 12272mLh-1gcat-1,TOS = 300h). This work shows the interest of CaP catalysts for high temperature process, such as dry reforming of methane
APA, Harvard, Vancouver, ISO, and other styles
34

Boyko, Marina [Verfasser], Thomas F. [Akademischer Betreuer] Fässler, Thomas F. [Gutachter] Fässler, and Tom [Gutachter] Nilges. "Polar Intermetallics at the Border Between Hume-Rothery and Zintl Phases : Investigations in the Systems Alkali Metal – Tin with Late Transition and p-Block Metals / Marina Boyko ; Gutachter: Thomas F. Fässler, Tom Nilges ; Betreuer: Thomas F. Fässler." München : Universitätsbibliothek der TU München, 2019. http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20190930-1516421-1-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Caturello, Naidel Antônio Moreira dos Santos. "Estudo das propriedades de agregados supramoleculares contendo metais de transição." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-18022016-100847/.

Full text
Abstract:
O estudo das reações de agregação em sistemas automontados é de grande interesse científico pela grande variedade de aplicações que tais colunas podem desempenhar. O presente trabalho teve como objetivo investigar as propriedades gerais de colunas supramoleculares formadas por complexos de coordenação que contêm platina, paládio e zinco. Esta investigação foi feita através do método semiempírico PM7. Os agregados supramoleculares investigados tiveram suas geometrias otimizadas e foram submetidos a cálculos termoquímicos. Pôde-se investigar as influências do metal e dos ligantes nos mecanismos gerais e propriedades das colunas, uma vez que utilizaram-se dois ligantes distintos. Estudou-se compostos de coordenação cujos ligantes foram o 2,6-bis(1H-1,2,4-triazol-5-il)piridina e oligofenilenoetinilenos (OPE) piridínicos. Realizou-se cálculos utilizando o modelo de solvatação contínua COSMO com água e metilciclohexano (MCH), o que permitiu avaliar os efeitos dos solventes nas energias de dimerização dos sistemas estudados. Os resultados obtidos para os derivados de OPE indicaram que as colunas supramoleculares desta classe que contêm Zn(II) apresentam anticooperatividade, exibindo energias de Gibbs de formação para o vácuo a 298 K positivas do dímero ao decâmero. Os resultados de solvatação contínua indicaram que a formação de um dímero deste composto é termodinamicamente favorável de 278 K para água e 267 K para o MCH, enquanto que para o vácuo a temperatura na qual a energia de Gibbs de dimerização é negativa ocorre em 246 K. Tal resultado aponta que o principal efeito de formação de colunas baseadas neste composto em altas temperaturas é primariamente um efeito solvofóbico que depende da polaridade do solvente. Observou-se a cooperatividade em vácuo e em ambos os solventes das colunas de derivados de OPE que contêm Pd(II) e Pt(II). Além destes fatos, as distâncias entre os centros metálicos diminuíram conforme monômeros eram adicionados à coluna, o que indica a existência de interações metalofílicas no sistema. Este resultado é corroborado experimentalmente por um artigo de Albuquerque el al. no caso do sistema de derivado de OPE que contém Pd(II). Para os sistemas cujos ligantes eram a 2,6-bis(1H-1,2,4-triazol-5-il)piridina, houve cooperatividade para ambas as colunas baseadas em Pd(II) e Pt(II), e houve para o sistema cujos centros metálicos são o Pt(II) uma transição não observada para todos os outros sistemas estudados; houve comportamento distinto das mudanças de distâncias entre monômeros no sistema triazol pridínico baseado em Pd(II) em relação àquele baseado em Pd(II) derivado de OPE. Este resultado indica a soma de dois efeitos no sistema OPE baseado em Pd(II): o de interações metalofílicas e de empilhamentos π-π. Como um todo, os resultados indicam que as principais interações envolvidas nas formações das colunas supramoleculares são interações de empilhamento π-π e metalofílicas para quatros compostos em graus diversos, exceto para o derivado de OPE baseado em Zn(II), que tem como principal força-motriz de agregação interações solvofóbicas. Perspectivas para este projeto: continuação da modelagem dos sistemas estudados por dinâmica molecular, com a simulação das interações de várias colunas formadas pelos monômeros estudados através do CP2K e publicação de um artigo com os resultados obtidos.
