Academic literature on the topic 'Transition metal dichalcogenide (TMD)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transition metal dichalcogenide (TMD).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transition metal dichalcogenide (TMD)"

1

Chhowalla, Manish, Zhongfan Liu, and Hua Zhang. "Two-dimensional transition metal dichalcogenide (TMD) nanosheets." Chemical Society Reviews 44, no. 9 (2015): 2584–86. http://dx.doi.org/10.1039/c5cs90037a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Xiao, Zhuangchai Lai, Qinglang Ma, and Hua Zhang. "Novel structured transition metal dichalcogenide nanosheets." Chemical Society Reviews 47, no. 9 (2018): 3301–38. http://dx.doi.org/10.1039/c8cs00094h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cherusseri, Jayesh, Nitin Choudhary, Kowsik Sambath Kumar, Yeonwoong Jung, and Jayan Thomas. "Recent trends in transition metal dichalcogenide based supercapacitor electrodes." Nanoscale Horizons 4, no. 4 (2019): 840–58. http://dx.doi.org/10.1039/c9nh00152b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rajabi Kouchi, Fereshteh, Tony Valayil Varghese, Josh Eixenberger, Amin Salehi-Khojin, and David Estrada. "Synthesis and Formulation of Ternary Transition Metal Dichalcogenide Alloys for Additive Electronic Manufacturing." ECS Meeting Abstracts MA2023-01, no. 16 (August 28, 2023): 1451. http://dx.doi.org/10.1149/ma2023-01161451mtgabs.

Full text
Abstract:
Compared with the most investigated graphene, layered transition metal dichalcogenides (TMDs) have received significant attention due to their various chemical compositions and great potential electronic application. In order to tailor and engineer properties of TMDs and therefore enhance their efficiency toward commercial applications, several methods have been employed including reducing dimensionality, creating inter and intra-heterostructures, introducing inter stain, and alloying. Among these, alloying via chemical vapor transport (CVT) is scalable, cost- efficient, and controllable method of tuning TMD bulk crystal properties. Alloying of TMDs can be categorized into several types including metal replacement, dichalcogenide replacement, and both metal and dichalcogenide replacement. In a typical TMD CVT reaction, high-purity precursors are mixed in a desired stochiometric ratio, vacuumed, and sealed in an ampoule to form a closed system. The resulting TMD crystal can then be used for additional processes, e.g., exfoliation to yield 2D TMD nanosheets. Additive electronics manufacturing is a promising technique for the scalable fabrication of electronic devices, including sensors and energy storage devices. For an ink to be compatible for different printing modalities the ink rheology including viscosity, surface tension, and solid requires to be tuned to obtain suitable fluid dynamic parameters for jetting the ink. This work summarizes the development, synthesis, characterization, and formulation of two-dimensional ternary TMDCs ink for aerosol jet printing (AJP) technology. Ball milling assisted liquid exfoliation is utilized for synthesizing ternary TMDs nanomaterials under controlled condition. The resulting nanomaterial is developed into nanomaterial ink compatible with AJP. Detailed analysis of the material characterization and ink properties are required to optimize the fluid dynamics and properties of the ink. After printing the formulated ink using AJP on various substrates, post-printing process techniques is required to be investigated for printed nanomaterials inks to achieve bulk-like performance for the printed structures. Our results highlight the innovations in synthesis and formulation of ternary transition metal dichalcogenide nanomaterial inks for additive manufacturing of electronic devices such as sensors, solar cells, and energy storage devices.
APA, Harvard, Vancouver, ISO, and other styles
5

Yeh, Chen-Hao, Yu-Tang Chen, and Dah-Wei Hsieh. "Effects of external electric field on the sensing property of volatile organic compounds over Janus MoSSe monolayer: a first-principles investigation." RSC Advances 11, no. 53 (2021): 33276–87. http://dx.doi.org/10.1039/d1ra05764b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gao, Chan, Xiaoyong Yang, Ming Jiang, Lixin Chen, Zhiwen Chen, and Chandra Veer Singh. "Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys." Physical Chemistry Chemical Physics 24, no. 7 (2022): 4653–65. http://dx.doi.org/10.1039/d1cp05847a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Hanyu, Jaehoon Ji, Adalberto A. Gonzalez, and Jong Hyun Choi. "Tailoring photoelectrochemical properties of semiconducting transition metal dichalcogenide nanolayers with porphyrin functionalization." Journal of Materials Chemistry C 5, no. 43 (2017): 11233–38. http://dx.doi.org/10.1039/c7tc02861j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Wen, Yuanchang Li, Wenhui Duan, and Feng Ding. "Ultra-stable small diameter hybrid transition metal dichalcogenide nanotubes X–M–Y (X, Y = S, Se, Te; M = Mo, W, Nb, Ta): a computational study." Nanoscale 7, no. 32 (2015): 13586–90. http://dx.doi.org/10.1039/c5nr02812d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Hyebin, Kookjin Lee, Yanghee Kim, Hyunjin Ji, Junhee Choi, Minsik Kim, Jae-Pyoung Ahn, and Gyu-Tae Kim. "Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications." Nanoscale 11, no. 45 (2019): 22118–24. http://dx.doi.org/10.1039/c9nr05065e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Ruo-Si, Guanglong Ding, Ye Zhou, and Su-Ting Han. "Fermi-level depinning of 2D transition metal dichalcogenide transistors." Journal of Materials Chemistry C 9, no. 35 (2021): 11407–27. http://dx.doi.org/10.1039/d1tc01463c.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Transition metal dichalcogenide (TMD)"

1

Gorini, Lorenzo. "Electrical contact properties of ultrathin transition metal dichalcogenide sheets." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16884/.

Full text
Abstract:
The graphene discovery led to advances in exfoliation and synthetic techniques, and the lack of a bandgap in graphene has stimulated the research for new 2D semiconducting materials. Transition metal dichalcogenides (TMDCs), semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), have recently been isolated. TMDCs exhibit a unique combination of atomic-scale thickness, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, valleytronics and optoelectronics. According to optical measurements, single-layer WS2 sheets exhibit a direct band gap of at least 2.0 eV. Because of its strong spin-orbit coupling induced valence band splitting, WS2 shows spin-valley coupling, even in few-layer sheets , which may allow easier observation of the valley Hall effect than in the other TMDCs. The thesis reviews the theoretical background of TMDCs and their optoelectronic properties. It also reports on the fabrication of field-effect transistors based on few-layer sheets of WS2 and the investigation of their electronic transport properties. Particularly the project focuses on improving the interface between the metal contact and WS2 sheet, where annealing improves the contact transparency. Together with van der Pauw geometry, annealing allows four-terminal measurements to be performed and the pristine properties of the material to be recovered at room temperature, where the devices show n-type behaviour and a linear I-V curve. The promising improvements and the electronic properties shown in this thesis make WS2 interesting for future applications in valleytronic devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Choukroun, Jean. "Theoretical sStudy of In-plane Heterojunctions of Transition-metal Dichalcogenides and their Applications for Low-power Transistors." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS557/document.

Full text
Abstract:
La miniaturisation des MOSFET a permis une forte diminution des transistors et des puces, ainsi qu’une augmentation exponentielle des capacités de calcul. Cette miniaturisation ne peut néanmoins continuer ainsi: de nos jours, un microprocesseur peut contenir des dizaines de milliards de transistors et la chaleur dégagée par ces composants peut fortement détériorer ses performances. De plus, du fait de leur principe même de fonctionnement, la tension d’alimentation des MOSFET ne peut être réduite sans en impacter les performances. De nouvelles architectures telles que le TFET -basé sur l’effet tunnel bande-à-bande et pouvant fonctionner à des tensions d’alimentation très basses- ainsi que de nouveaux matériaux pourraient donc apporter une alternative au MOSFET silicium. Les monocouches de dichalcogènures de métaux de transitions (TMDs) -des semiconducteurs à bande interdite directe d’environ 1 à 2 eV- possèdent un fort potentiel pour l’électronique et la photonique. De plus, dans le cas de contraintes appropriées, ils peuvent conduire un alignement de bandes présentant un broken-gap; cette configuration permet de surpasser les limites habituelles du TFETs, à savoir de faibles courants dus à l’effet tunnel sur lequel ces dispositifs reposent. Dans ce travail de thèse, des hétérojonctions planaires de TMD sont modélisées via une approche atomistique de liaisons fortes, et une configuration broken-gap est observée dans deux d’entre elles (MoTe2/MoS2 et WTe2/MoS2). Leur potentiel dans le cadre de transistors à effet tunnel (TFETs) est évalué au moyen de simulations de transport quantique basées sur un modèle TB atomistique ainsi que la théorie des fonctions de Green hors-équilibre. Des TFETs type-p et type-n basés sur ces hétérojonctions sont simulés et présentent des courants ON élevés (ION > 103 µA/µm) ainsi que des pentes sous-seuil extrêmement raides (SS < 5 mV/dec) à des tensions d’alimentation très faibles (VDD = 0.3 V). Plusieurs architectures novatrices basées sur ces TFETs et découlant de la nature 2D des matériaux utilisés sont également présentées, et permettent d’atteindre des performances encore plus élevées
Nowadays, microprocessors can contain tens of billions of transistors and as a result, heat dissipation and its impact on device performance has increasingly become a hindrance to further scaling. Due to their working mechanism, the power supply of MOSFETs cannot be reduced without deteriorating overall performance, and Si-MOSFETs scaling therefore seems to be reaching its end. New architectures such as the TFET, which can perform at low supply voltages thanks to its reliance on band-to-band tunneling, and new materials could solve this issue. Transition metal dichalcogenide monolayers (TMDs) are 2D semiconductors with direct band gaps ranging from 1 to 2 eV, and therefore hold potential in electronics and photonics. Moreover, when under appropriate strains, their band alignment can result in broken-gap configurations which can circumvent the traditionally low currents observed in TFETs due to the tunneling mechanism they rely upon. In this work, in-plane TMD heterojunctions are investigated using an atomistic tight-binding approach, two of which lead to a broken-gap configuration (MoTe2/MoS2 and WTe2/MoS2). The potential of these heterojunctions for use in tunnel field-effect transistors (TFETs) is evaluated via quantum transport computations based on an atomistic tight-binding model and the non-equilibrium Green’s function theory. Both p-type and n-type TFETs based on these in-plane TMD heterojunctions are shownto yield high ON currents (ION > 103 µA/µm) and extremely low subthreshold swings (SS < 5 mV/dec) at low supply voltages (VDD = 0.3 V). Innovative device architectures allowed by the 2D nature of these materials are also proposed, and shown to enhance performance even further
APA, Harvard, Vancouver, ISO, and other styles
3

Plumadore, Ryan. "Study of Two Dimensional Materials by Scanning Probe Microscopy." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38637.

Full text
Abstract:
This thesis explores structural and electronic properties of layered materials at the nanometre scale. Room temperature and low temperature ultrahigh vacuum scanning probe microscopy (scanning tunneling microscopy, scanning tunneling spectroscopy, atomic force microscopy) is used as the primary characterization method. The main findings in this thesis are: (a) observations of the atomic lattice and imaging local lattice defects of semiconducting ReS2 by scanning tunneling microscopy, (b) measurement of the electronic band gap of ReS2 by scanning tunneling spectroscopy, and (c) scanning tunneling microscopy study of 1T-TaS2 lattice and chemically functionalizing its defects with magnetic molecules.
APA, Harvard, Vancouver, ISO, and other styles
4

Zeng, Xiaoling [Verfasser], Veit [Akademischer Betreuer] Wagner, Veit [Gutachter] Wagner, Thomas [Gutachter] Heine, and Marko [Gutachter] Marinkovic. "Solution Processed 2D Transition Metal Dichalcogenides and Electrical Properties of TMD Thin Film Transistors / Xiaoling Zeng ; Gutachter: Veit Wagner, Thomas Heine, Marko Marinkovic ; Betreuer: Veit Wagner." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2017. http://d-nb.info/1148104011/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Těšík, Jan. "Luminiscence polovodičů studovaná rastrovací optickou mikroskopií v blízkém poli." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-320110.

Full text
Abstract:
This work is focused on the study of luminescence of atomic thin layers of transition metal chalkogenides (eg. MoS2). In the experimental part, the work deals with the preparation of atomic thin layers of semiconducting chalcogenides and the subsequent manufacturing of plasmonic interference structures around these layers. The illumination of the interference structure will create a standing plasmonic wave that will excite the photoluminescence of the semiconductor. Photoluminescence was studied both by far-field spectroscopy and near-field optical microscopy.
APA, Harvard, Vancouver, ISO, and other styles
6

Desgué, Eva. "Control of structural and electrical properties of bilayer to multilayer PtSe₂ films grown by molecular beam epitaxy for high-performance optoelectronic devices." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP170.

Full text
Abstract:
Le PtSe₂ est un matériau 2D de la famille des dichalcogénures de métaux de transition (TMDs) qui présente des propriétés intrinsèques exceptionnelles : mobilité des porteurs de charge élevée (200 - 450 cm².(V.s)⁻¹), gap électronique ajustable en fonction du nombre de monocouches (MLs), absorption optique large bande et excellente stabilité à l'air. Ces propriétés sont idéales pour des applications (opto)électroniques. Cependant, la croissance de PtSe₂ de haute qualité cristalline sur un substrat à bas coût et isolant reste un enjeu majeur. Ici, la synthèse de PtSe₂ bicouche à multicouche (< 20 MLs) par épitaxie par jets moléculaires (MBE) est optimisée sur un substrat de saphir. Les caractérisations systématiques comprennent la diffraction électronique (RHEED), la spectroscopie Raman, la spectroscopie de rayons X à dispersion d'énergie (EDS) et des mesures électriques de conductivité. Pour les films épais de PtSe₂ semi-métallique, on démontre que des températures élevées de croissance (520 °C) et de recuit (690 °C), ainsi qu'un fort flux de sélénium (Ф(Se) = 0,5 Å.s⁻¹ ; Ф(Se)/Ф(Pt) ~ 170), permettent d'obtenir une haute qualité cristalline et une haute conductivité électrique. L'impact du recuit post-croissance sur les propriétés structurelles des films épais est particulièrement étudié par diffraction des rayons X (XRD) et microscopie électronique à transmission (STEM). Les films de PtSe₂ non recuits consistent en une distribution 3D de domaines superposés ayant différentes orientations dans le plan, tandis que les films recuits consistent en un réseau 2D de domaines monocristallins selon l'axe c. En d'autres termes, les films non recuits ont des domaines d'épaisseur plus faible que celle du film et sont constitués de phases semi-conductrices et semi-métalliques, entraînant une faible conductivité (0,5 mS). Au contraire, les films recuits sont composés uniquement de domaines quasi-monocristallins et semi-métalliques, et présentent une très haute conductivité, jusqu'à 1,6 mS. On montre également que l'indicateur de qualité cristalline couramment utilisé, qui est la largeur à mi-hauteur (FWHM) du pic Raman Eg, n'est valide que s'il est étudié conjointement avec la FWHM du pic Raman A1g. On démontre que plus la FWHM des pics Eg et A1g est faible, plus la qualité cristalline des films de PtSe₂ dans le plan et hors du plan, respectivement, est élevée, et plus la conductivité électrique augmente. Concernant les films bicouches de PtSe₂ semi-conducteur, on obtient des films de haute qualité cristalline, dont la FWHM des pics Eg et A1g est comparable à celle des cristaux exfoliés, en effectuant une synthèse avec un flux périodique de Pt (periodic supply epitaxy). Les films de PtSe₂ bicouches à multicouches ne sont pas monocristallins mais présentent une texture de fibre selon l'axe c, ce qui est typique sur un substrat de saphir. On démontre pour la première fois l'épitaxie d'un film épais de PtSe₂ sur des surfaces vicinales (marches) de saphir. Pour finir, nous avons fabriqué des dispositifs optoélectroniques fonctionnant à 1,55 µm, la longueur d'onde typique des télécommunications par fibre optique. Ils sont à base de PtSe₂ épais semi-métallique, présentant une haute conductivité électrique et une bonne absorption optique à 1,55 µm, qui est directement synthétisé sur un substrat de saphir 2 pouces. On montre des photodétecteurs à base de PtSe₂ avec une largeur de bande record de 60 GHz et le premier mélangeur optoélectronique à base d'un TMD présentant, de plus, une largeur de bande supérieure à 30 GHz
PtSe₂ is a 2D material from the transition metal dichalcogenide (TMD) family that exhibits outstanding intrinsic properties: high charge carrier mobility (200 - 450 cm².(V.s)⁻¹), tunable bandgap with the number of monolayers (MLs), broadband optical absorption and excellent air stability. These properties are ideally suited for (opto)electronic applications. However, the growth of high crystalline quality PtSe₂ on low-cost and insulating substrates remains a major challenge. Here, the synthesis of bilayer to multilayer PtSe₂ films (< 20 MLs) by molecular beam epitaxy (MBE) is optimized on a sapphire substrate. The systematic characterizations include electron diffraction (RHEED), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX) and electrical conductivity measurements. For thick semimetallic PtSe₂ films, we demonstrate that high growth (520°C) and annealing (690°C) temperatures, combined with a high selenium flux (Ф(Se) = 0.5 Å.s⁻¹; Ф(Se)/Ф(Pt) ~ 170), leads to high crystalline quality and high electrical conductivity. In particular, the effect of the post-growth annealing on the structural properties of the thick films is investigated using X-ray diffraction (XRD) and transmission electron microscopy (STEM). We show that non-annealed PtSe₂ films consist of a 3D random distribution of superimposed domains with different in-plane orientations, while the annealed films consist of a 2D network of single-crystalline domains along the c-axis. In other words, non-annealed films have domains with a thickness smaller than that of the film and are composed of both semiconducting and semimetallic phases, resulting in low electrical conductivity (0.5 mS). In contrast, the annealed films are composed solely of quasi-single-crystalline and semimetallic domains, and exhibit high conductivity, up to 1.6 mS. We also show that the commonly used crystalline quality indicator, which is the full width at half maximum (FWHM) of the Eg Raman peak, becomes a reliable metric only when it is studied in conjunction with the FWHM of the A1g Raman peak. We demonstrate that the lower the FWHM of both the Eg and A1g peaks, the higher the crystalline quality of the in-plane and out-of-plane PtSe₂ films, respectively, and the higher the electrical conductivity. For semiconducting PtSe₂ bilayer films, high crystalline quality films with Eg and A1g FWHM values comparable to those of exfoliated crystals are obtained using a periodic Pt flux (periodic supply epitaxy). The bilayer to multilayer PtSe₂ films are not monocrystalline but present a fiber texture along the c-axis, which is typical on a sapphire substrate. The epitaxy of a thick PtSe₂ film on vicinal sapphire surfaces (steps) is demonstrated for the first time. Finally, we fabricated optoelectronic devices operating at 1.55 µm, the typical wavelength of optical fiber telecommunications. They are based on thick semi-metallic PtSe₂, exhibiting high electrical conductivity and good optical absorption at 1.55 µm, which is directly synthesized on a 2-inch sapphire substrate. We demonstrate PtSe₂-based photodetectors with a record bandwidth of 60 GHz and the first TMD-based optoelectronic mixer with, in addition, a bandwidth larger than 30 GHz
APA, Harvard, Vancouver, ISO, and other styles
7

Hart, Lewis. "Novel transition metal dichalcogenide semiconductors and heterostructures." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760986.

Full text
Abstract:
Rhenium diselenide and rhenium disulphide are layered semiconductors that belong to the transition metal dichalcogenide (TMD) family. Like graphene and other TMDs, these materials can be exfoliated down to a few atomic layers. However, unlike other TMDs, the rhenium dichalcogenides are only stable in a triclinic structure that exhibits in-plane anisotropy. This anisotropy manifests itself in the vibrational, optical and electronic transport properties ofthese crystals. Ab initio calculations and experimental results are presented to describe the Raman spectra of the rhenium dichalcogenides. From Raman spectroscopy the anisotropy of these crystals can be observed. Flipping a flake (a C2 rotation about an axis in the layer plane) is not a symmetry of the system. Therefore, there are two non-equivalent vertical orientations. Raman spectroscopy can be used to identify whether a flake is facing "up" or "down". The latticedynamics of these crystals are described using a simple ball and spring model. It is shown that low mass impurities, such as sulphur, in ReSe2 can occupy four non-equivalent positions of the unit cell; there are four local vibrational modes corresponding to these four positions and Raman spectroscopy can be used to find them. An unusual experimental geometry (edge-on excitation) helps enhance these signals. The electronic band structures of bulk ReSe2 and ReS2 are explored using angle-resolved photoemission spectroscopy (ARPES). From the measurements and complementary DFT calculations it is shown that: (i) there is anisotropy in the electronic dispersions; (ii) the valence band maxima are not located along any of the high symmetry directions; and (iii) both of these crystals have indirect band gaps. The rhenium dichalcogenides were thought to act as electronically decoupled monolayers; it is demonstrated that this is not the case and that thereis signicant electronic coupling between the layers. Finally, ARPES results of a monolayer of ReSe2 are presented; again, anisotropy in the electronic band structure is observed.
APA, Harvard, Vancouver, ISO, and other styles
8

McCormick, Elizabeth Joan McCormick. "Optical Properties of Two Dimensional Semiconductors." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1531907387651019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morell, Bennasser Nicolás. "Optomechanical resonators based on transition metal dichalcogenide monolayers." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/664927.

Full text
Abstract:
Suspended monolayer transition metal dichalcogenides (TMD) aremembranes that combine ultralow mass and exceptional optical prop-erties, making them intriguing materials for opto-mechanical applica-tions. However, the low measured quality factor of TMD resonatorshas been a roadblock so far. In this thesis, we first show an ultra-sensitive optical readout of monolayer TMD resonators that allows usto reveal their mechanical properties at cryogenic temperatures. Wefind that the quality factor of monolayer WSe2resonators greatly in-creases below room temperature, reaching values as high as 16000 at liquid nitrogen temperature and 47000 at liquid helium temper-ature. This surpasses the quality factor of monolayer graphene res-onators with similar surface areas. Upon cooling the resonator, the res-onant frequency increases significantly due to the thermal contractionof the WSe2lattice. These measurements allow us to experimentallystudy the thermal expansion coefficient of WSe2 monolayers for thefirst time. High Q-factors are also found in resonators based on MoS2 and MoSe2 monolayers. The high quality-factor found in this workopens new possibilities for coupling mechanical vibrational states totwo-dimensional excitons, valley pseudospins, and single quantumemitters and for quantum opto-mechanical experiments based on theCasimir interaction.The sensing capabilities offered by these high Q-factor nanome-chanical oscillators are also of interest for studying thermodynamicproperties in condensed matter regimes that are difficult to access. Inthe second part of the thesis, we use optomechanical systems basedon a MoSe2 monolayer to probe the thermal properties of phononsin two-dimensional lattices. We measure the thermal conductivityand the specific heat capacity down to cryogenic temperature. Thephonon transport crossovers from the diffusive to the ballistic regimewhen lowering the temperature below~100 K. The temperature de-pendence of the specific heat capacity approaches a quadratic depen-dence, the signature of two-dimensional lattices. Both the thermalconductivity and the specific heat capacity measurements are consis-tent with predictions based on first-principles. Our result establishes anew strategy to investigate thermal transport in two-dimensional ma-terials, and allows for exploring the phonon hydrodynamic regime,the anomalous heat conduction, and the phase transitions of electronicmany-body collective phenomena in monolayers
Los dicalcogenuros de metal de transición (TMD) monocapa suspendidos combinan una masa ultrabaja y propiedades ópticas excepcionales, lo que los convierte en materiales intrigantes para aplicaciones opto-mecánicas. Sin embargo, el bajo factor de calidad Q medido en los resonadores de TMD ha sido un obstáculo hasta ahora. En esta tesis, primero mostramos una lectura óptica ultra sensible de resonadores TMD de monocapa que nos permite revelar sus propiedades mecánicas a temperaturas criogénicas. Encontramos que el factor de calidad de los resonadores WSe2 monocapa aumenta considerablemente por debajo de la temperatura ambiente, alcanzando valores tan altos como 1.6 x 104 en temperatura de nitrógeno líquido y 4.7 x 104 en temperatura de helio líquido. Esto supera el factor de calidad de los resonadores de grafeno monocapa con áreas de superficie similares. Al enfriar el resonador, la frecuencia de resonancia aumenta significativamente debido a la contracción térmica la red del cristal de WSe2. Estas mediciones nos permiten estudiar experimentalmente el coeficiente de expansión térmica de las monocapas de WSe2 por primera vez. Los altos factores Q también se encuentran en los resonadores basados en las monocapas de MoS2 y MoSe2. El alto factor de calidad que se encuentra en este trabajo abre nuevas posibilidades para acoplar estados vibracionales mecánicos a excitones bidimensionales, valley pseudo-spins y emisores cuánticos únicos y para experimentos opto-mecánicos cuánticos basados en la interacción de Casimir. Las capacidades de detección ofrecidas por este nano-resonador mecánico de alto factor Q también son interesantes para estudiar propiedades termodinámicas en regímenes de la materia condensada a los que es difícil acceder. En la segunda parte de la tesis, utilizamos sistemas optomecánicos basados en una monocapa de MoSe2 para probar las propiedades térmicas de los fonones en redes de cristales bidimensionales. Medimos la conductividad térmica y la capacidad calorífica específica hasta temperaturas criogénicas. Los régimenes de transporte de fonones pasan de el difuso al balístico al bajar la temperatura por debajo de 100 K. La dependencia de la temperatura de la capacidad calorífica específica se aproxima a una dependencia cuadrática, lo cual es la firma de las redes bidimensionales. Tanto la conductividad térmica como las mediciones de la capacidad calorífica específica son coherentes con las predicciones basadas en primeros principios. Nuestro resultado establece una nueva estrategia para investigar el transporte térmico en materiales bidimensionales y permite explorar el régimen hidrodinámico de fonones, la conducción de calor anómala y las transiciones de fase de los fenómenos colectivos de cuerpos electrónicos en monocapas.
APA, Harvard, Vancouver, ISO, and other styles
10

Ilic, Stefan. "Quantum coherent phenomena in disordered transition metal dichalcogenide monolayers." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY038.

Full text
Abstract:
Les monocouches de dichalcogénures de métaux de transition (TMDC) sont des matériaux bidimensionnels découverts récemment. Ils possèdent un fort couplage spin-orbite (SOC) intrinsèque qui agit comme un champ Zeeman effectif perpendiculaire, mais avec des orientations opposées dans chaque vallée située autour des points +K et -K de la zone Brillouin. En présence de désordre, ce SOC influence fortement les phénomènes quantiques cohérents dans les TMDC. Dans cette thèse, nous étudions deux de ces phénomènes : la supraconductivité et les corrections à la conductance dues aux interférences quantiques, telles que la localisation ou l’anti-localisation faible, ainsi que les fluctuations universelles de la conductance.Une supraconductivité a été identifiée expérimentalement dans plusieurs TMDC, aussi bien dans les régimes dopés n (MoS2, WS2) que p (NbSe2, TaS2). Dans ces matériaux, le SOC intrinsèque provoque un "appariement d'Ising" inhabituel des paires de Cooper. En effet, celles-ci sont formées avec des électrons provenant de vallées opposées, donc leurs spins sont figés perpendiculairement à la couche. Un champ magnétique appliqué parallèlement à la couche n’est donc pas efficace pour briser les paires de Cooper par l'effet paramagnétique, ce qui entraîne une augmentation considérable du champ critique dans le plan. C’est la signature principale de la supraconductivité d'Ising. Dans la première partie de ce travail, nous calculons le champ critique et la densité des états dans les TMDC supraconducteurs désordonnés. Nous montrons que la diffusion intra-vallée n'affecte pas ces propriétés. En revanche, elles dépendent fortement de la diffusion inter-vallée qui produit un mécanisme de brisure des paires de Cooper. Dans les supraconducteurs Ising dopés p, dans lesquels plusieurs bandes croisent le niveau de Fermi, nous identifions la diffusion inter-bande comme un autre mécanisme important de brisure des paires. Nous montrons qu'une faible diffusion inter-vallée ou inter-bande peut expliquer les observations expérimentales dans les supraconducteurs TMDC dopés n ou p, respectivement.Dans la deuxième partie de ce travail, nous calculons les corrections à la conductance dues aux interférences quantiques dans les TMDC métalliques. Leur mesure peut servir de sonde indépendante pour identifier la nature du SOC et du désordre. En raison de l'interaction entre la structure de la vallée et le SOC, ces matériaux présentent un riche comportement de localisation (ou anti-localisation) faible et des fluctuations universelles de la conductance, qui sont qualitativement différents des autres systèmes bidimensionnels, comme les métaux conventionnels ou le graphène. Nos résultats peuvent également être utilisés pour décrire les hétéro-structures graphène/TMDC, dans lesquelles le SOC est induit dans la couche de graphène. Nous discutons différents régimes de paramètres qui permettent d’interpréter des expériences récentes et d’évaluer l’intensité du SOC et du désordre. En outre, nous montrons qu'un champ Zeeman dans le plan peut être utilisé pour distinguer les contributions de différents types de SOC à la localisation ou l’anti-localisation faible
Transition metal dichalcogenide monolayers (TMDCs) are recently discovered two-dimensional materials. They host a strong intrinsic spin-orbit coupling (SOC), that acts as an effective Zeeman field with opposite, out-of-plane orientations in the +K and –K corners of the Brillouin zone (valleys). This SOC, and its interplay with disorder, strongly influences the behavior of quantum coherent phenomena in TMDCs. In this thesis, we investigate two such phenomena: superconductivity and interference corrections to the conductance, which include weak (anti-) localization and universal conductance fluctuations.Several superconducting TMDCs have been experimentally found in both n-doped (MoS¬2, WS2) and p-doped (NbSe2, TaS2) regimes. Here, the intrinsic SOC causes unusual “Ising pairing” of the Cooper pairs, formed of electrons from opposite valleys with strongly pinned out-of-plane spins. In-plane magnetic fields are thus not efficient in breaking the Cooper pairs by the paramagnetic effect, which results in a large enhancement of the in-plane upper critical field – the main signature of Ising superconductivity. In the first part of this work, we calculate the upper critical field as well as the density of states of disordered superconducting TMDCs. We show that intravalley scattering does not affect these properties, but that they strongly depend on intervalley scattering, which provides a depairing mechanism. In p-doped Ising superconductors, where multiple bands cross the Fermi level, we identify interband scattering as another important mechanism. We show that weak intervalley and interband scattering can explain experimental observations in n- and p-doped TMDC superconductors, respectively.In the second part of this work, we calculate the interference corrections to the conductance in the normal state of TMDCs, which can serve as an independent probe of SOC of disorder. Because of the interplay between valley structure and SOC, these materials exhibit a rich behavior of weak (anti-) localization and universal conductance fluctuations, which is qualitatively different from other two-dimensional systems such as conventional metals or graphene. Our results can also be used to describe graphene/TMDC heterostructures, where SOC is induced in the graphene sheet. We discuss parameter regimes that can be used to interpret recent experiments and assess the strength of SOC and disorder. Furthermore, we show that an in-plane Zeeman field can be used to distinguish contributions of different kinds of SOC to the weak (anti-) localization
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Transition metal dichalcogenide (TMD)"

1

Singh, Abhay Kumar. 2D Transition-Metal Dichalcogenides (TMDs): Fundamentals and Application. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-0247-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shih, En-Min. Low-Temperature Transport Study of Transition Metal Dichalcogenide Heterostructures. [New York, N.Y.?]: [publisher not identified], 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Suk Hyun. Probing Transition Metal Dichalcogenide Monolayers and Heterostructures by Polarization-Resolved Spectroscopy. [New York, N.Y.?]: [publisher not identified], 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ardelean, Jenny V. Optical Characterization of Charge Transfer Excitons in Transition Metal Dichalcogenide Heterostructures. [New York, N.Y.?]: [publisher not identified], 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hill, Heather Marie. Probing Transition Metal Dichalcogenide Monolayers and Heterostructures by Optical Spectroscopy and Scanning Tunneling Spectroscopy. [New York, N.Y.?]: [publisher not identified], 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Transition metal dichalcogenide (TMD)"

1

Wang, Tian, Ashok Kumar Kakarla, and Jae Su Yu. "2D Transition Metal Dichalcogenides (TMD)-Based Nanomaterials for Lithium/Sodium-ion Batteries." In 2D Nanomaterials, 341–60. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003178453-20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Joshi, Swati, and Brajesh Kumar Kaushik. "Prospects for Electro-optic Modulator Based on 2D Transition Metal Dichalcogenides (TMD)." In Springer Proceedings in Physics, 661–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sridevi, R., and J. Charles Pravin. "Two-Dimensional Transition Metal Dichalcogenide (TMD) Materials in Field-Effect Transistor (FET) Devices for Low Power Applications." In Semiconductor Devices and Technologies for Future Ultra Low Power Electronics, 253–88. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003200987-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kolobov, Alexander V., and Junji Tominaga. "TMDC Heterostructures." In Two-Dimensional Transition-Metal Dichalcogenides, 447–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31450-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kolobov, Alexander V., and Junji Tominaga. "Magnetism in 2D TMDC." In Two-Dimensional Transition-Metal Dichalcogenides, 365–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31450-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kolobov, Alexander V., and Junji Tominaga. "Luminescence of 2D TMDC." In Two-Dimensional Transition-Metal Dichalcogenides, 295–320. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31450-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Kyungnam, Siwei Chen, Shichen Fu, and Eui-Hyeok Yang. "Synthesis of Transition Metal Dichalcogenides (TMDs)." In Topics in Applied Physics, 155–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93460-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Q., C. Zheng, K. Sagoe-Crentsil, and W. Duan. "Transfer and Substrate Effects on 2D Materials for Their Sensing and Energy Applications in Civil Engineering." In Lecture Notes in Civil Engineering, 409–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_42.

Full text
Abstract:
AbstractThe recent emergence of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) of the family (Mo, W)(S, Se)2 has attracted interest from a broad range of engineering applications, including advanced sensing and energy harvesting and conservation, because of their distinctive properties. However, it is critical important to achieve intact delamination and transfer of these atomically thin materials, as well as to understand the effects of the target substrates on their optical and electronic properties. Therefore, we developed and compared techniques for transferring as-grown WS2 crystals to arbitrary substrates. Polystyrene-assisted wet transfer can realize improved preservation of monolayer WS2 crystals than the commonly used poly(methyl methacrylate) (PMMA)-assisted wet transfer method, due to minimal chemical etching involved in the 2D material delamination process. The intercalation of alkali ions in the PMMA-based transfer method induces chemical doping over the transferred 2D crystals, leading to the formation of trions. Moreover, the edges of the crystals on hydrophilic substrates, such as sapphire or SiO2/Si, are subject to ambient water intercalation, which locally affects the photoluminescence behavior of the monolayer WS2 by doping and changing of the dielectric environment. This non-uniform optical behavior is absent when the crystal is transferred onto a hydrophobic substrate through which ambient water cannot penetrate. These results have important implications for the choice of target substrate and transfer method adopted for 2D TMD-based applications such as next-generation strain sensing, photodetectors, gas sensing, bio sensing, solar energy harvesting and radiative cooling in which uniform behavior of the channel material is required.
APA, Harvard, Vancouver, ISO, and other styles
9

Tyagi, Shrestha, Kavita Sharma, Ashwani Kumar, Yogendra K. Gautam, Anil Kumar Malik, and Beer Pal Singh. "Transition Metal Dichalcogenides (TMDs) Nanocomposites-Based Supercapacitors." In Materials Horizons: From Nature to Nanomaterials, 77–101. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0553-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Naz, Raheela, Tahir Rasheed, Suleman Khan, and Muhammad Bilal. "Nanostructured 2D Transition Metal Dichalcogenides (TMDs) as Electrodes for Supercapacitor." In Nanostructured Materials for Supercapacitors, 319–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Transition metal dichalcogenide (TMD)"

1

Suárez-Forero, D. G., R. Ni, S. Sarkar, M. Jalali Mehrabad, M. Hafezi, and Y. Zhou. "Chiral optical nanocavity with atomically thin mirrors." In CLEO: Fundamental Science, FF2C.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ff2c.2.

Full text
Abstract:
We demonstrate the design and fabrication of a 2D optical cavity composed of two atomically thin mirrors made of transition metal dichalcogenide (TMD) monolayers. Under a magnetic field, the cavity acquires a chiral behavior due to the active nature of the TMD mirrors.
APA, Harvard, Vancouver, ISO, and other styles
2

Berger, Russell, Alex Mavian, Edgar Dimitrov, Na Zhang, Nazifa Rumman, Pascal Bassène, Humberto Terrones, Peter Persans, Mauricio Terrones, and Moussa N’Gom. "A Wavefront Shaping Approach to Second Harmonic Generation Enhancement in WS2." In Frontiers in Optics, FTh3E.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.fth3e.2.

Full text
Abstract:
Using feedback based wavefront shaping (WFS), we enhance the weak second harmonic (SH) generation up to 10x in Transition Metal Dichalcogenide (TMD) crystals with nanometer scale interaction length probed by a femtosecond pulse.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Zhi, Li He, Bumho Kim, and Bo Zhen. "Electrical Control of Cavity Exciton-Polaritons." In CLEO: Fundamental Science, FTh3L.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth3l.2.

Full text
Abstract:
We demonstrate the electrical control of cavity exciton-polaritons by strongly coupling a transition metal dichalcogenides (TMD) heterostructure to a photonic crystal nanocavity and adjusting the doping level of the TMD monolayer.
APA, Harvard, Vancouver, ISO, and other styles
4

Jain, Puneet, Shotaro Yotsuya, Kosuke Nagashio, and Daisuke Kiriya. "Self-assembly of dopant molecules on MoS2 monolayer for degeneracy/heavily doping." In JSAP-Optica Joint Symposia, 18a_A35_1. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_1.

Full text
Abstract:
Transition metal dichalcogenides (TMDs) are class of materials with general formula MX2, where M is transition metal element from group IV, V, and VI (Mo, W, etc.); while X is chalcogen (S, Se, or Te). As the thickness of TMD decreases from bulk to monolayer, 2D TMDs exhibits a series of specific properties. Among all TMDs, molybdenum disulfide (MoS2) is one of the few with a natural layered structure, indicating that MoS2 can be stripped easily using scotch tape, to obtain high-quality MoS2 monolayer, without complicated chemical synthesis. MoS2 monolayer is an emergent semiconductor having a direct bandgap of 2.4 eV, and has potential applications in nanoelectronics, optoelectronics, and flexible electronics, etc.1)
APA, Harvard, Vancouver, ISO, and other styles
5

Bharti, Neetu Raj, Aditya Kushwaha, and Neeraj Goel. "Pt Nanocluster Decoration on WSe2 for Enhanced NO2 Sensing: A DFT Investigation." In JSAP-Optica Joint Symposia, 18a_A35_7. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_7.

Full text
Abstract:
Gas sensors play a crucial role in various aspects, from ensuring safety to environmental conditions. NO2 is indeed a harmful gas, primarily emitted from the combustion of fossil fuels and industrial activities, causing health problems and contributing to pollution [1]. Decorating noble metals on 2D transition metal dichalcogenide (TMD) nanomaterial may benefits like enhanced sensitivity, selectivity, fast response and so on [2]. In this work, a density functional theory (DFT) study compared NO2 sensing in pristine WSe2, one Pt atom decorated at the hollow site (WSe2-1Pt), two Pt atoms decorated at a hollow site (WSe2-2Pt) and three Pt atoms decorated at a hollow site (WSe2-3Pt) over WSe2 monolayer. To enhance the sensitivity response of WSe2 upon NO2, the decoration of the Pt atom was proposed to improve the chemical activity and electron mobility of the whole system.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Zhida, Haonan Wang, Li Yang, and Xiaoqin Li. "New quasiparticles in semiconductor moiré superlattices." In Laser Science, LM3F.3. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/ls.2024.lm3f.3.

Full text
Abstract:
In this study, we identify novel many-body excited states in transition metal dichalcogenides (TMD) homobilayers. We observe that optical resonances in MoSe2 bilayers change with variations in twist angle and doping. A distinct class of "charge-transfer" trions emerges as the atomic alignment between the layers gradually shifts. Spatially, the optically excited electron-hole pair predominantly exists at a different site than the doped hole within a moiré supercell. In terms of momentum, while the exciton is located in the K-valley, the hole is situated in the Γ-valley.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Haonan, Kenji Watanabe, Takashi Taniguchi, and Kazunari Matsuda. "Identification and manipulation of valley coherence in monolayer WSe2." In JSAP-Optica Joint Symposia, 17a_A35_7. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a35_7.

Full text
Abstract:
The monolayer transition metal dichalcogenide (TMDs) are granted with valley degree of freedom due to broken inversion symmetry, and strong spin-orbit coupling. The degenerated states at band-edges of K(K’) valley possess information of valley pseudospin, which experiences intervalley decoherence process during emission [1]. With valley decoherence not coupling to any radiative dipole, direct probing or manipulation of valley coherence in the time domain has remain a challenge. Here we propose a method of optically exploring the valley coherence time in the time-domain measurement.
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Yanlin, and Susumu Okada. "Energetics and electronic structures of Nb-doped WSSe layers." In JSAP-Optica Joint Symposia, 18a_A35_5. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_5.

Full text
Abstract:
Janus transition metal dichalcogenides (Janus TMDs) are a novel two-dimensional semiconductor. They consist of 3 atomic layers, where the transition metal layer is sandwiched by different chalcogen atom layers. This structural asymmetry produces a dipole moment normal to their layers, making them fascinating materials. The dipole moment provides the freedom to modulate the electronic structures of their stacking structures [1]. For example, bilayer Janus WSSe with SSe interface has staggered band edge alignment between two layers, while it has shallower or deeper band edge when it has SS or SeSe interface. Additionally, introduction of carriers to semiconductors by doping impurity elements is an essential for their practical device implementation. Nb is a common p-type dopant for TMDs to introduce carriers [2-3]. In this work, we aim to explore the energetics and electronic structures of Nb-doped WSSe based on the density functional theory.
APA, Harvard, Vancouver, ISO, and other styles
9

Shimazaki, Yuya. "Electronic and excitonic properties of semiconductor bilayer moiré system revealed by optical spectroscopy." In JSAP-Optica Joint Symposia, 17a_A35_4. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a35_4.

Full text
Abstract:
The recent discovery of many-body physics such as strongly correlated electrons, superconductivity and magnetism in precisely twist angle-controlled bilayer graphene at a magic angle revived enormous interest on moiré lattice system. Many-body physics in bilayer moiré system is not limited to graphene, but rather robustly appears in 2D semiconductor materials such as transition metal dichalcogenides (TMDs). Monolayer semiconductor TMDs have conduction and valence bands with relatively large effective mass which enhances the influence of Coulomb interactions, also resulting in formation of strongly bound excitons with optical excitations. In twisted bilayer semiconductor TMDs, the superlattice effect due to the formation of moiré lattice further enhances the influence of Coulomb interaction for electrons and expected to show many-body electronic phases.
APA, Harvard, Vancouver, ISO, and other styles
10

Baikadi, Pranay, Raseong Kim, Peter Reyntjens, Ashish Verma Penumatcha, Maarten Van de Put, and William G. Vandenberghe. "Towards Low Contact Resistance Metal Transition-Metal Dichalcogenide Contacts - A Quantum Transport Study." In 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 01–04. IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10732911.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Transition metal dichalcogenide (TMD)"

1

Knezevic, Irena. Tunable plasmon-enhanced second-order optical nonlinearity in transition-metal dichalcogenide nanotriangles (Final Report for SC0008712). Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1891198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography