Academic literature on the topic 'Transfini'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transfini.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transfini"
Criton, Pascale. "Le cerveau transfini." Chimères 27, no. 1 (1996): 55–66. http://dx.doi.org/10.3406/chime.1996.2054.
Full textCriton, Pascale. "Le cerveau transfini." Chimères N° 27, no. 1 (January 1, 1996): 55–66. http://dx.doi.org/10.3917/chime.027.0055.
Full textBloom, Thomas, and Jean-Paul Calvi. "Sur le diamètre transfini en plusieurs variables." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329, no. 7 (October 1999): 567–70. http://dx.doi.org/10.1016/s0764-4442(00)80002-6.
Full textAmoroso, Francesco. "Sur le diamètre transfini entier d'un intervalle réel." Annales de l’institut Fourier 40, no. 4 (1990): 885–911. http://dx.doi.org/10.5802/aif.1240.
Full textFlammang, Valérie. "Sur le diamètre transfini entier d'un intervalle à extrémités rationnelles." Annales de l’institut Fourier 45, no. 3 (1995): 779–93. http://dx.doi.org/10.5802/aif.1473.
Full textAKÇAY, Selma. "FARKLI TÜRBÜLATÖRLERE SAHİP DAİRESEL BİR KANALDA TERMAL PERFORMANSIN SAYISAL ANALİZİ." Mühendislik Bilimleri ve Tasarım Dergisi 12, no. 1 (March 25, 2024): 1–15. http://dx.doi.org/10.21923/jesd.1201753.
Full textGEMİCİOĞLU, Bahadır, Ahmet PEKCAN, and Tolga DEMİRCAN. "NUMERICAL INVESTIGATION OF THE THERMAL PERFORMANCE OF A MINI PIN FIN HEAT SINK." Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi 26, no. 2 (June 3, 2023): 395–407. http://dx.doi.org/10.17780/ksujes.1172215.
Full textCHOFFRUT, CHRISTIAN, and SÁNDOR HORVÁTH. "TRANSFINITE EQUATIONS IN TRANSFINITE STRINGS." International Journal of Algebra and Computation 10, no. 05 (October 2000): 625–49. http://dx.doi.org/10.1142/s021819670000025x.
Full textHOROZOĞLU, Mehmet Ali, and Selçuk Bora ÇAVUŞOĞLU. "Kurumsal İmaj Penceresinden Fenerbahçe Spor Kulübü’nün Mesut Özil Transferi." ISPEC International Journal of Social Sciences & Humanities 5, no. 2 (June 16, 2021): 99–113. http://dx.doi.org/10.46291/ispecijsshvol5iss2pp99-113.
Full textSantril, Nitri Ramadhani. "Gambaran Efektivitas Transfusi Thrombocyte Concentrate Pada Pasien Immune Thrombocytopenic Purpura di RSUP Dr. M. Djamil Padang." Majalah Kedokteran Andalas 46, no. 9 (July 15, 2024): 1440. http://dx.doi.org/10.25077/mka.v46.i9.p1452-1458.2024.
Full textDissertations / Theses on the topic "Transfini"
Lauria, Philippe. "Philosophie du transfini : essai sur la signification des nombres transfinis et l'ontologie de Georg Cantor." Lyon 3, 2003. http://www.theses.fr/2003LYO31004.
Full textSet and transfinite theory has been founded by Georg Cantor who gave a philosophical purpose to his creation. Presenting his own conception as a plato-aritstotelian epistemology, he considered the actual nature of numbers as a free creation of mind but simultaneously as a necessary result from reality, finding out a thesis defended by scholastic philosophers. Identifying transfinite concept with the "Idea" as defined in Plato, he call for a transfinite algebra, which could give a new start to ontology, interrupted, as he noticed, with Spinoza and Leibniz, so as to tide over kantian metaphysical criticism, and possibly building a formal ontology. On these three questions : the nature of transfinite numbers, the turn back to ontology and the viability of a transfinite calculus, this essay shows the importance of cantorian vision concerning a paradoxal kern at the basis of knowledge, following here a perennial philosophy, but also the problems of formalism in philosophy related to the fact that transfinite numbers are proabably virtual entities
Flammang, Valérie. "Mesures de polynômes : application au diamètre transfini entier." Metz, 1994. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1994/Flammang.Valerie.SMZ9457.pdf.