The study of aggregation reactions in self-assembled systems is of great scientific interest due to the wide range of applications which such resulting columns can play. Herein, we had the objective of investigating the general properties of supramolecular columns formed coordination complexes which contain platinum, palladium and zinc. This investigation was carried through the semiempirical method PM7. The investigated supramolecular aggregates were optimized, and their optimized geometries were subjected to thermochemical calculations. In this sense we could probe the influences of metals and ligands onto the general mechanisms and columnar properties, once were herein used two different ligands. The two ligands were 2,6-bis(1H-1,2,4-triazol-5-il)pyridine and oligophenyleneethynediyl (OPE) pyridine derivatives. COSMO solvation model -based calculations in water and methylcyclohexane (MCH) were performed in order to evaluate solvents effects on dimerization Gibbs energies of the studied systems. The results obtained for the OPE derivative based on Zn(II) pointed an anticooperative process in vacuum at 298K, exhibiting positive Gibbs energies of formation from the dimer to the decamer. The results from continuum solvation calculations indicate the formation of a dimer based on this Zn(II) molecule to be thermodynamically favorable at 278 K for water and at 267 K for MCH, while in vaccum this point lies at 246 K. This results indicates the formation of supramolecular columns based on this compound are formed in higher temperatures primarily due to solvophobic effects, and the intensity of this effect depends on the solvent polarity. The columns of OPE derviatives which contained Pd(II) and Pt(II) both showed cooperativity in the aggregation process. Besides these thermodynamic results, both of those columns showed monotonic distance shortening due to columns increasing process. This is an indicative of metallophilic interactions taking place in these aggregates. This result for Pd(II) is experimentally supported by a paper od Albuquerque et al. for the columns containing 2,6-bis(1H-1,2,4-triazol-5-il)pyridine cooperativity was observed for both the columns--those which contain Pd(II) and Pt(II)--, and for the Pt(II)-based columns of this class it was observed a transition not of most eneregetically favoured mechanisms not observed for all the other systems studied. A difference on the behavior of average monomer distances took place in the triazol pyridine Pd(II) compound when compared to its metal-related OPE derivative. This result indicates the summation of effects in the OPE-based Pd(II) system: the one of metallophilic interactions and π-π stacking interactions. As a whole, the results indicate π-π stacking and metallophilic interactions to be responsible for aggregation processes in diverse intensities for four of the compounds, except for that in the Zn(II)-based OPE derivative, which has the main aggregation effect as solvophobic interactions. The main perspectives for this project are the continuation of the modelling of the herein studied systems by molecular dynamics, simulating the interactions of many columns by the CP2K program, and the publication of a paper which contains the results obtained and presented in this dissertation.
APA, Harvard, Vancouver, ISO, and other styles
36

