Academic literature on the topic 'Transglutaminase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transglutaminase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transglutaminase"
Zilda, Dewi Zeswita. "MICROBIAL TRANSGLUTAMINASE: SOURCE, PRODUCTION AND ITS ROLE TO IMPROVE SURIMI PROPERTIES." Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology 9, no. 1 (May 10, 2014): 35. http://dx.doi.org/10.15578/squalen.v9i1.82.
Full textSidauruk, Santhy Wisuda, Tati Nurhayati, and Untung Trimo Laksono. "Characterization of Endogenous Transglutaminase Enzyme of Yellow Pike Conger’s Liver." Jurnal Pengolahan Hasil Perikanan Indonesia 20, no. 3 (December 25, 2017): 582. http://dx.doi.org/10.17844/jphpi.v20i3.19816.
Full textMartin, Antonio, Giulia De Vivo, and Vittorio Gentile. "Possible Role of the Transglutaminases in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases." International Journal of Alzheimer's Disease 2011 (2011): 1–8. http://dx.doi.org/10.4061/2011/865432.
Full textSachslehner, Attila Placido, Marta Surbek, Bahar Golabi, Miriam Geiselhofer, Karin Jäger, Claudia Hess, Ulrike Kuchler, Reinhard Gruber, and Leopold Eckhart. "Transglutaminase Activity Is Conserved in Stratified Epithelia and Skin Appendages of Mammals and Birds." International Journal of Molecular Sciences 24, no. 3 (January 22, 2023): 2193. http://dx.doi.org/10.3390/ijms24032193.
Full textIndarto, Cahyo, Wahyu Prihanta, and Supriyanto. "The beginning study of transglutaminase from plant origin." E3S Web of Conferences 499 (2024): 01030. http://dx.doi.org/10.1051/e3sconf/202449901030.
Full textCocuzzi, E., M. Piacentini, S. Beninati, and S. I. Chung. "Post-translational modification of apolipoprotein B by transglutaminases." Biochemical Journal 265, no. 3 (February 1, 1990): 707–13. http://dx.doi.org/10.1042/bj2650707.
Full textDadabay, C. Y., and L. J. Pike. "Purification and characterization of a cytosolic transglutaminase from a cultured human tumour-cell line." Biochemical Journal 264, no. 3 (December 15, 1989): 679–85. http://dx.doi.org/10.1042/bj2640679.
Full textLerner, Aaron, and Torsten Matthias. "Processed Food Additive Microbial Transglutaminase and Its Cross-Linked Gliadin Complexes Are Potential Public Health Concerns in Celiac Disease." International Journal of Molecular Sciences 21, no. 3 (February 8, 2020): 1127. http://dx.doi.org/10.3390/ijms21031127.
Full textWatanabe, Yuko, Kazuho Okuya, Yuki Takada, Masato Kinoshita, Saori Yokoi, Shinichi Chisada, Yasuhiro Kamei, et al. "Gene disruption of medaka (Oryzias latipes) orthologue for mammalian tissue-type transglutaminase (TG2) causes movement retardation." Journal of Biochemistry 168, no. 3 (June 24, 2020): 213–22. http://dx.doi.org/10.1093/jb/mvaa038.
Full textXavier, Janifer Raj, K. V. Ramana, and R. K. Sharma. "Screening and statistical optimization of media ingredients for production of microbial transglutaminase." Defence Life Science Journal 2, no. 2 (May 31, 2017): 216. http://dx.doi.org/10.14429/dlsj.2.11369.
Full textDissertations / Theses on the topic "Transglutaminase"
Guyot, Christopher [Verfasser]. "Transglutaminase-induzierte und Transglutaminase-unterstützte Gele aus Milchproteinen / Christopher Guyot." München : Verlag Dr. Hut, 2013. http://d-nb.info/1045988979/34.
Full textGIORDANO, DEBORAH. "Transglutaminase, nutrition and human health." Doctoral thesis, Università degli Studi di Foggia, 2019. http://hdl.handle.net/11369/382619.
