Academic literature on the topic 'Transition metals; Catalytic systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transition metals; Catalytic systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transition metals; Catalytic systems"

1

Filardo, Giuseppe, Alessandro Galia, Franco Rivetti, Onofrio Scialdone, and Giuseppe Silvestri. "Catalytic systems based on transition metals for the carbonylation of methanol to dimethylcarbonate." Electrochimica Acta 42, no. 13-14 (January 1997): 1961–65. http://dx.doi.org/10.1016/s0013-4686(97)85467-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pal, Pratibha, Jyh-Ming Ting, Shivani Agarwal, Takayuki Ichikawa, and Ankur Jain. "The Catalytic Role of D-block Elements and Their Compounds for Improving Sorption Kinetics of Hydride Materials: A Review." Reactions 2, no. 3 (September 18, 2021): 333–64. http://dx.doi.org/10.3390/reactions2030022.

Full text
Abstract:
The goal of finding efficient and safe hydrogen storage material motivated researchers to develop several materials to fulfil the demand of the U.S. Department of Energy (DOE). In the past few years, several metal hydrides, complex hydrides such as borohydrides and alanates, have been researched and found efficient due to their high gravimetric and volumetric density. However, the development of these materials is still limited by their high thermodynamic stability and sluggish kinetics. One of the methods to improve the kinetics is to use catalysts. Among the known catalysts for this purpose, transition metals and their compounds are known as the leading contender. The present article reviews the d-block transition metals including Ni, Co, V, Ti, Fe and Nb as catalysts to boost up the kinetics of several hydride systems. Various binary and ternary metal oxides, halides and their combinations, porous structured hybrid designs and metal-based Mxenes have been discussed as catalysts to enhance the de/rehydrogenation kinetics and cycling performance of hydrogen storage systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Strekalova, Sofia, Mikhail Khrizanforov, and Yulia Budnikova. "Evaluation of Transition Metal Catalysts in Electrochemically Induced Aromatic Phosphonation." Molecules 24, no. 9 (May 11, 2019): 1823. http://dx.doi.org/10.3390/molecules24091823.

Full text
Abstract:
Voltammetry provides important information on the redox properties of catalysts (transition metal complexes of Ni, Co, Mn, etc.) and their activity in electrocatalytic reactions of aromatic C–H phosphonation in the presence of a phosphorus precursor, for example, dialkyl-H-phosphonate. Based on catalytic current growth of oxidation or reduction of the metal catalysts (CoII, MnII, NiII, MnII/NiII, MnII/CoII, and CoII/NiII), quantitative characteristics of the regeneration of catalysts were determined, for example, for MnII, NiII and MnII/NiII, CoII/NiII pairs. Calculations confirmed the previously made synthetic observations on the synergistic effect of certain metal ions in binary catalytic systems (MnIIbpy/NiIIbpy and NiIIbpy/CoIIbpy); for mixtures, the observed rate constants, or TOF, were 690 s−1 and 721 s−1, respectively, and product yields were higher for monometallic catalytic systems (up to 71% for bimetallic catalytic systems and ~30% for monometallic catalytic systems). In some cases, the appearance of pre-waves after adding H-phosphonates confirmed the preceding chemical reaction. It also confirmed the formation of metal phosphonates in the time scale of voltammetry, oxidizing or reducing at lower potentials than the original (RO)2P(O)H and metal complex, which could be used for fast diagnostics of metal ion and dialkyl-H-phosphonate interactions. Electrochemical transfer of an electron to (from) metal phosphonate generates a phosphonyl radical, which can then react with different arenes to give the products of aromatic C–H phosphonation.
APA, Harvard, Vancouver, ISO, and other styles
4

Nesterov, Dmytro, and Oksana Nesterova. "Polynuclear Cobalt Complexes as Catalysts for Light-Driven Water Oxidation: A Review of Recent Advances." Catalysts 8, no. 12 (December 2, 2018): 602. http://dx.doi.org/10.3390/catal8120602.