Enquist, Per-Anders. "Novel Metal-Mediated Organic Transformations : Focusing on Microwave Acceleration and the Oxidative Heck Reaction." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sanja, Panić. "Fizičko-hemijske i katalitičke osobine ugljeničnih nanocevi sintetisanih metodom katalitičke hemijske depozicije iz gasne faze – korelacija sa osobinama primenjenih katalizatora na bazi prelaznih metala (Fe, Co, Ni)." Phd thesis, Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 2014. http://www.cris.uns.ac.rs/record.jsf?recordId=89673&source=NDLTD&language=en.

Full text
Abstract:
Postojanje ugljeničnih nanocevi (UNC), kao jedne od brojnih alotropskih modifikacija ugljenika, zabeleženo je još pre više od pola veka. Međutim, do prave eksplozijeinteresovanja za ovu vrstu nanomaterijala je došlo tek 1991. godine kada ih je "ponovo" otkrio japanski naučnik S. Iijima. Od tada, zbog svojih izuzetnih fizičko-hemijskih osobina, UNC počinju da privlače pažnju naučne javnosti i spajaju istraživače iz različitih oblasti sa zajedničkim imeniteljem - nanotehnologija. Otkriće UNC je u znatnoj meri omogućilo razvoj visoke tehnologije u oblastima kao što su elektronika, optika, kompozitni materijali, kataliza, zaštita životne sredine, itd. Danas, primena nanocevi sve više doprinosi lakšoj implementaciji principa održivog razvoja u pomenute oblasti. Kataliza je polje od dvostrukog interesa, jer je jedan od načina dobijanja UNC upravo katalitički, a osim toga i same cevi su interesantne kao nosač novog katalizatora.Istraživanje čiji su rezultati prikazani u okviru ove doktorske disertacije je obuhvatilo više oblasti proučavanja UNC, počevši od razvoja metode za njihovu sintezu, preko prečišćavanja i funkcionalizacije finalnog proizvoda, pa do primene nanocevi u dva procesa od značaja za oblast zaštite životne sredine.Razvoj katalitičke metode sinteze UNC započet je primenom vertikalnog cevnog kvarcnog reaktora, iz CO i CH4 kao izvora ugljenika, pri čemu su u reakciji testiranimonometalni katalizatori na bazi Fe, Co i Ni na Al2O3 kao nosaču (I serija katalizatora). Rezultati ovih preliminarnih eksperimenata su pokazali malu aktivnost I serije monometalnih katalizatora, što se može pripisati, kako neadekvatnoj hidrodinamici reaktora i loše odabranim reakcionim parametrima, tako i neodgovarajućoj veličini katalitičkih čestica i načina njihovog pakovanja u vertikalnomreaktoru. Shodno tome, u cilju postizanja boljeg prinosa nanocevi, dalji eksperimenti sinteze izvedeni su u horizontalnom reaktoru u struji C2H4 i u prisustvu II serijemonometalnih katalizatora sa Al2O3 i SiO2 kao nosačima, koji se u odnosu na I seriju razlikuju po udelu aktivne faze i veličini čestica katalizatora (praškast oblik). Katalizatori II serije su pokazali zadovoljavajuću aktivnost u reakciji sinteze UNC, a rezultati karakterizacije dobijenih uzoraka nanocevi ukazuju na različit uticaj nosača katalizatora na morfologiju sintetisanih nanocevi. Shodno ostvarenom prinosu ugljenika, a u cilju optimizacije reakcionih parametara, katalizator na bazi Fe sa SiO2 kao nosačem je odabran kao reprezentativan za ispitivanje uticaja vremena trajanja sinteze UNC, kao i zapreminskog udela C2H4 u smeši sa azotom, na prinosnanocevi i selektivnost procesa.                                                                                        Optimizacija reakcionih uslova je u daljoj fazi rada dovela do uvođenja bimetalnih katalizatora sa istim tradicionalnim nosačima – Al2O3 i SiO2. Najveći prinos ugljenika ostvaren je na katalizatorima sa Fe i Co kao aktivnom fazom, bez obzira na vrstu nosača. UNC sintetisane na pomenutim katalizatorima su karakterisane u ciljuispitivanja uticaja primenjenih nosača na njihove fizičkohemijske osobine, pa je shodno tome i predložen vršni mehanizam njihovog rasta. Rezultati ispitivanja kvaliteta sintetisanih UNC su ukazali da primena SiO2, kao nosača katalizatora, za razliku od Al2O3, favorizuje rast UNC boljeg površinskog i ukupnog kvaliteta. S obzirom na raznolikost mogućnosti primene UNC, istraživanja u tom smeru zahtevaju čiste UNC, pa su shodno tome proizvodi sinteze prečišćeni metodom tečne oksidacije. Rezultati fizičko-hemijske karakterizacije prečišćenih UNC su ukazali na efikasnost primenjene metode sa aspekta uklanjanja prisutnog katalizatora, ali i na njen različit uticaj na strukturu, odnosno kvalitet prečišćenih uzoraka. Kao posledica promena unutar strukture UNC, kao i različitog stepena njihove funkcionalizacije, ukupni kvalitet prečišćenih nanocevi je, u zavisnosti od primenjenog nosača katalizatora, promenjen u odnosu na odgovarajuće neprečišćene uzorke.Poslednjih godina se posebna pažnja poklanja nanomaterijalima koji se mogu primeniti za uklanjanje različitih polutanata iz životne sredine, kako u funkciji adsorbenata, tako i u funkciji katalizatora. U okviru ove doktorske disertacije obuhvaćena je primena UNC kao adsorbenta za uklanjanje insekticida tiametoksama iz vode, kao i njihova primena kao nosača katalizatora u reakcijidenitracije vode. Rezultati eksperimenata adsorpcije su pokazali da UNC, prethodno tretirane u ccHNO3, predstavljaju dobar adsorbent za uklanjanje insekticida tiametoksama iz vodenog rastvora. Odabir procesnih parametara za proučavanje kinetike adsorpcije, adsorpcione ravnoteže, kao i termodinamike procesa izvršen je primenom frakcionog faktorskog dizajna na dva nivoa, 5 1 V 2 , a dobijeni rezultati su ukazali da je pomenuti proces adsorpcije spontan i kontrolisan uglavnom unutrašnjom difuzijom molekula insekticida u mezopore uzorka UNC. Performanse katalizatora sa UNC kao nosačem su testirane u reakciji katalitičke denitracije, pri čemu su dobijeni rezultati pokazali da se novoformirani katalizator karakteriše zadovoljavajućom disperznošću sa udelombimetalnih Pd-Cu nanočestica koje omogućavaju 60% konverzije nitratnog jona.