Full textBackground: transglutaminases (TGase) are a class of enzymes widely spread in eukaryotic and prokaryotic organisms. Enzymes of this family catalyze post-translational modifications in many proteins by acyl transfer reactions, deamidation and crosslinking (polymerisation) between protein intra- or inter-chain glutamine (acyl donor) and lysine (acyl acceptor) peptide residues. Due to its facility of expression and purification, the only TGase enzyme widely used for industrial applications is the microbial TGase extracted from Streptomyces mobaraensis (MTGase). Nowadays the MTGase is commercially available and widely used in biopolymers industry, in cosmetics, in clinical applications, in wool textiles, and above all in the food processing industry. Its ability to catalyze crosslinks on many different protein substrates is increasingly used not only for sausage, ham and cheese production but, very recently, also for flour detoxification, as a possible alternative therapy to the gluten free diet. It follows that nowadays the industrial applications of MTGase have increased, covering more and more fields producing a very active scientific research about this topic aimed at attempt to meet specific industrial needs, as the implementation of more efficient system for MTGase production, the research of alternative sources of microbial TGase, and safe source of recombinant enzymes. Aims of the doctorate project: the main aim of the project is the identification of novel forms of microbial TGases that could become an alternative to that in use. A depth screening of known sequences has been performed, with the aim of obtaining a classification of microbial TGases for their similarity to known forms. To select the best candidates to be active forms under appropriate conditions, molecular modelling and molecular simulations have been performed on selected sequences. To test the enzymatic activity, experimental assays have been performed with a novel form, and another novel form has been expressed. Results: the present work proposes at first an analysis, lacking so far, of the wide microbial transglutaminase world, developing the first classification of the microbial TGase based on their sequence features and their specific predicted secondary structures. In order to classify and analyze the structural features of all the sequences annotated as having a TGase core computational techniques involving sequence analyses, comparative studies, building of phylogenetic trees, homology models and molecular dynamic simulations have been used. From this approach, a preliminary classification of these sequences was done by dividing them in five main groups. Each group has been investigated from the sequence point of view to analyze the presence of specific motifs. For three of this five groups, also the secondary structures have been investigated and, from this analysis, features specific for each group have been detected. Moreover, two novel forms of microbial TGase (mTGase) have been investigated in the detail: K. albida mTGase and the hypothetical mTGase from SaNDy (organism not disclosed for patent opportunity). Molecular dynamics simulations and active site pocket analyses have been performed for the first, in comparison with MTGase. For the second, instead, experimental technique has been used to purify the hypothetical enzyme in order to test it on food related substrates. Experimental assays on both the proteins are still ongoing, to find the best enzymatic activity conditions and the best substrates of reaction. The molecular dynamic simulations performed on K. albida mTGase have suggested some explanations to the higher specificity of this enzyme than MTGase, experimentally demonstrated by Steffen et colleague, and several indications to change the activity conditions used to test it. Moreover, the substrates screening has allowed to find novel possible substrates, on which this enzyme could be employed for the allergenicity reduction. On the other hand, the enzyme extracted from SaNDy, showing a higher similarity with MTGase, could be less selective than K. albida mTGase for specific substrates, so it could be possible its application also on the gliadin substrate, but to prove it further experiments are necessary. Note: the present PhD work has been mainly performed in the Bioinformatics Laboratory at the CNR of Avellino under Dr. Facchiano’s supervision, however all the MD simulations have been performed at the Biochemistry Department of the University of Zurich, in the computational and structural biology laboratory under the supervision of Prof. A. Caflisch and his research group (compulsory abroad training period). Experimental activity assays on gliadin substrate have been performed by the spectrometry mass CeSMA-ProBio lab at the CNR of Avellino; and the hypothetical mTGase from SaNDy was instead cloned, expressed and purified in collaboration with the Laboratory for Molecular Sensing at the CNR of Avellino.
Bagagli, Marcela Pavan 1981. "Produção de transglutaminase de Streptomyces sp.CBMAI-837 utlizando resíduos ou subprodutos agroindustriais e aplicação em farinha de trigo." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254358.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-24T06:55:18Z (GMT). No. of bitstreams: 1 Bagagli_MarcelaPavan_D.pdf: 5889679 bytes, checksum: 9bd456830fa35028a89bffb19885f07d (MD5) Previous issue date: 2014
Resumo: A transglutaminase catalisa a formação de ligações cruzadas entre grupos ?-amino de resíduos de lisina e o grupo ?-carboxiamida de resíduos de glutamina de proteínas. Esta enzima pode ser usada para unir diferentes proteínas e melhorar suas propriedades funcionais. A transglutaminase obtida de micro-organismos por processos fermentativos apresenta vantagens em relação à enzima obtida de plantas e tecidos animais para as aplicações industriais. Neste trabalho, foram estudados os efeitos de diferentes subprodutos ou resíduos agroindustriais no meio de cultivo para a fermentação submersa de Streptomyces sp. CBMAI-837, visando o aumento da atividade e da produtividade da enzima. Entre os substratos proteicos avaliados, o uso de 2,5% (m:v) de farelo de algodão ou de 2,5% (m:v) de farelo de soja no meio de cultivo resultou no aumento da atividade enzimática de 1,2 U.mL-1 (214%) e 1,0 U.mL-1 (182%), respectivamente, em relação ao valor obtido pela fermentação do micro-organismo em meio de cultivo contendo 2,5% de farinha de soja (0,57 U.mL-1). Em relação às fontes de carbono principais avaliadas, a adição de 2,0% de glicerol ou de 12% de melaço de cana de açúcar permitiu o aumento da atividade de transglutaminase em 0,94 U.mL-1 (167%) e 0,88 U.mL-1 (157%), respectivamente. Foi verificado que a adição de 1% de quitina nativa no meio de cultivo favoreceu a produção da enzima elevando a atividade de transglutaminase em 181% em relação ao meio de cultivo sem quitina. Os efeitos da aplicação da TGase de Streptomyces sp. CBMAI-837 em massa de farinha de trigo mole e na fabricação de pães foram avaliados e os resultados foram comparados com a atuação de uma TGase comercial (BioBond) formulada para aplicação em cereais. De forma geral, as duas enzimas avaliadas apresentaram o mesmo efeito sobre a massa quanto ao aumento da resistência à extensão, a redução da máxima extensão da massa e a redução da pegajosidade da massa. Efeito antagônico foi observado na hidrofobicidade de superfície das proteínas da massa sendo que este parâmetro foi reduzido pela adição da TGase de Streptomyces sp. CBMAI-837 e foi elevado pela enzima comercial. A adição de TGase na preparação da massa de farinha de trigo mole resultou em aumento da massa molecular das proteínas, indicantivo da formação de ligações cruzadas entre proteínas. A aplicação da transglutaminase de Streptomyces sp. CBMAI-837 em massa de pão de farinha de trigo mole promoveu a redução do volume do pão em 9% e o aumento da firmeza em 32%. O aumento da quantidade de solvente adicionado na massa de 53% para 56% permitiu o aumento do volume dos pães, no entanto, com pouca diferença dos parâmetros de textura em relação ao controle para a TGase comercial BioBond e para a TGase de Streptomyces sp. CBMAI-837
Abstract: Transglutaminase catalyzes the cross-linking reaction between a ?-carboxyamide of a glutamine residue from a peptide bond and the ?-amino group of a lysine. TGase can bind different proteins and improve their functional properties. The microbial transglutaminase shows advantages over the enzyme extracted from plants and mammals. In the present study, the effect of different industrial wastes and byproducts in the culture medium during the submerged fermentation of Streptomyces sp. CBMAI-837 was studied aiming to increase the enzyme activity and yield. Amongst the substrates with high protein content, the use of 2,5% of cottonseed meal or 2,5% of soybean meal in the culture medium increased the transglutaminase activity to 1.2 U.mL-1 (214%) and 1.0 U.mL-1 (182%), respectively, as compared to the results obtained using 2,5% of soybean flour. With regard to the main carbon sources, both 2% glycerol and 12% sugar cane molasses increased the transglutaminase activity to 0.94 U.mL-1 (167%) and 0.88 U.mL-1 (157%), respectively. It was observed that the addition of 1% of chitin on culture medium increased the transglutaminase activity by 181% as compared to the results obtained without the addition of chitin. The effects of the TGase from Streptomyces sp. CBMAI - 837 on soft wheat flour dough and on the manufacture of bread were evaluated, and the results were compared with the performance of a commercial TGase (BioBond) formulated for specific applications in cereal products. In general, both enzymes had the same effect on the rheological properties of the doughs, increasing the resistance to extension, reducing the maximum extension and reducing stickiness of the dough. The surface hydrophobicity of the protein dough was reduced by the addition of TGase from Streptomyces sp. CBMAI 837 but increased by the addition of the commercial enzyme. In general the analysis of the protein structure indicated an agglomeration of the proteins causing an increase in molecular weight. The application of transglutaminase from Streptomyces sp. CBMAI-837 in the formulation of bread loaves decreased the bread volume by 9% and increased firmness by 32%. Increasing the amount of solvent added to the dough from 53% to 56% increased the volume of the loaves, but resulted in little difference in the texture profiles of the loaves made with the addition of the commercial BioBond and Streptomyces sp. CBMAI ¿ 837 TGases, in relation to the control
Doutorado
Ciência de Alimentos
Doutora em Ciência de Alimentos
Johnson, Timothy Scott. "Transglutaminase apoptosis and tumour progression." Thesis, Nottingham Trent University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283035.
Full textCarvalho, Priscila Hoffmann 1983. "Conversão de sacarose em isomaltulose e trealulose utilizando-se células de Serratia plymuthica ATCC 15928 livres e imobilizadas em diferentes matrizes com adição de transglutaminase." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254359.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-23T16:00:04Z (GMT). No. of bitstreams: 1 Carvalho_PriscilaHoffmann_D.pdf: 4102242 bytes, checksum: 1496382da70a395d87d5c8536317d42d (MD5) Previous issue date: 2013
Resumo: A isomaltulose e a trealulose são dissacarídeos isômeros estruturais, que podem ser obtidos a partir da sacarose utilizando-se glicosiltransferase bacteriana. Esses dissacarídeos são considerados açúcares alternativos de grande potencial para uso nas indústrias de alimentos e farmacêutica porque são hidrolisados e absorvidos mais lentamente e apresentam baixo potencial cariogênico comparado com a sacarose. Foi estudada a imobilização de células de Serratia plymuthica ATCC 15928, produtora de glicosiltransferase por gelificação iônica em gel alginato contendo transglutaminase (TG) e também a utilização de células livres para a conversão de sacarose em isomaltulose e trealulose. Utilizando-se células livres de Serratia plymuthica ATCC 15928 foi obtido 70% de conversão em isomaltulose e 8% de trealulose a 25°C por 10 bateladas de 15 minutos, a partir de solução de sacarose 30%. Entre as cinco amostras de alginato de sódio testadas, para a imobilização das células de S. plymuthica ATCC 15928 com e sem adição de TG, foram obtidos melhores resultados (médio de três bateladas) de conversão de sacarose (37,4% de isomaltulose) utilizando o alginato de sódio B, de alta viscosidade (14.000cP Sigma ¿ A 7128) em presença de TG. Nas condições estudadas (1,7% de alginato de sódio, 30% de massa celular úmida, solução de cloreto de sódio 0,2Mol/L, 2% de TG e 35% de sacarose) também houve maior facilidade de formação de grânulos uniformes. A presença de TG como agente de reticulação na matriz de imobilização melhorou a estabilidade de conversão por três bateladas onde observou-se resultado médio 27% maior com relação a matriz com o mesmo tipo de alginato (B) em ausência de TG. A composição da matriz de imobilização com adição de TG foi otimizada por metodologia de planejamento experimental, assim como a adição de gelatina como fonte de proteína adicional para promoção de ligações cruzadas catalisadas pela TG. Os melhores resultados de conversão de sacarose (solução 35%) em isomaltulose (72,66% de isomaltulose e 8% de trealulose em 4 bateladas de 24horas) foram obtidos utilizando-se matriz de polissacarídeo-proteína composto de 1,7% de alginato de sódio 14.000cP (Sigma®-A7128), 0,25mol/L de CaCl2, 0,5% de gelatina, 3,5% de TG e concentração de massa celular úmida superior a 35% (m:v). Verificou-se que a adição de ALMP na matriz de alginato de cálcio-gelatina-TG para imobilização de S. plymuthica, testada por planejamentos experimentais seqüenciais, não aumentou a estabilidade da taxa de conversão de sacarose em isomaltulose quando comparada com as células imobilizadas em matriz de alginato de cálcio-gelatina-TG. Em processo contínuo utilizando-se coluna empacotada com células de S. plymuthica imobilizadas em matriz otimizada e descrita acima, foi obtida taxa de conversão média de 64% de sacarose em isomaltulose durante 200 horas de processo, equivalente a 0,27g de isomaltulose/g de células imobilizadas/hora em coluna a 25°C e fluxo de substrato (35% de sacarose) 0,2mL/min
Abstract: The isomaltulose and trehalulose are disaccharides and structural isomers, which can be obtained from sucrose using bacterial glycosyltransferase. These disaccharide are considered alternative sugars with great potential for use in the food and pharmaceutical industries because they are hydrolyzed and absorbed more slowly and have a low cariogenic potential compared with sucrose. The conversion of sucrose to isomaltulose and trehalulose was estudied using immobilized and free cells of Serratia plymuthica ATCC 15928. The cells were immobilized by ionic gelation in alginate gel containing transglutaminase. Using free cells of Serratia plymuthica ATCC 15928 was obtained 70% isomaltulose conversion and 8% trehalulose conversion at 25° C in 10 batches of 15 minutes from a 30% sucrose solution. Among the five samples of sodium alginate tested for S. plymuthica ATCC 15928 cells immobilization, with or without the addition of TG, the best results (average of three batches) were obtained using sodium alginate B, high viscosity (14.000cP Sigma - A 7128) in the presence of TG, leading to 37.4% isomaltulose conversion from sucrose. In the studied conditions (1.7% sodium alginate, 30% wet cell mass solution of sodium chloride 0.2 Mol/L, 2% TG, 35% sucrose) was also easier to form uniform granules. The presence of TG as a crosslinking agent in the immobilization matrix improved the stability during three batches, resulting in an 27% higher average conversion with respect to a same type of alginate (B) matrix in absence of TG. Immobilization matrix compositions with addition of TG was optimized by experimental design methodology, as well as the addition of gelatin as a protein source for promoting additional crosslinking catalyzed by TG. The best results conversion of sucrose (35% solution) into isomaltulose (72.66% of isomaltulose and 8% of trehalulose in 4 batches of 24 hours) were obtained using proteinpolysaccharide matrix composed of 1.7% alginate 14.000cP sodium (Sigma® A7128), 0.25 Mol/L CaCl2, 0.5% gelatin, 3.5% TG, and wet cell mass concentration of 35% (w:v). It has been found that the addition of ALMP (amidated low methoxyl pectin) into the calcium alginate-gelatin-TG matrix for immobilization of S. plymuthica, tested by sequential experimental design, do not increase the stability of sucrose to isomaltulose conversions rate when compared with cells immobilized in calcium alginate -gelatin-TG matrix. In continuous process using a packed column with S. plymuthica cell's immobilized in the optimized matrix described above, it was obtained an average conversion rate of 64% sucrose to isomaltulose during a 200 hours process, equivalent to 0.27g isomaltulose per gram of immobilized cell per hour, in a column at 25° C and using flow substrate (35% sucrose) of 0.2 mL / min
Doutorado
Ciência de Alimentos
Doutora em Ciência de Alimentos
West, Natasha. "Nanocomposite immunosensor for anti-transglutaminase antibody." Thesis, University of the Western Cape, 2009. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6426_1298354109.
Full textCoeliac disease (CD) is a gluten intolerance condition that results in the flattening of the villi, which line the bowel. It is the most common cause of malabsorption of food nutrients. This inability to absorb sufficient levels of nutrients causes many of the common symptoms experienced by CD patients. Some of the symptoms, which lead to an increase in mortality rate, include chronic diarrhea, fatigue, iron-deficient anemia and osteoporosis. People with CD have higher than normal levels of certain antibodies in their blood. Thus, the concentration of anti-transglutaminase antibody (anti-tTG) in human sera is an important analytical marker for the diagnosis of CD. An immunosensor is a type of biosensor that has an antigen or antibody fragment as its biological recognition component. The specificity of the molecular recognition of antigens by antibodies to form a stable complex is the basis of immunosensor technology. In this work, overoxidized polypyrrole (OvoxPpy) was electrosynthesized as a noval sensor platform on a glassy carbon electrode (GCE). The OvoxPpy was then doped with gold-nanoparticles (GNP) by electrodeposition using cyclic voltammetry to form GNP|OvoxPpy||GCE electrode system. Morphology and size of the GNP|OvoxPpy||GCE nanocomposite were determined using scanning electron microscopy. The electrochemical immunosensor for anti-tTG antibodies was prepared by immobilizing transglutaminase antigen (tTG-antigen) onto the GNP|OvoxPpy||GCE by drop coating and allowed to incubate for 2 hrs. The electrochemical characterization of the nanocomposite platform and immunosensor were studied by voltammetry and electrochemical impedance spectroscopy (EIS)...
Gaudrey, Claire Anne. "Tissue transglutaminase : a new secretory protein." Thesis, Nottingham Trent University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245102.
Full textKnight, C. Rosamund L. "Transglutaminase activity, tumour growth and metastasis." Thesis, Nottingham Trent University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278115.
Full textSulic, Ana-marija. "Identification of tissue transglutaminase protein network." Doctoral thesis, Università degli studi di Trieste, 2011. http://hdl.handle.net/10077/4484.
Full textTissue transglutaminase (TG2) is a multifunctional enyzme involved in cell growth and differentiantion, receptor mediated endocytosis, cell adhesion and morphology, stabilization of extracellular matrix, membrane trafficking and structure/function, signal transduction, regulation of cytoskeleton and apoptosis. Multiple lines of evidence suggest an involvement of TG2 autoimmune diseases, cancer and in neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, Huntington's disease and Parkinson's disease. In all of the neurodegenerative diseases examined to date, TG2 activity is upregulated in selectively vulnerable brain regions, TG2 proteins are associated with inclusion bodies characteristic of the diseases, and prominent proteins in the inclusion bodies are modified by TG2 enzyme. It is important to identify TG2 substrates as they may offer an understanding of how the TG2-catalyzed post-translational modification has an impact on physiology and disease. Identification of these substrates may lead to novel drug targets and new diagnostic markers for several TG2-related diseases. A variety of different methods have been proposed for the identification of TG2 substrates. In this work we applied a new method for identification of TG2 substrates (interactors) by using a selection of cDNA phage display libraries followed by massive gene sequencing with 454 system. Ranking and analysis of more than 120,000 sequences allowed us to identify several potential substrates and interactors, which were subsequently confirmed in functional assays. Within the identified clones, some had been previously described as interacting proteins (fibronectin, SMOC1, EIF4G2, MYO18A, GSTO2), while others were new. When compared to standard systems, such as microtiter ELISA, the method described here is dramatically faster and yields far more information about the interaction under study, allowing better characterization of complex systems. For example, in the case of fibronectin, it was possible to identify the specific domains involved in the interaction. We expect that this approach to library and selection analysis can also be extended to other methods traditionally used to study protein-protein interactions, as well as to the study of the selection of peptides and antibodies by phage display.
L'enzima transglutaminasi tissutale è un enzima multifunzionale. Questa proteina gioca un ruolo importante durante lo sviluppo, crescita e differenziamento cellulare, endocitosi mediata da recettore, adesione e morfologia cellulare, stabilizzazione della matrice extracellulare, traffico e struttura/funzione di membrana, trasduzione del segnale, regolazione del citoscheletro ed apoptosi. Molteplici evidenze indicano un coinvolgimento di TG2 in diverse patologie neurodegenerative, incluso il morbo di Alzheimer, la paralisi progressiva supranucleare, il morbo di Huntington e quello di Parkinson. In tutte le malattie neurodegenerative esaminate finora, l'attività della TG2 è aumentata in specifiche regioni cerebrali e le proteine sono associate in corpi d’inclusione caratteristici di tali patologie dove vengono modificate dall'enzima TG2. E’ importante identificare i substrati della TG2 per comprendere come le modifiche post-traduzionali introdotte da questo enzima siano coinvolte nella patogenesi delle suddette malattie. Molteplici metodiche sperimentali sono state proposte ai fini dell'identificazione dei substrati della TG2. In questo lavoro è stato applicato un nuovo metodo per l’identificazione dei substrati della TG2 (interattori), selezionando una libreria di cDNA espressa come phage display, seguito da un sequenziamento genico massivo utilizzando il sistema 454 Life Sciences. La classificazione e l’analisi di più di 120,000 sequenze di DNA ha permesso di identificare molti substrati e potenziali interattori, che sono stati successivamente confermati con le analisi funzionali. All’interno dei cloni identificati, alcuni erano già stati precedentemente descritti come proteine interagenti (interattori) (fibronectina, SMOC1, EIF4G1, MYO18A, GSTO2), mentre altri sono stati identificati come nuovi. Nella comparazione con i metodi standard, come, ad esempio, ELISA, il metodo qui descritto risulta enormemente più rapido e fornisce un numero molto maggiore di informazioni relative alle interazioni analizzate, permettendo quindi una migliore caratterizzazione di sistemi complessi. Ad esempio, nel caso della fibronectina, è stato possibile identificare i domini specifici coinvolti nell’interazione. Prevediamo che questo approccio per l’analisi e la selezione di librerie, possa essere applicato anche ad altri metodi tradizionalmente usati per lo studio di interazioni proteina- proteina, così come allo studio di selezioni di peptidi e anticorpi tramite la tecnica del phage display.
XXIII Ciclo
1979
Melo, Ricardo Rodrigues de 1985. "Produção e caracterização bioquímica de uma nova transglutaminase microbiana = Production and biochemical characterization of a new microbial transglutaminase." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254360.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-22T23:52:05Z (GMT). No. of bitstreams: 1 Melo_RicardoRodriguesde_M.pdf: 1621799 bytes, checksum: 14182717e9ba5de8c1d5014f330c1b6c (MD5) Previous issue date: 2013
Resumo: Transglutaminase é uma enzima capaz de catalisar a formação de ligações cruzadas intra- e intermoleculares entre proteínas, peptídeos e aminas primárias por meio de ligações covalentes entre resíduos de lisina e glutamina. Desta forma, transglutaminase pode ser utilizada em diversos setores industriais para o desenvolvimento de novos produtos ou para a modificação de suas características. A linhagem B6 isolada de amostra de solo coletada na região do Estado de Minas Gerais foi identificada como tendo características morfológicas típicas de actinomicetos e pela análise da região 16S rRNA há colocou na subclasse Streptomyces próximo a linhagem Streptomyces angustmycinicus NBRC 3934T. A fim de aumentar a produção de transglutaminase (2,75 U/mL) pela linhagem Streptomyces sp. B6, o meio de fermentação foi submetido a processos de otimização. Como primeiro passo da otimização, o crescimento do micro-organismo e a produção da enzima foram estudados através de uma pré-seleção de fontes de carbono, nitrogênio e sais no meio de produção. Após as análises das diferentes fontes, um delineamento experimental do tipo Plackett-Burman foi utilizado para a seleção dos componentes do meio de cultivo que afetam a produção de transglutaminase. Os resultados do delineamento experimental indicaram que a produção de transglutaminase foi influenciada negativamente pela peptona bacteriológica e MgSO4.7H2O, positivamente pelo amido de batata, glicose, peptona de caseína e KH2PO4.7H2O e não foi influenciada pelo farelo de soja, considerando um nível de confiança de 95%. A concentração de amido de batata foi fixada no maior nível testado no planejamento Plackett-Burman devido à gelificação do meio de fermentação em concentrações maiores. Assim, os três fatores que influenciaram a produção de transglutaminase (glicose, peptona de caseína e KH2PO4.7H2O) foram otimizados para obter o máximo de produção da enzima utilizando delineamento composto central. Sob a condição otimizada, a qual continha 25 g/L de farinha de soja, 35 g/L de amido de batata, 5 g/L de glicose, 24,5 g/L de peptona de caseína e 8 g/L de KH2PO4.7H2O, a atividade enzimática atingiu 6,13 U/mL, apresentando 125% à mais de atividade em relação á obtida no meio antes da otimização. A transglutaminase microbiana produzida pela linhagem Streptomyces sp. B6 exibiu atividade ótima em 45°C e em pH de 6,5 e 11,0. A enzima manteve-se estável na faixa de pH 3,0-11,0 durante 60 minutos à 40°C durante 3 horas. A transglutaminase não foi inibida por Ca2+, Na+, Co2+, Mn2+, K+, Mg2+, Ba2+, EDTA, L-cisteína e glutationa na concentração de 5 mM, mas foi inibida na presença de Hg2+, Cu2+, Zn2+ e Fe2+ na concentração de 5mM. A linhagem Streptomyces sp. B6 é uma nova fonte de transglutaminase com características interessantes para aplicações biotecnológicas
Abstract: Transglutaminase is an enzyme capable of catalyzing the forming intra-and intermolecular cross-linking between proteins, peptides and primary amines by covalent bonds between lysine and glutamine residues. Thus, transglutaminase can be used in food processing industries to develop new products and modify their characteristics. The B6 strain was isolated from soil sample collected in the region state of Minas Gerais was identified as having morphological characteristics typical of the actinomycetes, and the 16S rRNA analysis placed it in the Streptomyces subclade, closely related to Streptomyces angustmycinicus NBRC 3934T. In order to increase the transglutaminase production (2.75 U/mL) from Streptomyces sp. B6 strain, the fermentation medium was subjected to optimization processes. In the first step of optimization, the micro-organism growth and enzyme production were studied through a pre-selection of carbon, nitrogen and salts sources in the culture medium. After analysis of different sources, the Plackett¿Burman experimental design was used for screening the components of the culture medium that affect the transglutaminase production. Results of the experiment indicated that production of transglutaminase was negatively influenced by bacteriological peptone and MgSO4.7H2O, positively influenced by potato starch, glucose, casein peptone and KH2PO4.7H2O and was not influenced by soybean meal, considering 95% of confidence level. The potato starch concentration was fixed at the highest level tested in Plackett¿Burman design due to gelation of the fermentation medium in higher concentrations. Thus, the three factors that influence the transglutaminase production (glucose, casein peptone and KH2PO4.7H2O concentrations) were optimized to obtain the maximum transglutaminase production using central composite design. Under the proposed optimized condition, which contained 25 g/L soybean meal, 35 g/L potato starch, 5 g/L glucose, 24.5 g/L casein peptone and 8 g/L KH2PO4.7H2O, the enzyme activity reached 6.13 U/mL, which was 125% more than the activity in relative obtained medium before optimization. The microbial transglutaminase produced by Streptomyces sp. B6 strain exhibited optimal activity at 45 oC and at pH 6.5 and 11.0. The enzyme remained stable in the pH range from 3.0 - 11.0 for 60 minutes and at 40 oC temperature for 3 hours. The transglutaminase was not inhibited by Ca2+, Na+, Co2+, Mn2+, K+, Mg2+, Ba2+, EDTA, L-cysteine and glutathione in concentration 5 mM, but was inhibited in the presence of Hg2+, Cu2+, Zn2+ and Fe2+ in concentration 5 mM. In conclusion, Streptomyces sp. B6 strain is a new source of transglutaminase with interesting features for biotechnological applications
Mestrado
Ciência de Alimentos
Mestre em Ciência de Alimentos
Books on the topic "Transglutaminase"
Windle, J. M. The role of transglutaminase in tumour growth and metastasis. Birmingham: University of Birmingham, 1985.
Find full textLantto, R. Protein cross-linking with oxidative enzymes and transglutaminase: Effects in meat protein systems. [Espoo, Finland]: VTT Technical Research Centre of Finland, 2007.
Find full textHitomi, Kiyotaka, Soichi Kojima, and Laszlo Fesus, eds. Transglutaminases. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55825-5.
Full textCastellano, Immacolata. Gamma-glutamyl transpeptidases: Structure and function. Basel: Springer, 2013.
Find full textTransglutaminase. Springer, 2012.
Find full textNajjar, V. A., and Laszlo Lorand. Transglutaminase. Springer London, Limited, 2012.
Find full textNajjar, V. A. Transglutaminase. Springer, 2011.
Find full textZhang, Yi, and Benjamin K. Simpson. Transglutaminase: Fundamentals and Applications. Elsevier Science & Technology Books, 2024.
Find full textMehta, K., and R. Eckert, eds. Transglutaminases. S. Karger AG, 2005. http://dx.doi.org/10.1159/isbn.978-3-318-01198-2.
Full textTransglutaminases. Muenchen: Karger, 2006.
Find full textBook chapters on the topic "Transglutaminase"
Cooper, A. J. L., and S. Y. Kim. "Transglutaminase." In Handbook of Neurochemistry and Molecular Neurobiology, 243–58. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-30379-6_7.
Full textKeillor, Jeffrey W. "Inhibition of Transglutaminase." In Transglutaminases, 347–72. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55825-5_16.
Full textShibata, Toshio, and Shun-ichiro Kawabata. "Transglutaminase in Invertebrates." In Transglutaminases, 117–27. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55825-5_5.
Full textMehta, Kapil. "Transglutaminase-2." In Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_5922-3.
Full textMehta, Kapil. "Transglutaminase-2." In Encyclopedia of Cancer, 4634–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_5922.
Full textMehta, Kapil. "Transglutaminase-2." In Encyclopedia of Cancer, 3764–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_5922.
Full textIchinose, Akitada. "Extracellular Transglutaminase: Factor XIII." In Transglutaminases, 192–208. Basel: KARGER, 2005. http://dx.doi.org/10.1159/000084241.
Full textKim, Soo-Youl. "Transglutaminase 2-Mediated Gene Regulation." In Transglutaminases, 153–70. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55825-5_7.
Full textIversen, Rasmus, and Ludvig M. Sollid. "Transglutaminase 2 and Celiac Disease." In Transglutaminases, 193–214. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55825-5_9.
Full textSingh, Ugra S., and Jing Pan. "Transglutaminase and Cell-Survival Signaling." In Transglutaminases, 75–88. Basel: KARGER, 2005. http://dx.doi.org/10.1159/000084234.
Full textConference papers on the topic "Transglutaminase"
Clare, D., G. Gharst, and T. Sanders. "Transglutaminase Polymerization of Peanut Proteins." In 13th World Congress of Food Science & Technology. Les Ulis, France: EDP Sciences, 2006. http://dx.doi.org/10.1051/iufost:20060479.
Full textKaartinen, Mari T., Sherif El-Maadawy, Niina H. Rasanen, Pekka H. Maenpaa, Janet Moradian-Oldak, and Marc D. McKee. "OSTEOPONTIN AS A SUBSTRATE FOR TRANSGLUTAMINASE." In 3rd International Conference on Osteopontin and SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein) Proteins, 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.256.
Full textPan, Chia-Pin, Jeanne P. Haushalter, Khalid Amin, Zishan Haroon, and Gregory W. Faris. "Fluorescent Tissue Transglutaminase Substrates for Tumor Boundary Imaging." In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.jwc22.
Full textOlsen, KC, RE Sapinoro, AJ Filiano, GV Johnson, RP Phipps, and PJ Sime. "Tissue Transglutaminase Is a Novel Regulator of Pulmonary Fibrogenesis." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2699.
Full textSchulze-Krebs, Anja, Fabio Canneva, Rebecca Schnepf, Laura Gloßner, Anne-Christine Plank, Julia Dobner, Gillian P. Bates, Daniel Aeschlimann, Joan S. Steffan, and Stephan von Hörsten. "A20 A role for transglutaminase 6 in hd pathology." In EHDN 2018 Plenary Meeting, Vienna, Austria, Programme and Abstracts. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/jnnp-2018-ehdn.19.
Full textRossane Santana Costa de Souza, Déborah, Bruno Henrique Fermino Goulart, Eric Campos Abreu Fernandes, Túlio Rolim Barretto, and Thiago Andrade Marques. "Transglutaminase: Obtenção, Caracterização e Aplicações na Indústria de Alimentos." In Simpósio de Bioquímica e Biotecnologia. Londrina - PR, Brazil: Galoa, 2017. http://dx.doi.org/10.17648/simbbtec-2017-80843.
Full textLi, Yonghui, Shan Hong, and Yanting Shen. "Enhancing pea protein functionalities through "green" modifications for food applications." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/dpor5716.
Full textGharst, G., D. Clare, J. Davis, and T. Sanders. "Transglutaminase Effects on the Rheological Characteristics of Peanut Flour Dispersions." In 13th World Congress of Food Science & Technology. Les Ulis, France: EDP Sciences, 2006. http://dx.doi.org/10.1051/iufost:20060475.
Full textYang, Chunhua, Yanguo Shi, Ying Liu, Tingting Fan, Yifang Zhang, and Chunlin Hu. "Study on the Aggregation of Transglutaminase on Soybean Protein Hydrolysates." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5514979.
Full textregina amante, patricia, Renato Lins Pires, maria clara coutinho macedo, Vinícius Tadeu da Veiga Correia, Emanuelle Cardoso Zibral Santos, and Camila Argenta Fante. "EFEITO DA TRANSGLUTAMINASE NA QUALIDADE DE PÃES DE FERMENTAÇÃO NATURAL." In CBCP - Congresso On-line Brasileiro de Tecnologia de Cereais e Panificação. ,: Even3, 2020. http://dx.doi.org/10.29327/cbcp2020.277524.
Full textReports on the topic "Transglutaminase"
Mehta, Kapil. Significance of Transglutaminase Expression in Multi-Drug Resistant Tumor Cells. Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada413804.
Full textHaroon, Zishan, and C. Greenberg. Role of Tissue Transglutaminases in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada394748.
Full textHaroon, Zishan A. Role of Tissue Transglutaminases in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada358448.
Full textZishan, Haroon. Role of Tissue Transglutaminases in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada376466.
Full text