Journal articles on the topic 'Transition metal mixed chalcogenides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Transition metal mixed chalcogenides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Vante, N. Alonso, W. Jaegermann, H. Tributsch, W. Hoenle, and K. Yvon. "Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters." Journal of the American Chemical Society 109, no. 11 (May 1987): 3251–57. http://dx.doi.org/10.1021/ja00245a013.
Full textSingh, Harish, Manashi Nath, and McKenzie Marley Hines. "Development of High-Performance Electrode Materials for Supercapacitor Application through Combinatorial Electrodeposition." ECS Meeting Abstracts MA2022-01, no. 3 (July 7, 2022): 492. http://dx.doi.org/10.1149/ma2022-013492mtgabs.
Full textBokova, Maria, Steven Dumortier, Christophe Poupin, Renaud Cousin, Mohammad Kassem, and Eugene Bychkov. "Potentiometric Chemical Sensors Based on Metal Halide Doped Chalcogenide Glasses for Sodium Detection." Sensors 22, no. 24 (December 18, 2022): 9986. http://dx.doi.org/10.3390/s22249986.
Full textAntonov, V. N., L. V. Bekenov, and A. N. Yaresko. "Electronic Structure of Strongly Correlated Systems." Advances in Condensed Matter Physics 2011 (2011): 1–107. http://dx.doi.org/10.1155/2011/298928.
Full textBoubeche, Mebrouka, Ningning Wang, Jianping Sun, Pengtao Yang, Lingyong Zeng, Shaojuan Luo, Yiyi He, et al. "Superconducting dome associated with the suppression and re-emergence of charge density wave states upon sulfur substitution in CuIr2Te4 chalcogenides." Journal of Physics: Condensed Matter 34, no. 20 (March 24, 2022): 205602. http://dx.doi.org/10.1088/1361-648x/ac594c.
Full textSedhain, Ram Prasad, and Gopi Chandra Kaphle. "STRUCTURAL AND ELECTRONIC PROPERTIES OF TRANSITION METAL DI-CHALCOGENIDES (MX2) M=(Mo, W) AND X=(S, Se) IN BULK STATE: A FIRST-PRINCIPLES STUDY." Journal of Institute of Science and Technology 22, no. 1 (July 18, 2017): 41–50. http://dx.doi.org/10.3126/jist.v22i1.17738.
Full textPatil, S. M., S. R. Mane, R. M. Mane, S. S. Mali, P. S. Patil, and P. N. Bhosale. "Synthesis and X-ray photoelectron spectroscopy (XPS) and thermoelectric studies of ternary Bi2(Te0.5Se0.5)3 mixed-metal chalcogenide thin films by the arrested precipitation technique." Canadian Journal of Chemistry 89, no. 11 (November 2011): 1375–81. http://dx.doi.org/10.1139/v11-107.
Full textMitchell, Kwasi, and James A. Ibers. "Rare-Earth Transition-Metal Chalcogenides." Chemical Reviews 102, no. 6 (June 2002): 1929–52. http://dx.doi.org/10.1021/cr010319h.
Full textVaradwaj, Pradeep, Helder Marques, Arpita Varadwaj, and Koichi Yamashita. "Chalcogen···Chalcogen Bonding in Molybdenum Disulfide, Molybdenum Diselenide and Molybdenum Ditelluride Dimers as Prototypes for a Basic Understanding of the Local Interfacial Chemical Bonding Environment in 2D Layered Transition Metal Dichalcogenides." Inorganics 10, no. 1 (January 12, 2022): 11. http://dx.doi.org/10.3390/inorganics10010011.
Full textHuang, Yu Li, Wei Chen, and Andrew T. S. Wee. "Two‐dimensional magnetic transition metal chalcogenides." SmartMat 2, no. 2 (May 4, 2021): 139–53. http://dx.doi.org/10.1002/smm2.1031.
Full textJung, Yeonwoong, Yu Zhou, and Judy J. Cha. "Intercalation in two-dimensional transition metal chalcogenides." Inorganic Chemistry Frontiers 3, no. 4 (2016): 452–63. http://dx.doi.org/10.1039/c5qi00242g.
Full textBaranov, N. V., N. V. Selezneva, and V. A. Kazantsev. "Magnetism and Superconductivity of Transition Metal Chalcogenides." Physics of Metals and Metallography 119, no. 13 (December 2018): 1301–4. http://dx.doi.org/10.1134/s0031918x18130215.
Full textJAEGERMANN, W., and H. TRIBUTSCH. "Interfacial properties of semiconducting transition metal chalcogenides." Progress in Surface Science 29, no. 1-2 (1988): 1–167. http://dx.doi.org/10.1016/0079-6816(88)90015-9.
Full textMitchell, Kwasi, and James A. Ibers. "ChemInform Abstract: Rare-Earth Transition-Metal Chalcogenides." ChemInform 33, no. 34 (May 20, 2010): no. http://dx.doi.org/10.1002/chin.200234267.
Full textSingh, Harish, McKenzie Marley Hines, Shatadru Chakravarty, and Manashi Nath. "Multi-Walled Carbon Nanotube Supported Manganese Selenide As Highly Active Bifunctional OER and ORR Electrocatalyst." ECS Meeting Abstracts MA2022-01, no. 34 (July 7, 2022): 1376. http://dx.doi.org/10.1149/ma2022-01341376mtgabs.
Full textZhang, Yingxi, Liao Zhang, Tu'an Lv, Paul K. Chu, and Kaifu Huo. "Two‐Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage." ChemSusChem 13, no. 6 (March 9, 2020): 1114–54. http://dx.doi.org/10.1002/cssc.201903245.
Full textGuo, Yan-Dong, Hong-Bo Zhang, Hong-Li Zeng, Hai-Xia Da, Xiao-Hong Yan, Wen-Yue Liu, and Xin-Yi Mou. "A progressive metal–semiconductor transition in two-faced Janus monolayer transition-metal chalcogenides." Physical Chemistry Chemical Physics 20, no. 32 (2018): 21113–18. http://dx.doi.org/10.1039/c8cp02929f.
Full textZhou, Xiuquan, and Efrain E. Rodriguez. "Tetrahedral Transition Metal Chalcogenides as Functional Inorganic Materials." Chemistry of Materials 29, no. 14 (July 5, 2017): 5737–52. http://dx.doi.org/10.1021/acs.chemmater.7b01561.
Full textSALVADOR, P. A., T. O. MASON, M. E. HAGERMAN, and K. R. POEPPELMEIER. "ChemInform Abstract: Layered Transition Metal Oxides and Chalcogenides." ChemInform 29, no. 17 (June 23, 2010): no. http://dx.doi.org/10.1002/chin.199817275.
Full textLin, Yang-Jie, Bin-Wen Liu, Run Ye, Xiao-Ming Jiang, Long-Qi Yang, Hui-Yi Zeng, and Guo-Cong Guo. "SrCdSnQ4 (Q = S and Se): infrared nonlinear optical chalcogenides with mixed NLO-active and synergetic distorted motifs." Journal of Materials Chemistry C 7, no. 15 (2019): 4459–65. http://dx.doi.org/10.1039/c9tc00029a.
Full textMazánek, Vlastimil, Hindia Nahdi, Jan Luxa, Zdeněk Sofer, and Martin Pumera. "Electrochemistry of layered metal diborides." Nanoscale 10, no. 24 (2018): 11544–52. http://dx.doi.org/10.1039/c8nr02142b.
Full textBronger, W., P. Müller, and D. Welz. "Magnetism of ternary alkali metal–transition metal chalcogenides with binuclear units." Physica B: Condensed Matter 276-278 (March 2000): 710–11. http://dx.doi.org/10.1016/s0921-4526(99)01814-1.
Full textDai, Meng, and Rui Wang. "Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides." Small 17, no. 29 (May 20, 2021): 2006813. http://dx.doi.org/10.1002/smll.202006813.
Full textSu, Jianwei, Guiheng Liu, Lixin Liu, Jiazhen Chen, Xiaozong Hu, Yuan Li, Huiqiao Li, and Tianyou Zhai. "Recent Advances in 2D Group VB Transition Metal Chalcogenides." Small 17, no. 14 (March 10, 2021): 2005411. http://dx.doi.org/10.1002/smll.202005411.
Full textKuznetsov, Vitalii, Andrej Fedorov, Mihail Naberukhin, Aleksandr Berdinsky, Pavel Poltarak, and Vladimir Fedorov. "Transition metal chalcogenides as sensitive elements for gas sensors." Transaction of Scientific Papers of the Novosibirsk State Technical University, no. 3-4 (April 10, 2019): 136–46. http://dx.doi.org/10.17212/2307-6879-2018-3-4-136-146.
Full textChen, Zhijie, Wei Wei, and Bing-Jie Ni. "Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis." Current Opinion in Electrochemistry 31 (February 2022): 100888. http://dx.doi.org/10.1016/j.coelec.2021.100888.
Full textWang, Peijian, Deren Yang, and Xiaodong Pi. "Toward Wafer‐Scale Production of 2D Transition Metal Chalcogenides." Advanced Electronic Materials 7, no. 8 (May 13, 2021): 2100278. http://dx.doi.org/10.1002/aelm.202100278.
Full textYoo, Dongwon, Minkyoung Kim, Sohee Jeong, Jeonghee Han, and Jinwoo Cheon. "Chemical Synthetic Strategy for Single-Layer Transition-Metal Chalcogenides." Journal of the American Chemical Society 136, no. 42 (October 14, 2014): 14670–73. http://dx.doi.org/10.1021/ja5079943.
Full textBennett, J. C., and F. W. Boswell. "Charge-density wave modulations in the transition metal chalcogenides." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 706–7. http://dx.doi.org/10.1017/s0424820100165999.
Full textBurdett, Jeremy K., and John F. Mitchell. "Electronic origin of nonstoichiometry in early-transition-metal chalcogenides." Chemistry of Materials 5, no. 10 (October 1993): 1465–73. http://dx.doi.org/10.1021/cm00034a016.
Full textJaegermann, W., and D. Schmeisser. "Reactivity of layer type transition metal chalcogenides towards oxidation." Surface Science Letters 165, no. 1 (January 1986): A3. http://dx.doi.org/10.1016/0167-2584(86)91160-6.
Full textJaegermann, W., and D. Schmeisser. "Reactivity of layer type transition metal chalcogenides towards oxidation." Surface Science 165, no. 1 (January 1986): 143–60. http://dx.doi.org/10.1016/0039-6028(86)90666-7.
Full textTremel, Wolfgang, Holger Kleinke, Volkmar Derstroff, and Christian Reisner. "Transition metal chalcogenides: new views on an old topic." Journal of Alloys and Compounds 219, no. 1-2 (March 1995): 73–82. http://dx.doi.org/10.1016/0925-8388(94)05064-3.
Full textQin, Na, Xian Du, Yangyang Lv, Lu Kang, Zhongxu Yin, Jingsong Zhou, Xu Gu, et al. "Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX 2 (X = Se, Te)." Chinese Physics B 31, no. 3 (March 1, 2022): 037101. http://dx.doi.org/10.1088/1674-1056/ac3ecd.
Full textWang, Lin-Hui, Long-Long Ren, and Yu-Feng Qin. "The Review of Hybridization of Transition Metal-Based Chalcogenides for Lithium-Ion Battery Anodes." Materials 16, no. 12 (June 18, 2023): 4448. http://dx.doi.org/10.3390/ma16124448.
Full textSong, Ruru, Deyu Li, Yafeng Xu, Junfeng Gao, Lu Wang, and Youyong Li. "Interface engineering of heterogeneous transition metal chalcogenides for electrocatalytic hydrogen evolution." Nanoscale Advances 4, no. 3 (2022): 865–70. http://dx.doi.org/10.1039/d1na00768h.
Full textZhao, Yang, Shizhong Wei, Kunming Pan, Zhili Dong, Bin Zhang, Hong-Hui Wu, Qiaobao Zhang, Junpin Lin, and Huan Pang. "Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting." Chemical Engineering Journal 421 (October 2021): 129645. http://dx.doi.org/10.1016/j.cej.2021.129645.
Full textMatthews, Peter D., Paul D. McNaughter, David J. Lewis, and Paul O'Brien. "Shining a light on transition metal chalcogenides for sustainable photovoltaics." Chemical Science 8, no. 6 (2017): 4177–87. http://dx.doi.org/10.1039/c7sc00642j.
Full textKrishnamoorthy, Aravind, Minh A. Dinh, and Bilge Yildiz. "Hydrogen weakens interlayer bonding in layered transition metal sulfide Fe1+xS." Journal of Materials Chemistry A 5, no. 10 (2017): 5030–35. http://dx.doi.org/10.1039/c6ta10538f.
Full textLi, Guang-mao, Qiong Liu, Kui Wu, Zhi-hua Yang, and Shi-lie Pan. "Na2CdGe2Q6(Q = S, Se): two metal-mixed chalcogenides with phase-matching abilities and large second-harmonic generation responses." Dalton Transactions 46, no. 9 (2017): 2778–84. http://dx.doi.org/10.1039/c7dt00087a.
Full textLi, Song-Lin, Kazuhito Tsukagoshi, Emanuele Orgiu, and Paolo Samorì. "Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors." Chemical Society Reviews 45, no. 1 (2016): 118–51. http://dx.doi.org/10.1039/c5cs00517e.
Full textSEKINE, Tomoyuki. "Lattice dynamics and Raman scattering in intercalated transition-metal chalcogenides." Journal of the Spectroscopical Society of Japan 40, no. 1 (1991): 3–14. http://dx.doi.org/10.5111/bunkou.40.3.
Full textRouxel, Jean. "New 1D-Materials In The Field Of Transition Metal Chalcogenides." Molecular Crystals and Liquid Crystals 121, no. 1-4 (March 1985): 1–13. http://dx.doi.org/10.1080/00268948508074823.
Full textMonceau, P., M. Renard, J. Richard, M. C. Saint-lager, and Z. Z. Wang. "Non-Linear Response of Transition Metal Tri-and Tetra-Chalcogenides." Molecular Crystals and Liquid Crystals 121, no. 1-4 (March 1985): 39–47. http://dx.doi.org/10.1080/00268948508074828.
Full textSUGIMOTO, Jun, and Kazuhito SHINTANI. "10113 Analysis of the electronic properties of transition metal chalcogenides." Proceedings of Conference of Kanto Branch 2015.21 (2015): _10113–1_—_10113–2_. http://dx.doi.org/10.1299/jsmekanto.2015.21._10113-1_.
Full textPowell, A. V. "Chapter 7. Intercalation compounds of low-dimensional transition metal chalcogenides." Annual Reports Section "C" (Physical Chemistry) 90 (1993): 177. http://dx.doi.org/10.1039/pc9939000177.
Full textHeine, Thomas. "Transition Metal Chalcogenides: Ultrathin Inorganic Materials with Tunable Electronic Properties." Accounts of Chemical Research 48, no. 1 (December 9, 2014): 65–72. http://dx.doi.org/10.1021/ar500277z.
Full textYin, Wenlong, Wendong Wang, Lei Kang, Zheshuai Lin, Kai Feng, Youguo Shi, Wenyu Hao, Jiyong Yao, and Yicheng Wu. "Ln3FeGaQ7: A new series of transition-metal rare-earth chalcogenides." Journal of Solid State Chemistry 202 (June 2013): 269–75. http://dx.doi.org/10.1016/j.jssc.2013.03.029.
Full textSarma, Saurav Chandra, and Sebastian C. Peter. "Structurally ordered transition metal-based chalcogenides for oxygen reduction reaction." Acta Crystallographica Section A Foundations and Advances 73, a2 (December 1, 2017): C1271. http://dx.doi.org/10.1107/s2053273317083036.
Full textBrec, R. "Host structure modification upon lithium intercalation in transition metal chalcogenides." Materials Science and Engineering: B 3, no. 1-2 (July 1989): 73–79. http://dx.doi.org/10.1016/0921-5107(89)90181-5.
Full text