Full text
Abstract:
Photochemical water oxidation, as a half-reaction of water splitting, represents a great challenge towards the construction of artificial photosynthetic systems. Complexes of first-row transition metals have attracted great attention in the last decade due to their pronounced catalytic efficiency in water oxidation, comparable to that exhibited by classical platinum-group metal complexes. Cobalt, being an abundant and relatively cheap metal, has rich coordination chemistry allowing construction of a wide range of polynuclear architectures for the catalytic purposes. This review covers recent advances in application of cobalt complexes as (pre)catalysts for water oxidation in the model catalytic system comprising [Ru(bpy)3]2+ as a photosensitizer and S2O82− as a sacrificial electron acceptor. The catalytic parameters are summarized and discussed in view of the structures of the catalysts. Special attention is paid to the degradation of molecular catalysts under catalytic conditions and the experimental methods and techniques used to control their degradation as well as the leaching of cobalt ions.
APA, Harvard, Vancouver, ISO, and other styles
5

Hirao, Toshikazu, and Toru Amaya. "Synthesis and Application of Redox-Active Hybrid Catalytic Systems Consisting of Polyanilines and Transition Metals." Synlett 2011, no. 04 (February 11, 2011): 435–48. http://dx.doi.org/10.1055/s-0030-1259541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Xiao, and Changhai Liang. "Transition metal silicides: fundamentals, preparation and catalytic applications." Catalysis Science & Technology 9, no. 18 (2019): 4785–820. http://dx.doi.org/10.1039/c9cy00533a.

Full text
Abstract:
Transition metal silicides as low-cost and earth-abundant inorganic materials are becoming indispensable constituents in catalytic systems for a variety of applications and exhibit excellent properties for sustainable industrial process.
APA, Harvard, Vancouver, ISO, and other styles
7

Khalimon, Andrey, Kristina Gudun, and Davit Hayrapetyan. "Base Metal Catalysts for Deoxygenative Reduction of Amides to Amines." Catalysts 9, no. 6 (May 28, 2019): 490. http://dx.doi.org/10.3390/catal9060490.

Full text
Abstract:
The development of efficient methodologies for production of amines attracts significant attention from synthetic chemists, because amines serve as essential building blocks in the synthesis of many pharmaceuticals, natural products, and agrochemicals. In this regard, deoxygenative reduction of amides to amines by means of transition-metal-catalyzed hydrogenation, hydrosilylation, and hydroboration reactions represents an attractive alternative to conventional wasteful techniques based on stoichiometric reductions of the corresponding amides and imines, and reductive amination of aldehydes with metal hydride reagents. The relatively low electrophilicity of the amide carbonyl group makes this transformation more challenging compared to reduction of other carbonyl compounds, and the majority of the reported catalytic systems employ precious metals such as platinum, rhodium, iridium, and ruthenium. Despite the application of more abundant and environmentally benign base metal (Mn, Fe, Co, and Ni) complexes for deoxygenative reduction of amides have been developed to a lesser extent, such catalytic systems are of great importance. This review is focused on the current achievements in the base-metal-catalyzed deoxygenative hydrogenation, hydrosilylation, and hydroboration of amides to amines. Special attention is paid to the design of base metal catalysts and the mechanisms of such catalytic transformations.
APA, Harvard, Vancouver, ISO, and other styles
8

L. Simakova, Irina, Andrey V. Simakov, and Dmitry Yu. Murzin. "Valorization of Biomass Derived Terpene Compounds by Catalytic Amination." Catalysts 8, no. 9 (August 29, 2018): 365. http://dx.doi.org/10.3390/catal8090365.