The existance of carbon nanotubes (CNTs), as one of the carbon allotropes, was noted over half century ago. However, the true interest for these nanomaterials appeared at 1991, when they were "redescovered" by Japanese scientist S. Iijima. Since then, due to their unique physico-chemical properties, CNTs begin to attract attention of the scientific community and to gather researchers from different areas within the common field of interest – nanotechnology. The CNTs discovery substantially enabled the high technology development in the fields such as electronics, optics, composite materials, catalysis, environmental protection, etc. Nowdays, the application of nanotubes is increasingly contributing to easier implementation of sustainable development principles in the above mentioned areas. Catalysis is the field of double interest – one of the CNTs synthesis method is catalytical, and the nanotubes can also be used as the support of the new catalyst.The research, which results are shown within this PhD Thesis, includes few different CNTs research fields, starting from the synthesis method development, over the purification and functionalization of the final product, to the application ofnanotubes in two processes of significance for the field of environmental protection.The development of the CNTs catalytic synthesis method was started by the use of vertical quartz tube reactor, in the flow of CO and CH4 as the carbon source, and in the presence of monometallic catalysts based on Fe, Co and Ni at Al2O3 as the support (the first series of catalysts). The results of these preliminary experiments have shown the low activity of these monometallic catalysts, which can be attributed to the inadequate reactor hydrodynamics and selected reaction parameters, as well as the inadequate size of the catalytic particles and the type of their packing in the vertical reactor. Consequently, in order to achieve the higher nanotubes yield, further synthesis experiments were carried out in a horizontal reactor in the flow of C2H4 as the carbon source, and in the presence of the second series of monometallic catalysts with Al2O3 and SiO2 as the supports. The catalysts of the second series have shown satisfactory activity in the CNTs synthesis reaction, and the results of the obtained samples characterization idicate a different influence of the catalyst support on the synthesized CNTs morphology. In order to optimize the reaction parameters, Fe/SiO2 catalyst was chosen as a representative to examine the effect of the CNTs synthesis duration, as well as the volume percentage of C2H4 in the mixture with nitrogen to the CNTs yield and process selectivity. In a further phase of work, the optimization of thereaction parameters led to the introduction of the bimetallic catalysts with the same traditional supports, Al2O3 and SiO2. The highest carbon yield was achieved over Fe, Co based catalysts, regardless of the type of the catalyst support. CNTs synthesized over the above mentioned catalysts were characterized in order to study the effect of the used supports on their physico-chemical properties, and consequently the CNTs tip growth mechanism was proposed. The results of quality examination of the synthesized CNTs showed that the use of SiO2, as a catalyst support, unlike Al2O3, favors the growth of nanotubes of better surface and overall crystalline quality. In view of the diversity of possible CNTs applications, investigation in that direction requires purified CNTs and accordingly the final CNTs products were purified by liquid oxidation method. The results of physico-chemical characterization of the purified CNTs showed that the applied purification method was effective in terms of removing the present catalyst, but on the other hand it had different influence on the structure and quality of the purified samples. As a consequence of CNTs structural changes, as well as their different degree of functionalization, the overall crystalline quality of the purified nanotubes, originating from different catalyst supports, was changed in comparison to the corresponding unpurified samples. Over the past few years, special attention was focused onnanomaterials that can be applied as adsorbents or catalysts for the removal of various pollutants from the environment. This PhD Thesis considers the use of CNTs, as adsorbent, for the removal of insecticide thiamethoxam from water, as well as their use as catalyst support for water denitration reaction. The results of adsorption experiments have shown that the CNTs, pretreated in ccHNO3, represent a good adsorbent for the removal of thiamethoxam from the aqueous solutions. Theselection of the process parameters in order to study the adsorption kinetics and equilibrium, as well as the thermodynamics of the process, was conducted using thefractional factorial design at two levels, 5 1 V 2 . The obtained results showed that the adsorption process is spontaneous and controlled mainly by an internal diffusion of molecules of insecticide in the mesopores of CNTs. The performance of the catalyst with the CNTs as the support were tested in catalytic water denitration reaction, whereby the results showed that the newly formed catalyst is characterized by satisfactory dispersion of Pd-Cu bimetallic nanoparticles which enable the 60% conversion of nitrate ions.
APA, Harvard, Vancouver, ISO, and other styles
38