Full textWe are interesting in different measures of polynomials ; especially Mahler measure, length and Zhang-Zagier measure. We will see that the study of the spectrum of a measure is closely connected with the optimisation of a function depending on the considered measure. This optimisation problem is solved with the technique of auxiliairy functions. In general, the solution is not exact : a semi-infinte linear programming method gives a good numerical approximation. However, we meet some examples of exact solutions called exact auxiliairy functions. We also associate the upper bound of the integer transfinite diameter of an interval which end points are two consecutive elements of a Farey sequence with the lower bound of some measures of polynomials. At last, we present a procedure to find explicitly all polynomials of fixed degree and small measure and we apply it to the Zhang-Zagier measure and to the length
FLAMMANG, VALERIE RHIN G. "MESURES DE POLYNOMES. APPLICATION AU DIAMETRE TRANSFINI ENTIER /." [S.l.] : [s.n.], 1994. ftp://ftp.scd.univ-metz.fr/pub/Theses/1994/Flammang.Valerie.SMZ9457.pdf.
Full textWu, Qiang. "Mesure d'indépendance linéaire de logarithmes et diamètre transfini entier." Metz, 2000. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2000/Wu.Qiang.SMZ0011.pdf.
Full textWU, QIANG RHIN GEORGES. "MESURE D'IDEPENDANCE LINEAIRE DE LOGARITHMES ET DIAMETRE TRANSFINI ENTIER /." [S.l.] : [s.n.], 2000. ftp://ftp.scd.univ-metz.fr/pub/Theses/2000/Wu.Qiang.SMZ0011.pdf.
Full textGirardot, Johan. "Toward higher-order and many-symbol infinite time Turing machines." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX028.
Full textThis thesis studies infinite time Turing machines (ITTM) as developed by Hamkins and Lewis at the beginning of the years 2000. In particular, it aims at providing new generalizations of this model of infinite computation, or the tools and the results to develop those.A notable aspect of this model of infinite computation is that it is simple enough when compared to the usual finite model of Turing machines: an ITTM has the same structure as a three tapes Turing machine, it computes through the ordinals and at any successor stage, the next snapshot of the machine is a function of its machine code and the actual snapshot, as done in the classical setting. The only difference being that, at limit, tape heads are back on their first cells, the state is set to some distinguished limit state and the value of any cell is set to the limit superior of its previous values. While the choices for the heads and the states at limit stages may appear somewhat canonical, the principal justification for the rule of the limsup is actually a corroboration: with this rule, Hamkins and Lewis showed how this produces a robust, powerful and well-behaved model of infinite computation.So this work was focused on devising limit rules that would yield more powerful but equally well-behaved models of generalized infinite Turing machines.Most of the proofs done on ITTMs use a universal machine: an ITTM which simulates in parallel all other ITTMs. It happens to be straightforward to define such an universal ITTM.But its definition is only fortuitously straightforward. This construction rests on strong but implicit properties of the limsup rule. Hence, we exhibit a set of four properties satisfied by the limsup rule that allow us to define the more general concept of simulational machine: a model of infinite machines whose machines compute with a limit rule that satisfy this set of four properties, for which we prove that there exists a universal machine. The first main result is that the machines in this class of infinite machines satisfy (with two other constraints) an important equality satisfied by the usual ITTM, relating the time of computations and the ordinals that are writable.The second main result builds on the previous result. An immediate corollary is the following: there exists only two 2-symbol simulational and "well-behaved" model of ITTM; namely the limsup ITTM and the liminf ITTM. So, to produce higher-order machines, we need to consider n-symbols machine. And this is the second result: we construct a 3-symbol ITTM, strictly more powerful that the previous one and for which we establish the same set-theoretic results that were established for it
Vieugué, Dominique. "Problèmes de linéarisation dans des familles de germes analytiques." Phd thesis, Université d'Orléans, 2005. http://tel.archives-ouvertes.fr/tel-00069473.
Full textCarpani, Giacomo. "Cantor e l'aritmetica transfinita." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13445/.
Full textAmrane, Amazigh. "Posets série-parallèles transfinis : automates, logiques et théories équationnelles." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR102.
Full textWe study in this thesis structures extending the classical notion of word. They are built from a partially ordered set (poset) verifying the following properties : — they do not contain 4 distinct elements x, y, z, t whose relative order is exactly x < y, z < y, z < t (posets called N-free) ; — their chains are countable and scattered linear orderings ; — their antichains are finite ; and each element is labeled by a letter of a finite alphabet. Equivalently, the class of posets which we consider is the smallest one built from the empty poset and the singleton, and being closed under sequential and parallel products, and ω product and its backward ordering −ω (series-parallel posets). It is a generalization of both of finite series-parallel labeled posets, by adding infinity, and transfinite words, by weakening the total ordering of the elements to a partial ordering. In computer science, series-parallel posets find their interest in modeling concurrent processes based on fork/join primitives, and transfinite words in the study of recursion. The rational languages of these labeled posets are defined from expressions and equivalent automata introduced by Bedon and Rispal, which generalize thecase of transfinite words (Bruyère and Carton) and the one of finite posets (Lodaya and Weil). In this thesis we study such structures from the logic point of view. In particular, we generalize the Büchi-Elgot-Trakhtenbrot theorem, establishing in the case of finite words the correspondence between the class of rational languages and the one of languages definable in monadic second order logic (MSO). The implemented logic is an extension of MSO by Presburger arithmetic. We focus on some varieties of posets algebras too. We show that the algebra whose universe is the class of transfinite series-parallel posets and whose operations are the sequential and parallel products and the ω and −ω products (resp. powers) is free in the corresponding variety V (resp. V 0). We deduce the freeness of the same algebra without parallel or −ω product. Finally, we showthat the equational theory of V 0 is decidable. These results are, in particular, generalizations of similar results of Bloom and Choffrut on the variety of algebras of words whose length are less than ω!, of Choffrut and Ésik on the variety of algebras of N-free posets whose antichains are finite and whose chains are less than ω! and those of Bloom and Ésik on the variety of algebras of words indexed by countable and scattered linear orderings
Lucci, Paulo Cesar de Alvarenga 1974. "Descrição matematica de geometrias curvas por interpolação transfinita." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/258706.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo
Made available in DSpace on 2018-08-13T10:14:35Z (GMT). No. of bitstreams: 1 Lucci_PauloCesardeAlvarenga_M.pdf: 6661587 bytes, checksum: b77bb456093ce1f153056c6b2fa89626 (MD5) Previous issue date: 2009
Resumo: Este trabalho é dedicado ao desenvolvimento de uma metodologia específica de mapeamento curvo aplicável a qualquer tipo de elemento geométrico regular. Trata-se de uma generalização do modelo matemático de representação geométrica apresentado em 1967 por Steven Anson Coons, denominado "Bilinearly Blended Coons Patches", o qual ajusta uma superfície retangular em um contorno delimitado por quatro curvas arbitrárias. A generalização proposta permitirá a utilização deste tipo de interpolação geométrica em elementos de qualquer topologia, através de uma sistemática única e consistente.
Abstract: In this work a methodology is developed for mathematical representation of curved domains, applicable to any type of finite element geometry. This methodology is a generalization of the mathematical model of a geometric representation presented in 1967 by Steven Anson Coons, called "Bilinearly Blended Coons Patches", which patch a rectangular surface in four arbitrary boundary curves. The proposed methodology is a kind of geometric transfinite interpolation applicable to elements of any topology, using a single and consistent systematic.
Mestrado
Estruturas
Mestre em Engenharia Civil
Books on the topic "Transfini"
Lauria, Philippe. Cantor et le transfini: Mathématique et ontologie. Paris: Harmattan, 2004.
Find full textErrázuriz, Rafael Núñez. En deçà du transfini: Aspects psychocognitifs sous-jacents au concept d'infini en mathématiques. Fribourg, Suisse: Editions universitaires, 1993.
Find full textIvănescu, Mircea. Interviu transfinit. Nicula: Ecclesia, 2004.
Find full textDóró, Sándor. Sándor Dóró: Transfinit. Edited by Leonhardi-Museum (Dresden Germany). Dresden: Leonhardi-Museum, 1999.
Find full textReischer, Corina. Nombres finis & nombres transfinis. Sainte-Foy: Presses de l'Université du Québec, 2002.
Find full textBaĭmuratov, Tursunbaĭ Makhkambaevich. Sughurta faolii︠a︡tida risklar transferi: Monografiia. Toshkent: Iqtisod-Moliia, 2005.
Find full textZemanian, A. H. Graphs and Networks: Transfinite and Nonstandard. Boston, MA: Birkhäuser Boston, 2004.
Find full textZemanian, Armen H. Pristine Transfinite Graphs and Permissive Electrical Networks. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0163-2.
Full textZemanian, A. H. Pristine Transfinite Graphs and Permissive Electrical Networks. Boston, MA: Birkhäuser Boston, 2001.
Find full textAleksandra, Pošarac, Ratković Marija 1938-, Vukotić-Cotič Gordana, and Popović Tomislav, eds. Socijalni problemi Srbije: Siromaštvo, nezaposlenost, socijalni transferi. Beograd: Institut ekonomskih nauka, 1992.
Find full textBook chapters on the topic "Transfini"
Duren, Peter, and Lawrence Zalcman. "[11] Sur la variation du diamètre transfini." In Menahem Max Schiffer: Selected Papers Volume 1, 91–110. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-0-8176-8085-5_15.
Full textZemanian, Armen H. "Transfinite Graphs." In Transfiniteness, 19–46. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-0767-2_2.
Full textDeiser, Oliver. "Transfinite Operationen." In Springer-Lehrbuch, 203–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01445-1_14.
Full textKotlarski, Henryk. "Transfinite Induction." In Trends in Logic, 73–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28921-8_4.
Full textZemanian, Armen H. "Transfinite Graphs." In Graphs and Networks, 5–22. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8178-4_2.
Full textOhlbach, Hans Jürgen, and Norbert Eisinger. "Transfinite Induktion." In Design Patterns für mathematische Beweise, 145–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55652-8_10.
Full textOhlbach, Hans Jürgen, and Norbert Eisinger. "Transfinite Ordinalzahlen." In Design Patterns für mathematische Beweise, 121–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55652-8_9.
Full textHowes, Norman R. "Transfinite Sequences." In Modern Analysis and Topology, 62–82. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0833-4_3.
Full textZemanian, Armen H. "Transfinite Electrical Networks." In Transfiniteness, 115–55. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-0767-2_5.
Full textProvatidis, Christopher G. "GORDON’s Transfinite Macroelements." In Precursors of Isogeometric Analysis, 175–220. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03889-2_4.
Full textConference papers on the topic "Transfini"
Chen, Ruirong, and Wei Gao. "TransFi." In MobiSys '22: The 20th Annual International Conference on Mobile Systems, Applications and Services. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3498361.3538946.
Full textODABAS, ONUR, and NESRIN SARIGUL-KLIJN. "TRANSITION ELEMENTS BASED ON TRANSFINITE INTERPOLATION." In 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1326.
Full textSKIBA, N., and VYACHESLAV ZAKHARYUTA. "HARMONIC TRANSFINITE DIAMETER AND CHEBYSHEV CONSTANTS." In Proceedings of the Conference Satellite to ICM 2006. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812778833_0023.
Full textSun, Tianyu, Wensheng Yu, and Yaoshun Fu. "Formalization of Transfinite Induction in Coq*." In 2019 Chinese Automation Congress (CAC). IEEE, 2019. http://dx.doi.org/10.1109/cac48633.2019.8997376.
Full textCrawford, D., and Z. Cendes. "Domain decomposition via the transfinite element method." In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1329644.
Full textTanaka, Kazuyuki, and Keisuke Yoshii. "Infinite Games, Inductive Definitions and Transfinite Recursion." In The 9th International Conference on Computability Theory and Foundations of Mathematics. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811259296_0003.
Full textKe, Lei, Martin Danelljan, Xia Li, Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu. "Mask Transfiner for High-Quality Instance Segmentation." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.00437.
Full textBarroso, Elias Saraiva, Joaquim Bento Cavalcante Neto, Creto Augusto Vidal, and Evandro Parente Junior. "Geração de malhas isogeometricas utilizando mapeamento transfinito." In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-0342.
Full textAbrams, Mark C., William E. Sharp, Michael R. Carter, and Thomas Vonder Haar. "Gradient Field Mapping with Imaging Fourier Transfonn Spectrometers." In Fourier Transform Spectroscopy. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/fts.1999.fthd2.
Full textCHOFFRUT, CHRISTIAN, and SERGE GRIGORIEFF. "THE THEORY OF RATIONAL RELATIONS ON TRANSFINITE STRINGS." In Proceedings of the International Colloquium. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704979_0008.
Full textReports on the topic "Transfini"
Sınağ, Ali. Ar-Ge Ekosistemimizde Üniversitelerimiz. İLKE İlim Kültür Eğitim Vakfı, March 2021. http://dx.doi.org/10.26414/pn020.
Full text