Full text
Abstract:
This review fills an apparent gap existing in the literature by providing an overview of the readily available terpenes and existing catalytic protocols for preparation of terpene-derived amines. To address the role of solid catalysts in amination of terpenes the same reactions with homogeneous counterparts are also discussed. Such catalysts can be considered as a benchmark, which solid catalysts should match. Although catalytic systems based on transition metal complexes have been developed for synthesis of amines to a larger extent, there is an apparent need to reduce the production costs. Subsequently, homogenous systems based on cheaper metals operating by nucleophilic substitution (e.g., Ni, Co, Cu, Fe) with a possibility of easy recycling, as well as metal nanoparticles (e.g., Pd, Au) supported on amphoteric oxides should be developed. These catalysts will allow synthesis of amine derivatives of terpenes which have a broad range of applications as specialty chemicals (e.g., pesticides, surfactants, etc.) and pharmaceuticals. The review will be useful in selection and design of appropriate solid materials with tailored properties as efficient catalysts for amination of terpenes.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Wei, Lei Zhong, and Wei Dong Li. "Progress in Development of Catalyst Systems for Coordinated Polymerization of Olefins." Advanced Materials Research 900 (February 2014): 11–14. http://dx.doi.org/10.4028/www.scientific.net/amr.900.11.

Full text
Abstract:
The research progresses about polyolefin catalyst systems in recent years are summarized. Focusing on the type and properties of the catalytic polymerization of the olefin polymerization catalyst, including typical Ziegler-Natta catalysts, metallocene catalysts and post-transition metal catalyst system. Then the new post-transition metal catalyst is introduced.
APA, Harvard, Vancouver, ISO, and other styles
10

Jang, Jisun, Sangmoon Byun, B. Moon Kim, and Sunwoo Lee. "Arylsilylation of aryl halides using the magnetically recyclable bimetallic Pd–Pt–Fe3O4 catalyst." Chemical Communications 54, no. 28 (2018): 3492–95. http://dx.doi.org/10.1039/c7cc09926f.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Transition metals; Catalytic systems"

1

Smith, Virginia Clare Moncrieff. "Mechanistic studies of catalytic C-C bond formation." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Landon, James Hugh Pearson. "Computational EPR, ENDOR and DFT studies of catalytic transition metal systems." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54786/.

Full text
Abstract:
The following thesis discusses the combined use of electron paramagnetic resonance (EPR) spectroscopy, electron nuclear double resonance (ENDOR) spectroscopy and density functional theory (DFT) calculations to investigate a number of transition metal catalyst systems the binding of epoxide molecules by a vanadyl analogue of the catalytically important metallosalen class of compounds the binding of a chiral aryl amine by a copper salen complex and the incorporation of copper(II) ions in aluminophosphate materials. Two classes of epoxide selectivity by a vanadyl salen derivative are presented here, the discrimination of the geometric isomers of 2,3-epoxybutane, cw-2,3-epoxybutane and /ra 5-2,3-epoxybutane by Ar,Ar'-bis(3,5-di-tert-butylsalicylidene)-l,2-diaminocyclohexa- ne-vanadium(IV) oxide ( VO(l) ) 1 and the stereoselectivity of epoxypropane, 1,2- epoxybutane, chloromethyloxirane and fluoromethyloxirane by VO(l) . In both cases it is shown that hydrogen-bonding interactions, including interactions between the epoxide oxygen atom and a hydrogen atom bonded to a stereocentre carbon atom of the complex are important in determining the binding mode, thus implicating the given stereocentre carbon atom in the transfer of chirality. In the geometric isomerism of 2,3-epoxybutane, steric arguments regarding the obstruction caused by the methyl groups made on the basis of the DFT structures explain the selectivity observed in the EPR/ENDOR spectra. In the chiral selectivity of the other epoxides, more complicated reasoning, based on tripodal weak hydrogen-bonding configurations involving the hydrogen atoms of the epoxide ring and the oxygen atoms of the complex ligand is required to fully explain the selectivity observed, with different selectivity effects in the more electronegative halogenated epoxides compared to the alkyl cases. The coordination of methyl benzyl amine to a series of analogues of Cu(l) with various levels of tert-butylation, to model the steric effects in this interaction is studied here using DFT methods to explain the coordination preference for heterochiral pairings observed in the EPR spectra. Reasoning based on the preference of each enantiomer of the MBA to become involved in % - n interaction with alternate benzene rings of the complex, along with a slightly increased crowding of one ring over the other caused by the same hydrogen atom as implicated in determining selectivity in the epoxide study (above), namely the hydrogen atom bonded to one of the stereocentre C atoms, explains the selectivity observed in terms of n n interactions, also identifying the role of the stereocentre C atoms in conferring chirality. In combination, these studies demonstrate the importance of weak interactions, namely hydrogen-bonding andn-n interactions, in determining the binding configurations, and by extension the selectivity of these transition metal complexes. They also describe the nature of the involvement of the stereocentres of the complex in directing that selectivity, delineating a link between the chirality of the complex and that of the bound species in each case. The importance of using both EPR/ENDOR and DFT techniques in such studies, namely of explaining selectivity observed by EPR in terms of ENDOR and DFT derived geometry parameters is further explored in this thesis in the development of genetic algorithm routines to modify DFT-derived structures, by means of the ENDOR spectra simulated with the hyperfine parameters derived from a simple point-dipole model applied to the coordinates. The application of this process to a sample axial system, VO(acac)2, demonstrates the effectiveness of exploiting the complementary nature of the ENDOR and DFT techniques in this manner. Finally, a second copper study is reported here. This example is of a microporous aluminophosphate material, and concerns the incorporation of Cu11 ions into framework vs. extra-framework sites, a subject of some controversy. Here, evidence is presented for the ability of copper to distort the tetrahedral lattice into a distorted octahedral and a square- based pyramidal environment in which one or both of the remaining coordination sites is/are occupied by the templating molecules and water molecules, without rendering the lattice unstable, arguing in favour of framework site incorporation.
APA, Harvard, Vancouver, ISO, and other styles
3

Robinson, Simon Jonathan. "Catalytic and selective transition metal mediated isomerisations of allylic alkoxides to enolates." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Riemer, Daniel. "Transition Metal-Free Catalytic Systems for the Utilization of CO2 to Achieve Valuable Chemicals." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-14D4-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Riemer, Daniel [Verfasser]. "Transition Metal-Free Catalytic Systems for the Utilization of CO2 to Achieve Valuable Chemicals / Daniel Riemer." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1220909319/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manrique, Salas Ester. "Development of new transition metal complexes for their use in sustainable catalytic processes and as antitumoral agents." Doctoral thesis, Universitat de Girona, 2018. http://hdl.handle.net/10803/668830.

Full text
Abstract:
In this thesis we present the synthesis and characterization of different types of ruthenium complexes containing N-donor ligands together with monodentate ligands, along with their complete characterization through spectroscopic and electrochemical techniques. The complexes have been evaluated as catalysts for olefin epoxidation and nitrile hydration in 2/1 homogeneous phase. On the other hand, taking into account the importance and advantages of the heterogeneous catalysis, we have carried out the immobilization of some of these complexes on silica-type supports and magnetic nanoparticles and we have evaluated their catalytic activity, comparing them with the analogous homogeneous systems, and have been reused for several runs maintaining high values of selectivity for the epoxide. Some of the complexes together with other complexes previously synthesized in our research group, have been tested as antitumoral agents
En aquesta tesi es presenta la síntesi de diferents tipus de complexos de ruteni i manganès que contenen lligands N-donadors en combinació amb altres lligands monodentats, i la seva completa caracterització mitjançant tècniques espectroscòpiques i electroquímiques. Els complexos han estat avaluats com a catalitzadors en epoxidació d'olefines i hidròlisi de nitrils en fase homogènia. Per altra banda, tenint en compte la importància i els avantatges de la catàlisi heterogènia, s’ha dut a terme la immobilització d’alguns d’aquests complexos sobre suports tipus sílice i nanopartícules magnètiques i se n'ha avaluat l'activitat catalítica, comparant-los amb els anàlegs en fase homogènia, i s'han pogut reutilitzar durant diversos cicles mantenint alts valors de selectivitat per l'epòxid. Alguns dels complexos, juntament amb d'altres sintetitzats anteriorment al grup de recerca, han estat avaluats com agents antitumorals
APA, Harvard, Vancouver, ISO, and other styles
7

Lesieur, Mathieu. "Cu and Pd complexes of N-heterocyclic carbenes : catalytic applications as single and dual systems." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7999.

Full text
Abstract:
Nowadays, the requirement to design highly valuable compounds is undoubtedly one of the major challenges in the field of organic and organometallic chemistry. The use of the versatile and efficient N-heterocyclic carbenes (NHCs) combined with transition metals represents a key feature in modern organometallic chemistry and homogeneous catalysis. In the course of this thesis, the straightforward design and synthesis of a library of Pd(0) bearing NHC ligands was achieved. Their catalytic performances (Chapter 1) and their phosphorescence properties in solution (Chapter 2) were disclosed. Currently, cross-couplings are some of the most important types of reaction in palladium catalysis. The formation of highly hindered biaryls substrates is one of the main requirements in cross-coupling chemistry. The design and synthesis of a palladium dimer bearing a bulky NHC ligand can fulfil this proposal (Chapter 4). The development of new classes of ligands is a topic of interest. For this reason, normal, abnormal, remote and mesoionic N-heterocyclic carbenes copper complexes were investigated and their reactivity compared in the [3+2] cycloaddition of azides and alkynes (Chapter 7). Air and moisture stable Cu(I)-NHC species have also been compared to their silver analogues for the alkynylation of ketones (Chapter 9). The different reactivity of the two latter organometallic species (Cu and Ag) with ethyldiazoacetate reagent via the formation of carbenes or C-H activated product is presented in Chapter 8. Recently, the development of a bimetallic catalytic system is strongly considered and has high impact. For this reason, two dual catalytic transformations (Pd-NHC and Cu-NHC) were studied for the C-H arylation (Chapter 5) and the synthesis of substituted alkenes products via a relay or cooperative mechanisms (Chapter 6). The isolation of intermediates and mechanistic studies were examined in each of these studies.
APA, Harvard, Vancouver, ISO, and other styles
8

González, Miera Greco. "Homogeneous and heterogeneous Cp*Ir(III) catalytic systems : Mechanistic studies of redox processes catalyzed by bifunctional iridium complexes, and synthesis of iridium-functionalized MOFs." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-143343.

Full text
Abstract:
The purpose of this doctoral thesis is to investigate and develop catalytic processes mediated by iridium(III) complexes. By understanding the mechanisms, the weaknesses of the designed catalysts can be identified and be overcome in the following generation. The thesis is composed of two general sections dedicated to the synthesis and applications of homogeneous catalysts and to the preparation of heterogeneous catalysts based on metal-organic frameworks (MOFs). After a general introduction (Chapter 1), the first part of the thesis (Chapters 2-4, and Appendix 1) covers the use of several homogeneous bifunctional [Cp*Ir(III)] catalysts in a variety of chemical transformations, as well as mechanistic studies. Chapter 2 summarizes the studies on the N-alkylation of anilines with benzyl alcohols catalyzed by bifunctional Ir(III) complexes. Mechanistic investigations when the reactions were catalyzed by Ir(III) complexes with a hydroxy-functionalized N-heterocyclic carbene (NHC) ligand are discussed, followed by the design of a new generation of catalysts. The chapter finishes presenting the improved catalytic performance of these new complexes.    A family of these NHC-iridium complexes was evaluated in the acceptorless dehydrogenation of alcohols, as shown in Chapter 3. The beneficial effect of a co-solvent was investigated too. Under these base-free conditions, a wide scope of alcohols was efficiently dehydrogenated in excellent yields. The unexpected higher activity of the hydroxy-containing bifunctional NHC-Ir(III) catalysts, in comparison to that of the amino-functionalized one, was investigated experimentally. In the fourth chapter, the catalytic process presented in Chapter 3 was further explored on 1,4- and 1,5-diols, which were transformed into their corresponding tetrahydrofurans and dihydropyrans, respectively. Mechanistic investigations are also discussed. In the second part of the thesis (Chapter 5), a Cp*Ir(III) complex was immobilized into a MOF. The heterogenization of the metal complex was achieved efficiently, reaching high ratios of functionalization. However, a change in the topology of the MOF was observed. In this chapter, the use of advanced characterization techniques such as X-ray absorption spectroscopy (XAS) and pair distribution function (PDF) analyses enabled to study a phase transformation in these materials.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Submitted.

APA, Harvard, Vancouver, ISO, and other styles
9

Dombrowski, James Michael. "Catalytic Cleavage of Carbon-Carbon Sigma Bonds Using Transition Metals." Thesis, Boston College, 2005. http://hdl.handle.net/2345/407.

Full text
Abstract:
Thesis advisor: Lawrence T. Scott
The focus of this project was to probe the ability of various transition metal complexes to cleave carbon-carbon bonds in a C30H12 hemifullerene. The hemifullerene was synthesized in our lab from commercial 1-tetralone and bromonaphthalene in six steps. Palladium and nickel complexes were used to open the five membered rings along the periphery of the C30H12 bowl. Diphosphine complexes of nickel were capable of opening either all three five membered rings or one of the periphery five membered rings and the central six membered ring
Thesis (BS) — Boston College, 2005
Submitted to: Boston College. College of Arts and Sciences
Discipline: Chemistry
Discipline: College Honors Program
APA, Harvard, Vancouver, ISO, and other styles
10

Morello, Glenn. "Modeling Transition Metal Chemistry for Catalytic Functionalization of Molecules." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc84255/.

Full text
Abstract:
The diversity of transition metal complexes allows for a wide range of chemical processes to be mediated by the metal, from catalysis to surface chemistry. Investigations into the structure and electronic configuration of transition metal complexes allow for tuning of desired species by modifications to the ligands and/or metals to achieve more efficient thermodynamics and kinetics for the process of interest. Transition metals, often used in catalysts for a number of important processes, require detailed descriptions of intermediates, transition states and products to fully characterize a reaction mechanism(s) in order to design more active and efficient catalysts. Computational investigations into inorganic catalysts are explored with the aim of understanding the activity of each species and how modifications of supporting ligands, co-ligands and metals vary the interaction along the reaction pathway. Reported results give important insight into the development of the most active complexes in addition to determining the least active complexes to aid experimental development. This report first investigates the mechanisms of two unique transfer reactions: 1) formation of low coordinate nickel-nitrene ((P~P)Ni=NR; P~P = 1,2-bis(dihydrophosphino)-ethane or 1,2-bis(difluoromethylphosphino)-ethane) complexes as catalysts for nitrogen atom transfer and 2) oxidation of a triphosphorus niobium complex, [(η2-P3SnPh3)Nb(OMe)3], for the transfer of the phosphorus synthon, Ph3SnP3. These reactions have utility in the synthesis of nitrogen and phosphorus containing molecules, respectively, and the results presented provide mechanistic insight into the synthesis of the organometallic intermediates. Additionally, a computational approach towards rational catalyst design was performed on the ruthenium based hydroarylation catalyst TpRu(CO)(Ph) [Tp = hydrido-tris(pyrazolyl)borate]. Targeted modifications at the Tp, metal and co-ligand (CO) sites were studied in order to tune the electronics and sterics of the catalyst. Modifications, through computational methods, provided a more cost- and time-efficient way to study the impact of modifications, which provided direct input into attractive synthetic targets. The research described heir in highlights the use of computational chemistry methodologies, specifically DFT, in collaboration with experimental results, for the accurate description of reaction geometries and factors influencing the thermodynamics and kinetics of the systems. Valuable insight is gained by treating inorganic complexes with theoretical methods and additionally provides a fast, cheap way to predict and understand the chemistry of such complex systems.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Transition metals; Catalytic systems"

1

Yamaguchi, Ryohei. Ligand platforms in homogenous catalytic reactions with metals: Practice and applications for green organic transformations. Hoboken, New Jersey: Wiley, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1956-, Kendrick M. J., ed. Metals in biological systems. New York: E. Horwood, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yamaguchi, Ryohei, and Ken-ichi Fujita. Ligand Platforms in Homogenous Catalytic Reactions with Metals: Practice and Applications for Green Organic Transformations. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamaguchi, Ryohei, and Ken-ichi Fujita. Ligand Platforms in Homogenous Catalytic Reactions with Metals: Practice and Applications for Green Organic Transformations. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Transition metals; Catalytic systems"

1

Hirao, Hajime. "Applications of Computational Chemistry to Selected Problems of Transition-Metal Catalysis in Biological and Nonbiological Systems." In Transition Metals in Coordination Environments, 463–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mecking, Stefan, and Jérôme P. Claverie. "Transition Metal-Catalyzed Polymerization in Aqueous Systems." In Late Transition Metal Polymerization Catalysis, 231–78. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527601805.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Piskorz, Witold, and Filip Zasada. "Catalytic Properties of Selected Transition Metal Oxides—Computational Studies." In Transition Metals in Coordination Environments, 345–408. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tabor, Christopher, Radha Narayanan, and Mostafa A. El-Sayed. "Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Heterogeneous or Homogeneous?" In Model Systems in Catalysis, 395–414. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98049-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Duca, Gheorghe. "Homogeneous Redox Catalysis with Transition Metal Compounds in Oxide and Peroxide Systems." In Homogeneous Catalysis with Metal Complexes, 11–121. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24629-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Handzlik, Jarosław. "Computational Modelling of Structure and Catalytic Properties of Silica-Supported Group VI Transition Metal Oxide Species." In Transition Metals in Coordination Environments, 315–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Polynski, Mikhail V., and Valentine P. Ananikov. "Computational Modeling of Graphene Systems Containing Transition Metal Atoms and Clusters." In Understanding Organometallic Reaction Mechanisms and Catalysis, 321–74. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527678211.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Riley, Dennis P., and Milton R. Smith. "Radical Cation Pathways for Selective Catalytic Oxidation by Molecular Oxygen." In Oxygen Complexes and Oxygen Activation by Transition Metals, 189–201. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0955-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaifer, Angel E. "Ferrocene as a Building Block for Supramolecular Chemistry Systems." In Transition Metals in Supramolecular Chemistry, 227–43. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8380-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leising, R. A., M. E. Marmion, J. J. Gryzbowski, and K. J. Takeuchi. "Phosphine-Ruthenium(II)-Aquo Redox Chemistry: The Aerobic Catalytic Oxidation of Cyclohexene." In Oxygen Complexes and Oxygen Activation by Transition Metals, 323. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0955-0_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Transition metals; Catalytic systems"

1

Dutta, P., L. H. Cowell, D. K. Yee, and R. A. Dalla Betta. "Design and Evaluation of a Single-Can Full Scale Catalytic Combustion System for Ultra-Low Emissions Industrial Gas Turbines." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-292.

Full text
Abstract:
The goal of the Advanced Turbine Systems (ATS) program is the design and development of high thermal efficiency gas turbines with pollutant emissions at single digit levels, through the development of advanced recuperated gas turbines. Following successful subscale catalytic reactor testing, a full scale catalytic combustion system was designed to be representative of a single can in a multi-can gas turbine combustor configuration. The full scale catalytic combustion system is modular in design and includes a fuel/air premixer upstream of the catalytic reactor and a post catalyst homogeneous combustion zone downstream of the catalyst bed to complete the homogeneous gas-phase reactions. System start-up is accomplished using a lean-premixed (LP) low emissions fuel injector. The system transitions to catalyst operation using a variable geometry valve that diverts air flow into the catalyst at loads greater than 50% of full load. The variable geometry valve is used to operate the catalyst within the narrow operating window due to limited fuel/air turndown allowed by the catalyst. A catalyst design with preferential catalyst coating on a corrugated metal substrate to limit catalyst substrate temperatures was selected for the system. Mean fuel concentration measurements at the inlet to the catalyst bed using an instrumented catalyst module showed the fuel/air premixing to be within catalyst specifications. Preliminary combustion tests on the system were completed. The catalytic combustion system was tested over the 50-to-100% load range. Using variable geometry control, emissions goals (< 5 ppmv NOx, < 10 ppmv CO and UHC corrected to 15% O2) were achieved for catalyst operation between 50-and-100% load conditions. The system was started and operated under part-load conditions using the LP injector. Efforts are under way to accomplish successful transition from LP mode of operation to catalytic mode of operation using the variable geometry system.
APA, Harvard, Vancouver, ISO, and other styles
2

Bar Sadan, Maya. "Transition Metals Dichalcodenides: Growth mechanism, Structure and Catalytic Activity." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

CHUBB, TALBOT A. "CATALYTIC FUSION AND THE INTERFACE BETWEEN INSULATORS AND TRANSITION METALS." In Proceedings of the 12th International Conference on Cold Fusion. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772985_0049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Beklemyshev, V. I., V. Berezine, Victor A. Bykov, L. Kiselev, I. Makhonin, V. Pevgov, V. Pustovoy, et al. "Hydrogen sensors based on catalytic metals." In Indo-Russian Workshop on Micromechanical Systems, edited by Vladimir I. Pustovoy and Vinoy K. Jain. SPIE, 1999. http://dx.doi.org/10.1117/12.369448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Duan, Kaijiao, Xiaolong Tang, Honghong Yi, Yan Zhang, and Ping Ning. "Comparative Study on Low Temperature Selective Catalytic Oxidation of Ammonia over Transition Metals Supported on TiO2." In 2010 International Conference on Management and Service Science (MASS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icmss.2010.5576789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skipetrov, E. P., A. N. Golovanov, B. B. Kovalev, L. A. Skipetrova, A. V. Knotko, E. I. Slynko, V. E. Slynko, Giti A. Khodaparast, Michael B. Santos, and Christopher J. Stanton. "Novel IV-VI Diluted Magnetic Semiconductors Doped with Transition Metals." In 15TH INTERNATIONAL CONFERENCE ON NARROW GAP SYSTEMS (NGS15). AIP, 2011. http://dx.doi.org/10.1063/1.3671715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakasmji, K., M. Tadokoro, T. Itoh, J. Toyoda, and K. Isobe. "Exploration of proton-electron cooperative-interacting systems with transition metal atoms." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Jing, Martin Cinke, Kanapathipillai Wignarajah, John Fisher, and Harry Partridge. "Impregnation of Catalytic Metals in Single-Walled Carbon Nanotubes for Toxic Gas Conversion in Life Support System." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-01-2492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kustova, L. "PREPARATION OF NITRO COMPOUNDS AND THEIR HYDROGENATION USING “GREEN” TECHNOLOGIES AND CATALYTIC SYSTEMS CONTAINING NO NOBLE METALS." In Chemistry of nitro compounds and related nitrogen-oxygen systems. LLC MAKS Press, 2019. http://dx.doi.org/10.29003/m724.aks-2019/66-72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jakkaraju, Madhuri, and Vasudha Patri. "S. I. Engine Pollution Control Using Low-Cost Palletized Catalytic Converter." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58248.

Full text
Abstract:
I. C. Engines consume large amounts of fossil fuel emitting harmful pollutants like carbon monoxide (CO), unburnt hydrocarbons (UBHC), and oxides of nitrogen (NOx). By using a catalytic converter (CC), the carbon monoxide, hydrocarbon emissions can be transformed into less harmful carbon dioxide (CO2) & water vapor (H2O). Currently available CC’s are using costly noble metals like platinum (pt), palladium (pd), rhodium (rh) etc., hence making them expensive. This paper deals with the use of low-cost palletized silver coated alumina as the catalyst element in a CC. In this study, alumina and silver were used in the ratio of 10:1. All tests have been conducted on a stationary S.I. Engine at a constant speed of 1500 r.p.m with and without CC. Also, the performance of the palletized CC in combination with promoters like Bismuth, Cerium and Lanthanum was tested which have shown better results than silver alone as the coating element. It has been experimentally determined that the CO emissions have dropped from 7.25 (% vol) to 3.03(% vol) and the HC values have reduced from 350 ppm to 190 ppm.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography