Journal articles on the topic 'Transition metal defect model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Transition metal defect model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Давыдов, С. Ю., and О. В. Посредник. "Барьер Шоттки на контакте магнитного 3d-металла с полупроводником." Письма в журнал технической физики 47, no. 11 (2021): 37. http://dx.doi.org/10.21883/pjtf.2021.11.51006.18650.
Full textBishop, A. R., J. Tinka Gammel, and S. R. Phillpot. "Ground and defect states in a two band model of halogen-bridged transition metal linear chain complexes." Synthetic Metals 29, no. 2-3 (March 1989): 151–59. http://dx.doi.org/10.1016/0379-6779(89)90893-x.
Full textHuu Kien, Pham. "Study of Structural and Phase Transition of Nickel Metal." ISRN Materials Science 2014 (March 9, 2014): 1–6. http://dx.doi.org/10.1155/2014/253627.
Full textChristenson, Eric T., Dervla T. Isaac, Karin Yoshida, Erion Lipo, Jin-Sik Kim, Rodolfo Ghirlando, Ralph R. Isberg, and Anirban Banerjee. "The iron-regulated vacuolar Legionella pneumophila MavN protein is a transition-metal transporter." Proceedings of the National Academy of Sciences 116, no. 36 (August 20, 2019): 17775–85. http://dx.doi.org/10.1073/pnas.1902806116.
Full textRENDULIC, K. D., and A. WINKLER. "THE INFLUENCE OF SURFACE DEFECTS AND FOREIGN ATOMS ON THE ADSORPTION KINETICS." International Journal of Modern Physics B 03, no. 07 (July 1989): 941–72. http://dx.doi.org/10.1142/s0217979289000701.
Full textMartin, M. "Trapping during hopping conduction of electronic defects: A conductivity model for doped transition metal oxides." Phys. Chem. Chem. Phys. 6, no. 13 (2004): 3627–32. http://dx.doi.org/10.1039/b402156h.
Full textBrown, Randall H., and A. E. Carlsson. "Effective pair interactions for a model binary transition metal alloy at point and extended defects." Solid State Communications 61, no. 12 (March 1987): 743–46. http://dx.doi.org/10.1016/0038-1098(87)90469-8.
Full textHanzig, Juliane, Matthias Zschornak, Erik Mehner, Florian Hanzig, Sven Jachalke, Melanie Nentwich, Hartmut Stöcker, Tilmann Leisegang, Christian Röder, and Dirk Meyer. "Defect separation in strontium titanate: Formation of a polar phase." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C233. http://dx.doi.org/10.1107/s2053273314097666.
Full textСафиулина, И. А., Е. В. Алтынбаев, Е. Г. Яшина, A. Heinemann, Л. Н. Фомичева, А. В. Цвященко, and С. В. Григорьев. "Исследование мезоструктуры моногерманидов переходных металлов, синтезированных под давлением." Физика твердого тела 60, no. 4 (2018): 747. http://dx.doi.org/10.21883/ftt.2018.04.45687.236.
Full textKräuter, Jessica, Lars Mohrhusen, Tim Thiedemann, Michael Willms, and Katharina Al-Shamery. "Activation of Small Organic Molecules on Ti2+-Rich TiO2 Surfaces: Deoxygenation vs. C–C Coupling." Zeitschrift für Naturforschung A 74, no. 8 (August 27, 2019): 697–707. http://dx.doi.org/10.1515/zna-2019-0135.
Full textMoriarty, John A., Lorin X. Benedict, James N. Glosli, Randolph Q. Hood, Daniel A. Orlikowski, Mehul V. Patel, Per Söderlind, Frederick H. Streitz, Meijie Tang, and Lin H. Yang. "Robust quantum-based interatomic potentials for multiscale modeling in transition metals." Journal of Materials Research 21, no. 3 (March 1, 2006): 563–73. http://dx.doi.org/10.1557/jmr.2006.0070.
Full textWeston, Benjamin F., Audrey Brenot, and Michael G. Caparon. "The Metal Homeostasis Protein, Lsp, of Streptococcus pyogenes Is Necessary for Acquisition of Zinc and Virulence." Infection and Immunity 77, no. 7 (April 27, 2009): 2840–48. http://dx.doi.org/10.1128/iai.01299-08.
Full textZaporotskova, Irina V., Daniel P. Radchenko, Lev V. Kozhitov, Pavel A. Zaporotskov, and Alena V. Popkova. "Theoretical study of metal composite based on pyrolyzed polyacrylonitrile monolayer containing Fe-Co, Ni-Co and Fe-Ni metal atom pairs and silicon amorphizing admixture." Modern Electronic Materials 6, no. 3 (September 30, 2020): 95–99. http://dx.doi.org/10.3897/j.moem.6.3.63308.
Full textSHARMA, HITESH, and S. PRAKASH. "ATOMIC DISPLACEMENTS DUE TO POINT DEFECTS IN Ni DILUTE ALLOYS." International Journal of Modern Physics B 17, no. 12 (May 10, 2003): 2417–28. http://dx.doi.org/10.1142/s0217979203012202.
Full textStalder, Roland. "OH point defects in quartz – a review." European Journal of Mineralogy 33, no. 2 (April 13, 2021): 145–63. http://dx.doi.org/10.5194/ejm-33-145-2021.
Full textZaporotskova, I. V., D. P. Radchenko, L. V. Kozitov, P. A. Zaporotskov, and A. V. Popkova. "Theoretical studies of a metal composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu—Co, Ni—Co, Ni—Cu, Ni—Fe and an amorphizing silicon additive." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 23, no. 3 (November 10, 2020): 196–202. http://dx.doi.org/10.17073/1609-3577-2020-3-196-202.
Full textMedovar, L., G. Polishko, G. Stovpchenko, V. Kostin, A. Tunik, and A. Sybir. "Electroslag refining with liquid metal for composite rotor manufacturing." Archives of Materials Science and Engineering 2, no. 91 (June 1, 2018): 49–55. http://dx.doi.org/10.5604/01.3001.0012.5489.
Full textRajak, Pankaj, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta. "Neural Network Analysis of Dynamic Fracture in a Layered Material." MRS Advances 4, no. 19 (2019): 1109–17. http://dx.doi.org/10.1557/adv.2018.673.
Full textPandey, Mohnish, Filip A. Rasmussen, Korina Kuhar, Thomas Olsen, Karsten W. Jacobsen, and Kristian S. Thygesen. "Defect-Tolerant Monolayer Transition Metal Dichalcogenides." Nano Letters 16, no. 4 (April 2016): 2234–39. http://dx.doi.org/10.1021/acs.nanolett.5b04513.
Full textKhowash, P. K., and D. E. Ellis. "Defect structure in transition-metal monoxides." Physical Review B 39, no. 3 (January 15, 1989): 1908–13. http://dx.doi.org/10.1103/physrevb.39.1908.
Full textDesrosiers, Daniel C., Scott W. Bearden, Ildefonso Mier, Jennifer Abney, James T. Paulley, Jacqueline D. Fetherston, Juan C. Salazar, Justin D. Radolf, and Robert D. Perry. "Znu Is the Predominant Zinc Importer in Yersinia pestis during In Vitro Growth but Is Not Essential for Virulence." Infection and Immunity 78, no. 12 (September 20, 2010): 5163–77. http://dx.doi.org/10.1128/iai.00732-10.
Full textKellerman, D. G., V. R. Galakhov, A. S. Semenova, Ya N. Blinovskov, and O. N. Leonidova. "Semiconductor-metal transition in defect lithium cobaltite." Physics of the Solid State 48, no. 3 (March 2006): 548–56. http://dx.doi.org/10.1134/s106378340603022x.
Full textYang, Chih-Kai. "Graphane with defect or transition-metal impurity." Carbon 48, no. 13 (November 2010): 3901–5. http://dx.doi.org/10.1016/j.carbon.2010.06.056.
Full textCavalcoli, Daniela, and Anna Cavallini. "On the Interaction of Dislocations with Impurities in Silicon." Defect and Diffusion Forum 245-246 (October 2005): 15–22. http://dx.doi.org/10.4028/www.scientific.net/ddf.245-246.15.
Full textBelyaev, Alexander K., Vladimir A. Polyanskiy, and Yuriy A. Yakovlev. "Rheological Model of Materials with Defects Containing Hydrogen." Key Engineering Materials 651-653 (July 2015): 604–9. http://dx.doi.org/10.4028/www.scientific.net/kem.651-653.604.
Full textPhillips, J. C. "Quantum diagrams of transition-metal–metalloid defect structures." Physical Review B 37, no. 5 (February 15, 1988): 2483–87. http://dx.doi.org/10.1103/physrevb.37.2483.
Full textGRIMES, ROBIN W., ALFRED B. ANDERSON, and ARTHUR H. HEUER. "Defect Clusters in Nonstoichiometric 3d Transition-Metal Monoxides." Journal of the American Ceramic Society 69, no. 8 (August 1986): 619–23. http://dx.doi.org/10.1111/j.1151-2916.1986.tb04819.x.
Full textLin, Junhao, Yuyang Zhang, Sokrates T. Pantelides, and Wu Zhou. "Defect Dynamics in 2D Transition Metal Dichalcogenide Monolayers." Microscopy and Microanalysis 21, S3 (August 2015): 433–34. http://dx.doi.org/10.1017/s1431927615002962.
Full textTaghinejad, Hossein, Daniel A. Rehn, Christine Muccianti, Ali A. Eftekhar, Mengkun Tian, Tianren Fan, Xiang Zhang, et al. "Defect-Mediated Alloying of Monolayer Transition-Metal Dichalcogenides." ACS Nano 12, no. 12 (November 15, 2018): 12795–804. http://dx.doi.org/10.1021/acsnano.8b07920.
Full textLin, Zhong, Bruno R. Carvalho, Ethan Kahn, Ruitao Lv, Rahul Rao, Humberto Terrones, Marcos A. Pimenta, and Mauricio Terrones. "Defect engineering of two-dimensional transition metal dichalcogenides." 2D Materials 3, no. 2 (April 13, 2016): 022002. http://dx.doi.org/10.1088/2053-1583/3/2/022002.
Full textBecker, K. D., T. He, and F. Rau. "Defect-induced optical absorption in transition metal oxides." Radiation Effects and Defects in Solids 119-121, no. 2 (November 1991): 669–74. http://dx.doi.org/10.1080/10420159108220800.
Full textCzaputa, R. "Transition metal impurities in silicon: New defect reactions." Applied Physics A Solids and Surfaces 49, no. 4 (October 1989): 431–36. http://dx.doi.org/10.1007/bf00615028.
Full textAhn, Hyeyoung, Yu-Chiao Huang, Chang-Wei Lin, Yi-Lun Chiu, Erh-Chen Lin, Ying-Yu Lai, and Yi-Hsien Lee. "Efficient Defect Healing of Transition Metal Dichalcogenides by Metallophthalocyanine." ACS Applied Materials & Interfaces 10, no. 34 (July 25, 2018): 29145–52. http://dx.doi.org/10.1021/acsami.8b09378.
Full textStoneham, A. M., M. J. L. Sangster, and J. H. Harding. "Quadrupole terms in defect energies in transition metal oxides." Philosophical Magazine A 62, no. 5 (November 1990): 487–97. http://dx.doi.org/10.1080/01418619008244914.
Full textHu, Zehua, Zhangting Wu, Cheng Han, Jun He, Zhenhua Ni, and Wei Chen. "Two-dimensional transition metal dichalcogenides: interface and defect engineering." Chemical Society Reviews 47, no. 9 (2018): 3100–3128. http://dx.doi.org/10.1039/c8cs00024g.
Full textWoo, Jungwook, Kyung-Han Yun, Sung Beom Cho, and Yong-Chae Chung. "Defect-induced semiconductor to metal transition in graphene monoxide." Phys. Chem. Chem. Phys. 16, no. 26 (2014): 13477–82. http://dx.doi.org/10.1039/c4cp01518e.
Full textChow, Philippe K., Robin B. Jacobs-Gedrim, Jian Gao, Toh-Ming Lu, Bin Yu, Humberto Terrones, and Nikhil Koratkar. "Defect-Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides." ACS Nano 9, no. 2 (January 26, 2015): 1520–27. http://dx.doi.org/10.1021/nn5073495.
Full textXia, Yang, Joel Berry, and Mikko P. Haataja. "Defect-Enabled Phase Programming of Transition Metal Dichalcogenide Monolayers." Nano Letters 21, no. 11 (May 27, 2021): 4676–83. http://dx.doi.org/10.1021/acs.nanolett.1c00742.
Full textKumar, Aravindh, Raisul Islam, Dipankar Pramanik, and Krishna Saraswat. "On the limit of defect doping in transition metal oxides." Journal of Vacuum Science & Technology A 37, no. 2 (March 2019): 021505. http://dx.doi.org/10.1116/1.5055563.
Full textJiang, Kun, and Haotian Wang. "Electrocatalysis over Graphene-Defect-Coordinated Transition-Metal Single-Atom Catalysts." Chem 4, no. 2 (February 2018): 194–95. http://dx.doi.org/10.1016/j.chempr.2018.01.013.
Full textM. C. de Melo, Pedro Miguel, Zeila Zanolli, and Matthieu J. Verstraete. "Optical Signatures of Defect Centers in Transition Metal Dichalcogenide Monolayers." Advanced Quantum Technologies 4, no. 3 (February 3, 2021): 2000118. http://dx.doi.org/10.1002/qute.202000118.
Full textBabar, Rohit, and Mukul Kabir. "Transition Metal and Vacancy Defect Complexes in Phosphorene: A Spintronic Perspective." Journal of Physical Chemistry C 120, no. 27 (June 29, 2016): 14991–5000. http://dx.doi.org/10.1021/acs.jpcc.6b05069.
Full textShaha, K. P., H. Rueβ, S. Rotert, M. to Baben, D. Music, and J. M. Schneider. "Nonmetal sublattice population induced defect structure in transition metal aluminum oxynitrides." Applied Physics Letters 103, no. 22 (November 25, 2013): 221905. http://dx.doi.org/10.1063/1.4833835.
Full textGao, Lei, Zhenliang Hu, Junpeng Lu, Hongwei Liu, and Zhenhua Ni. "Defect-related dynamics of photoexcited carriers in 2D transition metal dichalcogenides." Physical Chemistry Chemical Physics 23, no. 14 (2021): 8222–35. http://dx.doi.org/10.1039/d1cp00006c.
Full textGrachev, Valentin G., and Galina I. Malovichko. "Structures of Impurity Defects in Lithium Niobate and Tantalate Derived from Electron Paramagnetic and Electron Nuclear Double Resonance Data." Crystals 11, no. 4 (March 27, 2021): 339. http://dx.doi.org/10.3390/cryst11040339.
Full textKim, Yoon Suk, Sung Ho Lee, Kyung Sub Lee, and Yong Chae Chung. "Electronic Structure and Defect States of Transition Metal Doped Rutile TiO2." Solid State Phenomena 124-126 (June 2007): 787–90. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.787.
Full textWei, Wei, Ying Dai, and Baibiao Huang. "In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures." Physical Chemistry Chemical Physics 18, no. 23 (2016): 15632–38. http://dx.doi.org/10.1039/c6cp02741e.
Full textBulla, R., Th Pruschke, and A. C. Hewson. "Metal-insulator transition in the Hubbard model." Physica B: Condensed Matter 259-261 (January 1999): 721–22. http://dx.doi.org/10.1016/s0921-4526(98)00719-4.
Full textSHANKAR, R. "SOLVABLE MODEL OF A METAL-INSULATOR TRANSITION." International Journal of Modern Physics B 04, no. 15n16 (December 1990): 2371–94. http://dx.doi.org/10.1142/s0217979290001121.
Full textFehske, H., S. Ejima, G. Wellein, and A. R. Bishop. "Metal-insulator transition in the Edwards model." Journal of Physics: Conference Series 391 (December 14, 2012): 012152. http://dx.doi.org/10.1088/1742-6596/391/1/012152.
Full text