Kang, Myeongsoon. "Investigation of late transition metal based catalytic systems for polymerication of polar vinyl monomers." 2004. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-600/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xaba, Bongani Michael. "Separation and recovery of selected transition-metal catalyst systems using membrane processes." Thesis, 2010. http://hdl.handle.net/10352/104.

Full text
Abstract:
Thesis (M. Tech. Chemistry, Dept. of Chemistry, Faculty of Applied and Computer Sciences)--Vaal University of Technology, 2010.
Membrane separation processes offer a promising alternative to energy-intensive separation processes such as distillation and solvent extraction. NF and RO are among the most investigated membrane processes with a potential use in the chemical industry. Carbon-carbon coupling reactions feature in the top ten most used reactions in the chemical industry. These reactions often use homogeneous palladium, nickel and other precious catalysts which are often difficult to separate from reaction products. This leads to potential product contamination and loss of active catalysts. This not only poses a threat to the environment but is also costly to the chemical industry. The purpose of this study was to investigate the efficiency of the recovery of the metal catalysts by selected membrane processes. Four commercial polymeric NF and RO membranes (NF90, NF270, BW30 and XLE) were selected for the study. Palladium catalysts commonly used in Heck and Suzuki coupling reactions were selected. These are Pd(OAc)2, Pd(OAc)2(PPh3)2, PdCl2 and Pd(PPh3)2Cl2. A range of organic solvents were also selected for the study. All the membranes were characterized for pure water permeability, pure solvent permeability, swelling, surface morphology and chemical structure. The chemical and catalytic properties of the catalysts were determined. Catalytic activity was investigated by performing coupling reactions. These catalysts generally performed well in the Heck coupling reaction with sufficient yields realized. The catalysts showed poor activities in the Suzuki and Sonogashira coupling reactions. These coupling reaction systems were affected by rapid palladium black formation. vi Catalyst retention studies showed the influence of membrane-solute interactions such as steric hindrance and size exclusion. The larger catalyst, Pd(OAc)2(PPh3)2 was rejected better by all the membranes irrespective of the solvent used. The smaller catalyst, Pd(OAc)2 was the most poorly rejected catalyst. This catalyst showed signs of instability in the selected solvents. An interesting finding from this study is that of higher rejections in water compared to other solvents for a particular catalyst. In this regard, the influence of solventsolute effects was evident. Generally, higher rejections were observed in solvents with higher polarity. This has been explained by the concept of solvation. It has been shown that solvents with different polarity solvate solutes differently, therefore leading to a different effective solute diameter in each solvent. Catalyst separation using NF90 membrane was attempted for the Heck coupling reaction system. The reaction-separation procedure was repeated for two filtration cycles with rapid activity decline evident. This was regarded as very poor showing of the catalyst separation efficiency of the membrane. Other authors in similar studies using SRNF membranes have reported reaction-separation processes of up to seven cycles. This observation shows the inferiority of polymeric membranes in organic solvent applications such as catalyst separation.
APA, Harvard, Vancouver, ISO, and other styles
40

Kandoi, Shampa. "Catalytic hydrogen production and chemistry on transition metals." 2006. http://www.library.wisc.edu/databases/connect/dissertations.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Li, Baichang. "Catalytic and Electronic Activity of Transition Metal Dichalcogenides Heterostructures." Thesis, 2021. https://doi.org/10.7916/d8-4yrb-rs15.

Full text
Abstract:
The synthesis of transition metal dichalcogenides (TMDs) are crucial to realization of their real-world applications in electronic, optoelectronic and chemical devices. However, the fabrication yield in terms of material quality, crystal size, defect density are poorly controlled. In this work, by employing the up-to-date stack-and-transfer and nano fabrication techniques, synthetic TMDs that obtained from different growth methods with various crystal qualities were studied. In most of the cases, better crystals with lower defect densities and larger crystal domain sizes are preferred. Self-flux method was developed to obtain better quality crystals comparing to the traditional chemical vapor transport, as characterized by lower defect densities. BN encapsulating graphene device platform was utilized and TMDs monolayers with different defect densities was inserted in between the BN/graphene interface, where intrinsic defects from the TMDs disturbed the electronic environment of graphene. With the better TMD crystal insertion, we obtain much better electrical performed device in terms of hysteresis, FWHM of Dirac peak and electron mobility. This device also showed advantage in quantum transport measurements . On the other hand, the presence of defects are not always undesired, especially when it comes to serve as electrocatalysts, in which most of the reactions take place at vacancy sites. However, similar to most of the MoS2 electronic devices, forming barrier-free metal semiconductor contact is the major challenge. We develop a platform that contact resistance could be monitored simultaneously with electrochemical activity. In this platform, the total device resistance is significantly reduced before electrochemical reaction happens while the intrinsic catalytic activity of the MoS₂ can be extracted. With this platform, we found the intrinsic catalytic activity of MoS₂ strongly correlated to H-coverage on its surface. By adding molecular mediator into electrolytes, H-coverage and the resulting HER activity was enhanced via “Catch and Release” mechanism. Molecular simulation was performed to support our experimental results.
APA, Harvard, Vancouver, ISO, and other styles
42

Tseng, Nai-Wen. "Transition Metal-catalyzed Carbon-carbon/Carbon-heteroatom Bond Formation Reactions Utilizing Strained Ring Systems." Thesis, 2009. http://hdl.handle.net/1807/19101.

Full text
Abstract:
This thesis focuses on the development of carbon-carbon/carbon-heteroatom bond forming reactions using strained ring systems under transition metal catalysis. The first chapter describes the use of bifunctional organoboron reagents with a rhodium catalyst to synthesize carbocycles through a cascade sequence. The reaction of norbornene derivatives gives vinylcyclopropane and cyclopentene products in moderate to good yield. The mechanistic proposal and insights into the reaction mechanism are presented. Preliminary results from studies toward an enantioselective sequential addition/cyclization process are described. The methodology is subsequently applied in the synthesis of a variety of polycyclic heteroaromatics using bifunctional heteroaryl boronate esters. The second chapter describes studies toward the formation of carbon-heteroatom bonds using cyclopropane derivatives. Under a recently developed Pd(OAc)2/PhI(OAc)2 catalytic system, methylenecyclopropanes are isomerized to substituted pyridines via a sequential fragmentation/cyclization process. Under same reaction conditions, allylic acetate products are obtained from the isomerization of cyclopropanes through a similar process.
APA, Harvard, Vancouver, ISO, and other styles
43

White, Rosemary Elaine. "Trimethylsilylated allyl complexes of groups I-V formation, structure, and catalytic reactions /." Diss., 2006. http://etd.library.vanderbilt.edu/ETD-db/available/etd-08252006-151050/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

"Theoretical studies of systems of biochemical interest containing Fe and Cu transition metals." Universitat de Girona, 2009. http://www.tesisenxarxa.net/TDX-0112110-135752/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

O, Wylie Wing Nien. "Late Transition Metal Complexes Bearing Functionalized N-Heterocyclic Carbenes and the Catalytic Hydrogenation of Polar Double Bonds." Thesis, 2012. http://hdl.handle.net/1807/36294.

Full text
Abstract:
Late transition metal complexes of silver(I), rhodium(I), ruthenium(II), palladium(II) and platinum(II) containing a nitrile-functionalized N-heterocyclic carbene ligand (C-CN) were prepared. The nitrile group on the C–CN ligand was shown to undergo hydrolysis under basic conditions, leading to a silver(I) carbene complex with a primary-amido functional group, and a trimetallic complex of palladium(II) with a partially hydrolyzed C–N–N–C donor ligand. The reduction of a nitrile-functionalized imidazolium salt in the presence of nickel(II) chloride under mild conditions yielded an axially chiral square-planar nickel(II) complex containing a unique primary-amino functionalized N-heterocyclic carbene ligand (C-NH2). A transmetalation reaction moved this chelating C–NH2 ligand from nickel(II) to ruthenium(II), osmium(II), and iridium(III), yielding important catalysts for the hydrogenation of polar double bonds. The ruthenium(II) complex, [Ru(p-cymene)(C–NH2)Cl]PF6 catalyzed the transfer and H2-hydrogenation of ketones. The bifunctional hydride complex, [Ru(p-cymene)(C–NH2)H]PF6, which contains a Ru–H/N–H couple showed no activity under catalytic conditions unless when activated by a base. The outer-sphere mechanism involving bifunctional catalysis of ketone reduction is disfavored according to experimental and theoretical studies and an inner-sphere mechanism is proposed involving the decoordination of the amine donor from the C–NH2 ligand. The ruthenium(II) complex [RuCp*(C–NH2)py]PF6 showed higher activity than the iridium(III) complex [IrCp*(C–NH2)Cl]PF6 in the hydrogenation of ketones. This ruthenium(II) complex also catalyzes the hydrogenation of an aromatic ester, a ketimine, and the hydrogenolysis of styrene oxide. We proposed an alcohol-assisted outer sphere bifunctional mechanism for both systems based on experimental findings and theoretical calculations. The cationic iridium(III) hydride complex, [IrCp*(C–NH2)H]PF6 , was prepared and this failed to react with a ketone in the absence of base. The crucial role of the alkoxide base was demonstrated in the activation of this hydride complex in catalysis. Calculations support the proposal that the base deprotonates the amine group of this hydride complex and triggers the migration of the hydride to the η5-Cp* ring producing a neutral iridium(I) amido complex. This system contains an active Ir–H/N–H couple required for the outer sphere hydrogenation of ketones in the bifunctional mechanism.
APA, Harvard, Vancouver, ISO, and other styles
46

Edelberg, Drew Adam. "Systems of Transition Metal Dichalcogenides : Controlling Applied Strain and Defect Density With Direct Impact on Material Properties." Thesis, 2019. https://doi.org/10.7916/d8-1426-m546.

Full text
Abstract:
Transition metal dichalcogenides (TMDs) are crystalline layered materials that have significantly impacted the field of condensed matter physics. These materials were the first exfoliatable semiconductors to be discovered after the advent of graphene. The focus of this dissertation is utilizing multiple imaging and characterization techniques to improve and understand the impact of strain and lattice defects in these materials. These inclusions to the lattice, alter the semiconducting performance in controllable ways. A comprehensive study using scanning tunneling spectroscopy (STM), spectroscopy (STS), scanning transmission electron microscopy (STEM), and photoluminescence (PL) in this work will provide a breadth of ways to pinpoint and cross-examine the impact of these factors on these materials. In the first half of this work we focus on the control of lattice defects through two growth processes: chemical vapor transport (CVT) and self-flux. By fine tuning the growth procedure we are both able to determine the intrinsic defects of the material, their electronics, and consistently diminish their density. The second half uses an in-situ strain device to reversibly control and examine the effects of applied strain on transition metal dichalcogenide layers. Utilizing the scanning tunneling microscope to image the lattice, we characterize the change of lattice parameters and observe the formation of strain solitons within the lattice. Measuring these solitons directly we look at the dynamics of a special class of line defects, folds within the top layer of the material, that occur naturally as strain is relieved within the monolayer. With the available imaging techniques and theoretical models we uncover a host of properties of these materials that are only accessible within the high strain regime
APA, Harvard, Vancouver, ISO, and other styles
47

Pal, Banabir. "Electronic and Magnetic Structures of Some Selected Strongly Correlated Systems." Thesis, 2016. http://hdl.handle.net/2005/2970.

Full text
Abstract:
Transition metal oxides and chalcogenides are an ideal platform for demonstrating and investigating many interesting electronic phases of matter. These phases emerge as a result of collective many body interactions among the electrons. The omnipresent electron, depending on its interaction with other electrons and with the underlying lattice, can generate diverse phases of matter with exotic physical properties. The ultimate objective of Materials Science is to provide a complete microscopic understanding of these myriad electronic phases of matter. A proper understanding of the collective quant-tum behaviour of electrons in different system can also help in designing and tuning new electronic phases of matter that may have strong impact in the field of microelectronics, well beyond that predicted by Moore s law. Strong electron correlation effects produce a wide spectrum of ground state prop-retires like superconductivity, Metal Insulator Transition (MIT), charge-orbital ordering and many more. Similarly, different spin interactions among electrons, essentially due to various kinds of exchange coupling, give rise to varying magnetic ground state prop-retires like ferromagnetism, anti-ferromagnetism, spin glass, among others. The main objective of this thesis is to understand and rationalize diverse electronic and magnetic phases of matter in some selected strongly correlated systems. In chapter 1 we have provided an overview of various electronic and magnetic phases of matter which are relevant and necessary for understanding the chapters that follow. The first part of this chapter describes the fundamental concepts of the so called Metal Insulator Transition (MIT). A small section is dedicated to the subtle interactions among electrons and lattice that actually drive a system from a highly conducting metallic state to a strongly resistive insulating state. The second part of this chapter offers a compilation of different magnetic ground states which are discussed in detail in the last two chapters. In Chapter 2, we have explained various methodologies and experimental tech-antiques that have been used in the work reported in this thesis. In Chapter 3, we have provided a detailed understanding of the MIT in different polymorphic forms of Vanadium dioxide (VO2). Although VO2 exhibits a number of polymorphic forms, only the rutile/monoclinic VO2 phase has been studied extensively compared to other polymorphic forms. This phase shows a well-established MIT across ∼340 K, which has been extensively investigated in order to understand the relative importance of many body electron correlation effects arising primarily from on-site Coulomb interactions within the Vanadium 3d manifold, and single electron effects flounced by the dimerization of Vanadium atoms. Unlike the rutile phase of VO2, little is known about the MIT appearing across 212 K in the metastable B-phase of VO2. This phase shows dimerization of only half of the Vanadium atoms in the insulating state, in contrast to rutile/monoclinic VO2, which show complete dimerization. There is a long standing debate about the origin of the MIT in the rutile/monoclinic phase, that contrasts the role of the many-body Hubbard U term, with single particle effects of the dimerization. In light of this debate, the MIT in the B-phase offers a unique opportunity to understand and address the competition between many body and single particle effects, that has been unresolved over several decades. In this chapter we have investigated different polymorphs of VO2 to understand the underlying electronic structure and the nature of the MIT in these polymorphic forms. The MIT in VO2 B phase is very broad in nature. X-ray photoemission and optical conductivity data indicate that in case of VO2 B phase both correlation effects and dimerization is necessary to drive the MIT. We have also established that the correlation effects are more prominent for VO2 B phase compared to rutile/monoclinic phase. In Chapter 4, we have discussed the electronic structure of LaTiO3 (LTO)-SrTiO3 (STO) system. At the interface between polar LTO and non-polar (STO) oxides, an unique two dimensional electron gas (2DEG) like state appears, that exhibits a phenomenal range of unexpected transport, magnetic, and electronic properties. Thus, this interface stands as a prospective candidate for not only fundamental scientific investigation, but also application in technological and ultimately commercial frontiers. In this chapter, using variable energy Hard X-ray photoemission spectroscopy (HAXPES), we have experimentally investigated the layer resolved evolution of electronic structure across the interface in LTO-STO system. HAXPES results suggest that the interface is more coherent in nature and the coherent to incoherent feature ratio changes significantly as we probe deeper into the layer In chapter 5, we have investigated the electronic structure of the chemically exfoliated trigonal phase of MoS2. This elusive trigonal phase exists only as small patches on chemically exfoliated MoS2, and is believed to control functioning of MoS2 based devices. Its electronic structure is little understood, with total absence of any spec-troscopic data, and contradictory claims from theoretical investigations. We have ad-dressed this issue experimentally by studying the electronic structure of few layered chemically exfoliated MoS2 systems using spatially resolved X-ray photoemission spec-otoscopy and micro Raman spectroscopy in conjunction with electronic structure calculations. We have established that the ground state of this unique trigonal phase is actually a small gap (∼90 meV) semiconductor. This is in contrast with most of the claims in existing literature. In chapter 6, we have re-examined and revaluated the electronic structure of the late 3d transition metal monoxides (NiO, FeO, and CoO) using a combination of HAX-PES and state-of-the-art theoretical calculations. We have observed a strong evolution in the valence band spectra as a function of excitation energy. Theoretical results show that a combined GW+LDA+DMFT scheme is essential for explaining the observed experimental findings. Additionally, variable temperature HAXPES measurement In chapter 8, we have differentiated the surface and the bulk electronic structure in Sr2FeMoO6 and also have provided a new route to increase the Curie temperature of this material. Sr2FeMoO6 is well known for its high Curie temperature (Tc ∼410 K), half-metallic ferromagnetism, and a spectacularly large tunnelling magnetoresistance. The surface electronic structure of Sr2FeMoO6 is believed to be different from the bulk; leading to a Spin-Valve type Magnetoresistance. We have carried out variable energy HAXPES on Sr2FeMoO6 to probe electronic structure as a function of surface depth. Our experimental results indicate that surface is more Mo6+ rich. We have also demonstrated what we believe is the first direct experimental evidence of hard ferro-magnetism in the surface layer using X Ray Magnetic Circular Dichroism (XMCD) with dual detection mode. In the second part of this chapter we have designed a new route to increase the Curie temperature and have been successfully able to achieve a Curie temperature as high as 515 K.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography