Dissertations / Theses on the topic 'Transferts couplés de chaleur et d'humidité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Transferts couplés de chaleur et d'humidité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Abahri, Kamilia. "Modélisation des transferts couplés de chaleur, d'air et d'humidité dans les matériaux poreux de construction." Thesis, La Rochelle, 2012. http://www.theses.fr/2012LAROS384.
Full textThe purpose of this thesis is to study coupled heat air and moisture transfer in porous building materials. Concerning the modeling part, the interest is to predict the hygrothermal behavior, with a macroscopic model, that incorporates simultaneously the effect of thermodiffusion phenomenon and that of total pressure on the building walls. The input parameters are evaluated experimentally using continuous driving potentials, where the ability to deal with problems of transfer in multilayer materials. In some configurations, it presents the advantage to undertake analytical solution that can be confronted with numerical solutions. Furthermore, a formal justification of balance equations of the developed model was addressed through the use of ascaling approach. Then, the modeling of macroscopic moisture transfer behavior, by implementing information from the microstructure can be refined. The transition of the microscopic to macroscopic scale was performed using the mean field homogenization. One of the difficulties with the use of this model lies in the identification of many parameters characterizing the hygrothermal properties of materials. Therefore, a part of the present work was devoted to the evaluation of the main properties of materials through the development of various experimental prototypes in the laboratory. More over, an experimental approach dedicated to the evaluation of the thermodiffusion process in porous materials has been undertaken. In this way, an experimentation concerning the determination of the temperature gradient and dynamics of water exchange process inside walls has been established. Furthermore, the use of the experimental platform MegaCup at theTechnical University of Denmark has collected data on the sensitivity of the thermodiffusion effect. Subsequently, a comparison of the experimental and the numerical results was performed. Few differences were observed. Otherwise, an experimental investigation on the contribution of the mass infiltration of water transfers in building materials was performed. A characterization of the moisture infiltration coefficient was performed through the development of the experimental test. This coefficient was used as an input parameter in the simulation models
Pestre, Tristan. "La pierre naturelle dans un contexte d'évolution réglementaire environnementale de la construction, étude des transferts hygrothermiques au sein de composants d'enveloppes de bâtiments." Electronic Thesis or Diss., Artois, 2021. http://www.theses.fr/2021ARTO0205.
Full text« Natural stone in a context of environmental regulatory evolution of the construction, study of heat and moisture transfers in building envelope components ».In the context of French and international energy transition, the construction sector remains one of the most impacting on the environment and must evolve to limit the consequences. In response, the State has set up an experimentation, "positive energy building and carbon reduction", foreshadowing future thermal regulations for buildings, which will also become environmental (LCA).Most natural, local, and minimally processed materials have undeniable environmental advantages and the local sectors from which they come have interesting economic and social potential. These materials can then be perfectly integrated into a sustainable development approach. However, it is essential to know their physical behavior in order to be able to optimize their use in efficient, healthy, comfortable and durable constructions.The objective of this research is to develop massive natural stone for the construction of energy efficient and environmentally friendly buildings.A dozen rock samples were characterized from a thermal point of view (thermal resistance and thermal capacity), from a hydric point of view (absorption of water at atmospheric pressure, permeability to water vapor, water buffer, and hygroscopic sorption/desorption) and an environmental point of view (life cycle analysis of stone masonry). The experimental results obtained, in addition to the database of the Technical Center for Natural Building Materials, made it possible to carry out statistical studies on natural limestone. The prospects would be to estimate their physical characteristics and integrate them into developing building information modeling (BIM) modules.The hygrothermal properties of stones were also used as input data to study the coupled heat and mass transfers at several scales, from the wall to the building. The digital approach was compared to experimental approaches (bi-climatic chamber and in-situ instrumentation of a villa). The objective is to validate the numerical models used and the results of the characterization in the laboratory. Finally, a comparative dynamic thermal simulation study makes it possible to draw up an inventory of the energy performance of natural stone constructions in the context of the new regulation “RE2020”
Issaadi, Nabil. "Effets de la variabilité des propriétés de matériaux cimentaires sur les transferts hygrothermiques : développement d’une approche probabiliste." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS028/document.
Full textThis study deals with the experimental and the numerical modeling of the variability properties of cement based materials to evaluate their effects on the prediction of hygrothermal behavior of building envelops. A probabilistic approach taking into account the spatial variability of the materials properties during the coupled heat and mass transfer has been developed. It is based on the generation of spatially correlated random fields by the Karhunen Loève decomposition. The stochastic model’s program has been implemented in a numerical simulation code. Using this tool that considers the input variables as random fields, the impact of this variability on the hygrothermal behavior of building envelops was quantified. A prior study dealing with the assessment of the effect of the diffusion coefficient random variability was carried out by considering a variation of ±30% for mortar and ±20% for high performance concrete (HPC) according to a normal distribution. Also, we have identified some possible uncertainties of the water content at saturation and showed their significant impact on the prediction of hygrothermal behavior of the material. These studies highlight the importance of considering the data uncertainties of building materials during numerical simulation of hygrothermal transfers. At the experimental level, the spatial variability of the most influential parameters was evaluated. It was carried out by manufacturing a concrete wall in lab. At the end of this experimental program, the expected value, standard deviation and the correlation length of the studied properties (water porosity, water vapor permeability, sorption isotherm and gas permeability) were determined. These three parameters are important for the successful implementation of Karhunen Loeve decomposition. Also, another experimental program was conducted on cement pastes, mortars and concrete. It was divided into three parts according to the studied properties:(i) Hydrations and microstructural properties which include the measurement of water and mercury porosity, the pore size distributions and an analysis of some techniques for stopping cement hydration.(ii) Hydric properties: where an analysis of the sorption and the water vapor permeability was performed considering their evolution with materials ages, temperature…(iii) Thermal properties where measurement of specific heat and thermal conductivity were performed. The result of the study highlighted the limits of deterministic approaches after their confrontation with the obtained results using the probabilistic one developed in this work
Coquard, Typhaine. "Transferts couplés de masse et de chaleur dans un élément d'évaporateur capillaire." Phd thesis, Toulouse, INPT, 2006. http://oatao.univ-toulouse.fr/7519/1/coquard.pdf.
Full textBastian, Guy. "Determination dynamique des parametres des transferts couples de chaleur et d'humidite au sein d'un mortier en regime hygroscopique." Nantes, 1989. http://www.theses.fr/1989NANT2024.
Full textPuiroux, Nicolas. "Transferts thermiques et d'humidité dans les matériaux composites ablatables : effet des hétérogénéités." Toulouse, INPT, 2004. http://www.theses.fr/2004INPT018H.
Full textKelanemer, Youcef. "Transferts couplés de masse et de chaleur dans les milieux poreux : modélisation et étude numérique." Paris 11, 1994. http://www.theses.fr/1994PA112060.
Full textTaurines, Kevin. "Modelling and experimental analysis of a geothermal ventilated foundation." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI100/document.
Full textThis thesis deals with the thermal and energy analysis of a geothermal ventilated fonudation. Similarly to earth-to-air heat exchangers (EAHE) this foundation enables, according to the season, to preheat or to cool down the air for the hygienic air change. Considering the energy consumption constraints and the buildings users thermal comfort desire, these systems appears to be relevant. The principle of this foundation is simple: to force the air to circulate in a hollowed beam buried into the ground (1 to 3m depth) so that it takes advantage - via convection - to the thermal inertia of the ground. The difference lays on the fact that the channel is not a plastic or aluminium pipe but it a part of the building structure, namely the reinforced concrete foundation. This induces a significant space gain, usually devoted to the pipe burying. From a thermal point of view, the foundation exchanges heat with both the soil beneath the building, and with the soil exposed to the weather thermal loads. Furthermore, the depth - imposed by structural and economical purposees - is lower than that of traditional EAHE. In addition to the fact that concrete is a porous material, the humidity content may strongly influence the thermal performance of the foundation. The current work thus proposes to study the complex thermal behaviour of this foundation in two ways. The first is experimental: an retirement home equipped with two foundation has been intensively instrumented and data recorded over more than one year. The other is numerical: two models validated against the experimental data have been developed. The first is intended to be a designing tool, the second a tool to allow a fine comprehension of the physical phenomenon and take into account coupled heat and moisture transfers
Aghahadi, Mohammad. "Etude expérimentale et modélisation physique des transferts couplés chaleur-humidité dans un isolant bio-sourcé." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCA007/document.
Full textThe conventional heat transfer models are not sufficiently suitable for thermal characterization of bio-sourced thermal insulating materials due to their strongly hydrophilic nature. The proposed work in this PhD thesis aims to answer this problem with experimental and theoretical approaches of coupled heat-moisture transfers. In the experimental approach, a thermal insulating material based on Flax Fiber Felt (FFF) is developed and then characterized at different hygrometric conditions with an asymmetric hot plate device. The humidity diffusion characterization of the samples is done using the GAB, GDW and Park theoretical moisture adsorption isotherm models. In the theoretical approach, a physical model of heat and mass transfer is proposed. It is solved numerically, in transient 3D configuration, by the finite element method under COMSOL Multiphysics and, in transient 1D configuration, by the finite difference method under MATLAB. The Levenberg-Marquardt method coupled with the 1D transient direct model and the measured temperatures made it possible to estimate the apparent thermal conductivity of the studied sample with a relative error of less than 6% compared to the experimental measurements, thus validating the theoretical models
Ferrani, Farid. "Calculs couplés de transferts thermiques et de réactions physico-chimiques : application à l'encrassement des échangeurs." Paris 6, 1986. http://www.theses.fr/1986PA066110.
Full textHasnaoui, Safae. "Transferts de chaleur et de masse couplés en milieux confinés engendrés par diffusion thermogravitationnelle : étude mésoscopique." Electronic Thesis or Diss., Amiens, 2019. http://www.theses.fr/2019AMIE0002.
Full textThe work presented in this thesis is a contribution to the study of natural thermosolutal convection in rectangular configurations confining binary mixtures. Couplings of second order (Soret effect or thermo-diffusion and Dufour effect or diffusion-thermo), often neglected in the literature, were considered in addition to an internal volumetric heat generation. The use of numerical simulation methods different from conventional methods was among the objectives of this study. Thus, we have adopted the lattice Boltzmann method which is a mesoscopic approach with a simple (SRT) and multiple (MRT) relaxation time approximations. The study was focused on the effect of the least studied parameters in the literature (intensity of internal heat generation, Soret effect and Dufour effect) in the case of thermal and solutal buoyancy forces with the same intensity and opposite or cooperating effects. The results obtained are characterized by a wealth of phenomena generated by the combined effects of the control parameters and not reported in the literature. For example, the possibility of purification/loading of the medium from/with species by Soret effect was observed depending on the other control parameters. The study has also allowed to identify the stabilizing and destabilizing effects of the Soret and Dufour parameters on the intensities ranges of the internal heat generation that lead to steady and unsteady flows in the absence of the effects of the thermo-diffusion and diffusion-thermo
Derbel, Houda. "Modélisation dynamique des transferts de chaleur et d'humidité à travers le vêtement : couplage avec deux modèles de thermorégulation humaine." Toulouse 3, 1990. http://www.theses.fr/1990TOU30143.
Full textAsli, Mounir. "Etude des transferts couplés de chaleur et de masse dans les matériaux bio-sourcés : approches numérique et expérimentale." Thesis, Artois, 2017. http://www.theses.fr/2017ARTO0210/document.
Full textThe work developed in this thesis aims to study the hygrothermal behavior of bio-sourced insulating materials, and more particularly wood fibers, hemp concrete, linen wool, sheep wool, material made of textile recycling (metisse®) and flax shives. These materials, which are essentially natural, have specific characteristics linked to their origin (animal or vegetable) and their structure (fibers, straw, solid matrix, etc.). Their very high porosity makes them reactive to the relative humidity variations, which can affect their thermal performances and their durability (as for all materials), but also give them a regulation capacities. In order to improve the knowledge of these particular materials, first, we propose to study the impact caused by moisture on their thermal characteristics, mainly thermal conductivity and specific heat. Then the hygrothermal characteristics are studied, which makes it possible to better understand the phenomena depending on the capacities of adsorption, desorption, permeability or water vapor resistance. Also, we realize the importance of the temperature gradient impact on the evolution of the hygroscopic transfers within the materials. By placing the studied bio-sourced insulation materials under random loading or under real conditions, it will be possible to follow their hygrothermal behavior from an experimental point of view. The numerical approach makes it possible to identify the preponderant influence parameters, in the context of the prediction of coupled heat and mass transfers by simulation under particular conditions of use, such as the renovation of an existing habitat. On the basis of in situ measurements, it can be seen that these materials have a high adaptability to environments whose relative humidity is evolutionary
Andrade, Molenda Carlos Henrique de. "Influence des effets d'hysteresis sur les phénomènes de transferts couplés de chaleur et masse en milieux poreux." Toulouse, INPT, 1991. http://www.theses.fr/1991INPT066H.
Full textChallansonnex, Arnaud. "Transferts couplés chaleur/masse dans les matériaux de construction biosourcés : investigation expérimentale et théorique du non-équilibre local." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC022/document.
Full textThe growing interest in biosourced materials in the construction sector is confronted with difficulties in simulating their hygrothermal behavior. Insulating materials such as fiberboard concentrate all the difficulties because they are not very thermally conductive, very hygroscopic and very diffusive to water vapor. Consequently, in transient state, heat and mass coupling is exacerbated, and the phases of water are not in equilibrium locally.In order to highlight this second phenomenon, a new experimental device has been developed. It allows to subject a sample a few centimeters thick to a disturbance of relative humidity on its front face and then to simultaneously measure the evolution of relative humidity on its back face and its mass. In a situation of non-equilibrium, there is a phase shift between these two quantities that the classic coupled transfer formulation cannot predict. In order to obtain a correct prediction, a new formulation was used. It is based on the use of memory functions characterizing microscopic diffusion. In order to demonstrate the predictive capacity of the new formulation, these functions have been determined with gravimetric tests performed on very small samples using a magnetic suspension balance. In parallel, a rigorous analysis of the heat and mass coupling in these materials made it possible to highlight the impact of different macroscopic parameters on their characterization.The use of the new formulation fed by the identified memory functions and the various macroscopic parameters allows an excellent prediction of relative humidity and mass. This new formulation, experimentally validated, can now be used in energy simulation of the building
Triché, Delphine. "Étude numérique et expérimentale des transferts couplés de masse et de chaleur dans l’absorbeur d’une machine à absorption ammoniac-eau." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI095/document.
Full textAmmonia-water absorption chillers are promising both for solar air conditioning and for industry processes. To become competitive compared to electric compression chillers, their efficiency needs to be improved and their cost has to be decreased. This thesis study takes place in this context.The focus is put on the absorber, which is one of the most critical component of absorption chillers in terms of compactness, cost and efficiency. The purpose is to study numerically and experimentally coupled heat and mass transfers which occur in the absorber in order to predict and improve its overall performances.Two falling film absorbers are analysed. In both of them, the poor solution and the vapour enter at the top and the coolant fluid enters at the bottom of the absorber. The first absorber is a brazed plate heat exchanger and the second is a gasketed plate-and-frame heat exchanger with different geometric dimensions and plates corrugations.The experimental study of these two absorbers is performed in real working conditions on an instrumented ammonia-water absorption chiller prototype of 5 KW. Thanks to this device, a global analysis of vapour absorbed mass flow rates, absorbed heat fluxes and mass effectiveness is achieved. A local analysis is also performed thanks to temperature measures inside channels of coolant fluid in the gasketed plate-and-frame heat exchanger. Results show a strong correlation between the absorption chiller cooling capacity and the absorber performances. However, since this prototype is a real chiller, absorber inlet variables cannot be controlled. Thus, a numerical model is necessary to dissociate the impact of these variables on the absorber performances.A 1D numerical model of the absorber is developed. It is based on mass, species and enthalpy balances, mass and heat transfer equations and equilibrium conditions at the vapour/solution interface. Mass transfer resistances in both liquid and vapour phases are considered while heat and mass transfer coefficients are calculated using empirical correlations.This model is validated experimentally with global data at the inlet and the outlet of the absorber and temperature measures along the absorber coolant fluid channels. A maximal relative error of 15 % is observed. Therefore, a detailed analysis of combined heat and mass transfers along the absorber and the absorption process study is performed thanks to this model.A parametric study is also performed with this model to discuss experimental results and find ways to improve the absorber performances and thus the absorption chiller performances
Guillemant, Philippe. "Modélisation numérique et analytique des transferts couplés rayonnement-conduction dans les milieux semi-transparents : identification expérimentale par la méthode de l'hémisphère." Aix-Marseille 1, 1992. http://www.theses.fr/1992AIX11038.
Full textBrige, Xavier. "Transferts de chaleur couplés par conduction et rayonnement dans les milieux semi-transparents anisotropes et non gris : Etude et comparaison des modèles en 1D." Nancy 1, 2005. http://www.theses.fr/2005NAN10195.
Full textBennai, Fares. "Étude des mécanismes de transferts couplés de chaleur et d’humidité dans les matériaux poreux de construction en régime insaturé." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS013/document.
Full textThe aim of this work is to understand the influence of the geometric parameters of envelope eco-materials, such as hemp concrete, on the mechanisms of coupled heat, air and moisture transfers, in order to predict behavior of the building to control and improving it in its durability. For this a multi-scale approach is implemented. It consists of mastering the dominant physical phenomena and their interactions on the microscopic scale. Followed by a dual-scale modeling, microscopic-macroscopic, of coupled heat, air and moisture transfers that takes into account the intrinsic properties and microstructural topology of the material using X-ray tomography combined with the correlation of 2D and 3D images. A characterization campaign of physical and hydrothermal properties of the hemp concrete manufactured in the laboratory was carried. It focused on studying the impact of aging, thermal and hydric state of the material on these intrinsic properties. The results show an excellent thermal insulation and natural moisture regulation capacity of hemp concrete. Then, a microscopic characterization by different imaging techniques was performed. The 3D reconstructions of the real material scanned with X-ray tomography at different resolutions show that hemp concrete has several scales of porosity, ranging from micro-porosity within the binder and hemp shiv to the inter-particle macro-porosity. The hydromorphic behavior under hydric solicitations was studied. The results of the 2D digital image correlation and X-ray tomography coupled with the volumetric image correlation show the nature of the behavior of hemp concrete subjected to different relative humidities. In fact, the hemp shiv undergoes greater deformations than the binder, thus causing changes in the microstructure of the material. On the modeling part, a model of coupled heat, air and moisture transfer in porous building materials was developed using the periodic homogenization technique. The homogenized tensors of diffusion and thermal conductivity were determined numerically. Then, a confrontation between the results of the calculation of the macroscopic diffusion coefficients and the experimental results obtained at the LaSIE was carried out. It highlights the quality of the prediction. In addition, the thermal conductivity of the solid phase was thus deduced. The results obtained in the framework of this PhD thesis have highlighted the influence of the hydric and thermal state of the hemp concrete on these intrinsic properties and its very heterogeneous microstructure. They also revealed the limitations of phenomenological approaches based on the establishment of the balances of mass, amount of motion and energy
El, Ammouri Fouad. "Etude théorique des transferts couplés conductif, convectif et radiatif dans des écoulements gazeux hétérogènes et turbulents : mesure du flux conductif par déviation de faisceau laser." Châtenay-Malabry, Ecole centrale de Paris, 1993. http://www.theses.fr/1993ECAP0310.
Full textAklouche, Leila. "Modélisation des transferts couplés masse-chaleur dans un matériau amylacé lors des hydrotraitements par haute pression : caractérisations physicochimiques et thermophysiques." Thesis, La Rochelle, 2019. http://www.theses.fr/2019LAROS025.
Full textThis thesis aims on the one hand to understand the physical changes generated in the internal structure of a biopolymer material submitted to high-pressure hydrotreatments and on the other hand to the modelling of coupled heat and mass transfers. In this work, standard maize starch was chosen as a model material and four processes were investigated; DV-HMT (Direct Vapor-Heat Moisture Treatment), RP-HMT (Reduced Pressurized-HMT), IV-HMT (Intensive Vacuum-HMT) et FV-HMT (Final Vacuum-HMT). As the progression of biochemical reactions is strongly affected by the temperature and water content that alter the physical and thermophysical properties of the reactive material, their prediction is very important. The analysis of phase transitions and structure, related to the involved phenomena (cristallites fusion, formation of amylose-lipids complexes, retrogradation) was performed by calorimetry, X-ray diffraction and by FTIR spectroscopy. The transfers modelling has been advanced by an experimental and theoretical approaches. In the experimental approach, the physical (apparent density, bulk density and porosity) and thermophysical properties (specific heat, conductivity ant thermal diffusivity) were measured by considering the variation of W, T and the crystallites fusion phenomenon. Empirical models expressing these properties have been determined and the values implemented in the transfer equations. In the theoretical approach, the coupled equations of the transfer model were discretised by the finite element method and resolved by COMSOL Multiphysics®. The numerical resolution allowed the prediction of the spatial repartition of variable parameters (T, W, ξ, λ, Cp,...) according to treatment time. The curves of ξ numerically simulated by COMSOL® go through all experimental values, thus validating the theoretical models
Asllanaj, Fatmir. "Etude et analyse numérique des transferts de chaleur couplés par rayonnement et conduction dans les milieux semi-transparents : application aux milieux fibreux." Nancy 1, 2001. http://docnum.univ-lorraine.fr/public/SCD_T_2001_0208_ASLLANAJ.pdf.
Full textZuñiga, Ulloa Ruben. "Études numérique et expérimentale des transferts couplés masse-chaleur modélisation, simulation et optimisation d'un traitement thermique dynamique de surface d'un produit alimentaire." Nantes, 2005. http://www.theses.fr/2005NANT2039.
Full textThis work concerns the decontamination of the surface of a food, consisting in blowing hot air onto the food surface with the objective of inactivating the bacteria located on the surface. This process has a renewal of interest but it is still a challenge to accurately control the evolution of the surface temperature. In this aim, a coupled heat and mass transfer model has been developed taking into account convective and diffusive mechanisms, evaporation and shrinkage of the product during the treatment. It also accommodates the dependence of the thermal properties with the moisture content. A specific heat treatment chamber was used to validate the model. Some parameters of the model were taken from the literature whereas the convective heat transfer coefficient was experimentally determined. From simulations, we highlighted the great influence of the water diffusivity on the surface temperature prediction. Reverse methods were then used to optimize this parameter and we pointed out its correlation with the convective heat transfer. Finally, this model was used as a simulator to design a control law allowing surface temperature tracking. This algorithm required the knowledge of an internal temperature, which was supplied by a software sensor
Gholamifard, Shabnam. "Modélisation des écoulements diphasiques bioactifs dans les installations de stockage de déchets." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00512102.
Full textLeroy, Vincent. "Modélisation des couplages entre des transferts conductifs, convectifs et radiatifs en milieux poreux." Phd thesis, Ecole Centrale Paris, 2013. http://tel.archives-ouvertes.fr/tel-00825130.
Full textGrossein, Olivier. "Modélisation et simulation numérique des transferts couplés d'eau, de chaleur et de solutés dans le patrimoine architectural en terre, en relation avec sa dégradation." Phd thesis, Grenoble 1, 2009. https://theses.hal.science/tel-00373288.
Full textSevere degradation of earthen structures may occur when they are subjected to extreme hydro-climatic conditions, sometimes leading to total failure. This work was carried out as part of the UNESCO program "Central Asian Earth" in cooperation with CRATerre-ENSAG. The ancient wall of Deshan Kala (Khiva, Uzbekistan) was selected for studying the mechanisms of the transfer of water and solute in the soil and the earthen wall. A measuring system was set up to monitor the evolution of the hydro-climatic parameters. The coupled moisture and heat transfer model considers gravity and capillarity for the liquid transport phase and diffusion for the vapor transport phase. The density oh the liquid is variable with respect to solute concentration and the solute is transported by convection-dispersion. The crystallization/dissolution process is a one order reaction. The transfer properties of the materials were estimated in laboratory. The transfer phenomena are numerically modeled. One-dimensional simulations show a dry zone near the surface due to evaporation occuring inside the material. The moisture fluxes and the hydric state of the system are influenced by the water table level and the atmospheric conditions. The salt crystallizes in the dry zone or at the surface depending on the atmospheric conditions and the type of material. Two-dimensional simulations estimate the impact of the soil surface quality and vegetation on moisture fluxes inside the nearby wall. These results are interesting for the conservation of the cultural heritage
Grossein, Olivier. "Modélisation et simulation numérique des transferts couplés d'eau, de chaleur et de solutés dans le patrimoine architectural en terre, en relation avec sa dégradation." Phd thesis, Université Joseph Fourier (Grenoble), 2009. http://tel.archives-ouvertes.fr/tel-00373288.
Full textCourivaud, Jean-Michel. "Étude des transferts couplés de masse et de chaleur en milieu poreux : application à la cuisson par vapeur saturée d'un béton cellulaire." Toulouse, INPT, 1993. http://www.theses.fr/1993INPT082H.
Full textBen, Nasrallah Sassi. "Contribution à l'étude des transferts couplés de chaleur et de masse : application aux phénomènes d'évaporation par convection naturelle et du séchage convectif de milieux poreux." Poitiers, 1987. http://www.theses.fr/1987POIT2026.
Full textLelièvre, Dylan. "Simulation numérique des transferts de chaleur et d’humidité dans une paroi multicouche de bâtiment en matériaux biosourcés." Thesis, Lorient, 2015. http://www.theses.fr/2015LORIS359/document.
Full textIn a context of energy efficiency and durability in the field of building, the understanding of hygrothermal behaviour of building materials, especially hygroscopic ones, is essential. This study aim to understand and model heat and moisture transfers in a multi-layer building wall made of biosourced materials. We focus in particular on hysteretic phenomena observed on sorption isotherms. A one-dimensional numerical model developed with the COMSOL Multiphysics software is used to simulate transient temperature and vapour pressure in three situations. The first one is about the hygrothermal behaviour of materials, highly hygroscopic (hemp concrete) and lowly hygroscopic (lime-based plasters), exposed to several cyclical variations of relative humidity. A good agreement is observed between simulated and measured values of relative humidity, temperature and moisture content. However, results are highly sensitive to hydric properties. Then, a study is performed on an instrumented hemp-concrete wall built in a bi-climatic chamber and exposed to simultaneous temperature and relative humidity variations. The confrontation between measured and simulated values shows the importance of initial moisture content
Mabsate, El-Mostafa. "Etude numérique 2D des transferts couplés de chaleur et de masse dans les milieux poreux non saturés : thermomigration avec effet de la gravité et infiltration non isotherme dans une cavité fermée." Paris 6, 1987. http://www.theses.fr/1987PA066743.
Full textWang, Chengan. "Contribution à la simulation numérique des problèmes de transferts thermiques couplés par rayonnement et convection dans un milieu semi-transparent confiné dans une enceinte de géométrie complexe par une méthode de type meshless." Poitiers, 2011. http://www.theses.fr/2011POIT2317.
Full textIn this work, a meshless method is developed to solve radiative transfer problems and coupled transfer problems (radiation-conduction and radiation-convection) occuring in a semitransparent medium enclosed in a cavity of complex shape. The method is first used to solve the radiative transfer equation (RTE) by using the discrete ordinates framework. Three different formulations of the RTE are considered (first order formulation with the intensity as depend variable and two second order formulations with secondary variables). Several examples are treated in two dimensional and three dimensional geometries in order to assess the accuracy of the method. Next we have extended the application of the method to radiation-conduction coupled problems in steady state (the medium being homogeneous or heterogeneous by allowing the refractive index to vary spatially) and in unsteady state. In the second part of the thesis, we have shown how to solve three dimensional natural convection problems by using the vorticity and vector potential formulation. Finally, the application of this method to solve coupled radiation-convection problems is presented
Vinsard, Gérard. "Modélisation de l'électromagnétisme et des transferts thermiques couplés dans le cadre du chauffage par induction : application à la simulation d'un procédé industriel." Vandoeuvre-les-Nancy, INPL, 1990. http://www.theses.fr/1990INPL017N.
Full textAIT, ALDJET BOUHADEF KHEDIDJA. "Evaporation d'eau entre plaques parallèles humides sous l'effet d'un écoulement d'air en convection forcée : application à l'évaluation des transferts couplés de chaleur et de masse." Poitiers, 1988. http://www.theses.fr/1988POIT2009.
Full textBouddour, Ahmed. "Contribution de l'homogénéisation à l'étude des transferts couplés de fluides, de chaleur et de particules en suspension en milieu poreux : application à l'étude de réservoirs géothermiques." Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10140.
Full textHans, Stéphane. "Modélisation des transferts couplés de chaleur, de soluté et de quantité de mouvement lors de la refusion à l'arc sous vide (VAR) : application aux alliages de titane." Vandoeuvre-les-Nancy, INPL, 1995. http://www.theses.fr/1995INPL023N.
Full textTouffet, Maxime. "Transferts et réactivité de l’huile au cours du procédé de friture." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLA019/document.
Full textBatch deep-frying has been investigated within the collaborative project FUI Fry’In (ref. AAP17, 2014-2018) with the aim of proposing breakthrough innovations for small and medium size appliances. The PhD thesis was part of the project and focused on two specific adverse effects of deep-frying on food products: oil thermo-oxidation responsible for break-down products and off-flavors, and oil pickup process usually favored relatively to oil dripping. The work was carried out by combing direct measurements (FTIR-ATR spectroscopy and imaging, photoionization, DSC measurements, fast imaging…) and multiscale modeling (oil flow and oil dripping during product re-moval, Lagrangian description of reactions in aniso-thermal flows, coupling with oxygen dissolution kinetics). The complex problem of thermo-oxidation was split into simpler mechanisms by noticing that hydroperoxides are a kind of long-lived form of or-ganic oxygen, which trigger propagation in deep re-gions under anoxia. Their decomposition lead to various scission products, which were shown to be in-fluenced by both local temperature and oxygen con-centration. Oil uptake was described as the net balance between the amount of dragged oil during product removal and oil dripping at the tips of the product. The dripping process studied on both metal-lic sticks and real products occurs in less than few seconds and leads to a formation of four to eight drop-lets. The detailed drainage kinetics in anisothermal conditions were captured and predicted with the pro-posed mechanistic models. The specific mechanism of oil uptake during the immersion stage was eluci-dated and was shown to occur only in parfried frozen products
Toumi, Saïd. "Procédé de congélation des légumes verts : introduction d'une étape de présurgélation par immersion et maîtrise globale des transferts couplés eau/chaleur pour l'optimisation de la qualité des produits." Compiègne, 2005. http://www.theses.fr/2005COMP1592.
Full textLn this work, a step of prefreezing by immersion was introduced into the green vegetables freezing process in triple objective: higher quality end product , increase in the technical productivity and energy savings. Situated between pretreatment steps and freezing step , the immersion step consists in soaking green vegetables in a concentrated NaCl aqueous solution. This step thus allows a partial freezing , rapidity , individual pieces freezing (IQF) and reduction of dehydration losses. This work concerns the study of the prefreezing immersion step effectiveness on the quality end frozen product, according to the changes of the temperature, the salt gain, texture, the drip loss and the color
Busser, Thomas. "Etude des transferts hygrothermiques dans les matériaux à base de bois et leurs contributions à l'ambiance intérieure des bâtiments." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAA010/document.
Full textThe general aim of the thesis is to advance the understanding of multi-physical behavior of wooden buildings and improving the assessment of their energy performance with comfort hygrothermal. Sector professionals and scientific studies show the differences between the calculations and performance measures (consumption, comfort) of these buildings. The reasons for these differences are not yet well understood: the impact of moisture and latent heat in these constructions are often put forward as a likely explanation, although this is still research. The most recent studies show that the foundations are likely to fall at the hygrothermal behavior of materials at the base of wooden unsteady. This work will focus primarily on two studies scales: scale and scale building material. One of the lines of work of the thesis will focus on the experimental characterization of hygroscopic properties of wood-based materials and their modeling. The second strand of work will focus on building wide integration of these materials in modeling, integrating the impact of specific properties of these materials in the walls constituent assemblies and in complex balance sheets at the building scale . An experimental study will focus on a living room with a large presence of wood in the building envelope to characterize the hygrothermal comfort, and quantify the contribution of Hygric inertia of the envelope on performance in terms of the atmosphere comfort. If necessary, measures will also be drawn to scale "wall" on one hand, on real structures on the other
Ibarrart, Loris. "Description en espaces de chemins et méthode de Monte Carlo pour les transferts thermiques couplés dans les structures fluides et solides, une approche compatible avec l'informatique graphique." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2020. http://www.theses.fr/2020EMAC0009.
Full textThe present manuscript deals with the coupling of thermal heat transfers. More precisely, it adresses this coupling by making use of the Monte Carlo method and the sampling of random paths. This choice was made in the perspective of building algorithms that do not present constraints regarding the complexity of the studied geometry. Indeed, the combined use of this kind of statistical approaches, and acceleration tools coming from the image synthesis community, already allowed for an exact resolution of radiative transfer in arbitrary geometries. Regarding diffusive heat transfers, exact results using random paths are only achievable in academic configurations. Thus, approximate random paths are commonly used to account for this kind of thermal transport. Among the possible choices, we will use random paths built on ray tracing, therefore allowing to benefit once again from all the advantages of the tools developed in computer graphics. A proof of concept of the insensitivity of the computation time of the resolution of thermal transfers in porous exchangers to the number of pores by making use of conducto-convecto-radiative random paths will be presented. Beyond this result, an analysis of the behaviour of this method in ducts heat exchangers will allow to clarify when this kind of insensitivity can indeed be observed. This analysis will induce the concept of thermal thickness, by analogy with optical thickness for radiative transfer
Barkallah, Amine. "Membranes et systèmes pour le contrôle des échanges de fluides dans un boîtier électronique : essais et modélisation." Montpellier 2, 2009. http://www.theses.fr/2009MON20048.
Full textIn this thesis we studied the impact of the application of breathing membranes on protecting boxes of calculators embarked in a car. For that, a comprehensive experimental and theoretical study was developed in order to understand the whole phenomena of mass and heat of transfer controlling the exchanges of fluids in response to changes of external and internal environmental conditions (temperature, pressure, relative humidity and vapour partial pressure). A complete characterization of the membranes by static and dynamic techniques made it possible to specify the structure of the membranes and thus to obtain full structural and morphological parameters necessary to modelling. Thereafter, a model was developed based on an in series resistances approach by considering the influence of the boundary layers on the global transfer and by coupling mass and heat transfers in the whole system. The model was validated by matching the simulation curves with experimental results carried out with an actual and a reference box under various operating conditions. Conclusions on the choice of these systems and their dimensioning were then defined and the limitations of their uses were identified. One of the problems encountered during the use of a breathing membrane was the increase of relative humidity within the case. The developed and validated model can thus be used as predictive tool and as a sizing tool of the system
Rafidiarison, Helisoa Mamy. "Etudes expérimentales des transferts de masse et de chaleur dans les parois des constructions en bois, en vue de leur modélisation. Applications aux économies d'énergie et au confort dans l'habitat." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0077.
Full textCoupled heat and moisture transfer through hygroscopic materials, particularly wood and wood-based products are difficult to model. This is partly due to some specific and complex properties of these materials that are often not included in numerical models. Currently, only a few numerical models are able to predict accurately the hygrothermal performance of wooden building envelope. The aim of this work is to assess the heat and moisture transfer in wooden building envelope through experiments and validate the prediction capacity of a numerical model developed to simulate hygrothermal behavior of envelope including wooden materials. After giving a theoretical reminder of the coupled heat and moisture transfer through building envelope and reporting the results of previous studies in this field, we will give details of the experimental investigation on heat and moisture transfer through timber walls. Firstly, the experimental apparatus used for the wall tests is presented. Then, we will analysis the hygrothermal performance of wooden walls provided by the partners of the TRANSBATIBOIS project in which this work was achieved. Experimental works achieved for Buildingpore model validation and results of the comparisons between experimental assessment and numerical predictions with Buildingpore and WUFI are also reported. The third part of this study deals with the experimental assessment of wooden building envelopes exposed to climatic conditions. An analysis of the hygrothermal performance and the energy consumption of wooden test-cells is performed and reported in this part. The latest part concerns experimental works on buildings
Piot, Amandine. "Hygrothermique du bâtiment : expérimentation sur une maison à ossature bois en conditions climatiques naturelles et modélisation numérique." Phd thesis, INSA de Lyon, 2009. http://tel.archives-ouvertes.fr/tel-00440510.
Full textOthmen, Inès. "Étude des matériaux d'isolation compatibles avec la pierre de tuffeau : application à la réhabilitation du bâti ancien et/ou historique." Nantes, 2015. http://archive.bu.univ-nantes.fr/pollux/show.action?id=6bd6c8b6-5b05-4f8d-ae3d-8da67f673df9.
Full textIn France, the building sector is a major challenge because alone is responsible for about half of the final energy consumption and nearly a quarter of national greenhouse gas emissions. In this context, the regulations concerning the energy efficiency of buildings lead professionals to wonder about the issue of the insulation of buildings said “old”, built before 1948, in particular, those of Loire Valley made with tuffeau. However, there are no proven technology answers for the rehabilitation of buildings in limestone. In this context, we preferred use innovative technical solutions using hemp by wet and dry applications. Indeed, recent research has highlighted the interesting hygrothermal performance of this eco-material, in addition to its respect for the environment and sustainable development approach. In this phD work, three objectives are well pointed out. The first focused on a parametric study of limestone and concrete hemp to create a database of properties necessary for the evaluation of the insulation technique and numerical modeling of coupled heat and moisture transfer in the walls. The second objective was to test the insulated walls under real relative humidity and temperature conditions imposed within a biclimatic device. Finally, the third objective was to verify the experimental results with the numerical results obtained through two-dimensional software in porous media (heat / moisture - WUFI)
Labat, Matthieu. "Chaleur - Humidité - Air dans les maisons à ossature bois : Expérimentation et modélisation." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00790809.
Full textSpiesser, Christophe. "Méthode de simulation appropriée aux systèmes complexes : preuve de concept auto-adaptative et auto-apprenante appliquée aux transferts thermiques." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2017. http://www.theses.fr/2017EMAC0005/document.
Full textAs computing power increases, engineers and designers tackle increasingly complex problems using simulation (multiphysics, multiscale, intricated geometries ...). In this context, discretization-based quadratures (FDM, FEM, FVM) show their limit: the need of a great number of sub-domains which induces prohibitive consumption of RAM and CPU power. The Monte Carlo method appears to be more appropriate, but the difficulty to build probabilistic models of complex systems forms a bottleneck. A systemic approach is proposed to alleviate it and is implemented to create a proof-of-concept dedicated to the coupled heat transfer simulation. After a successful validation step against analytical solutions, this tool is applied to illustrative cases (emulating heat transfer in buildings and in solar heating systems) in order to study its simulation capabilities.This approach presents a major beneficial behavior for complex systems simulation: the computation time only depends on the influential parts of the problem. These parts are automatically identified, even in intricate or extensive geometries, which makes the simulation self-adaptive. In addition, the computational performance and the system scale ratio are completely uncorrelated. Consequently, this approach shows an exceptional capacity to tackle multiphysics and multiscale problems. Each temperature is estimated using exploration paths. By statistically analyzing these paths during the process, the tool is able to generate a reduced predictive model of this physical quantity, which is bringing a self-learning capacity to the simulation. Its use can significantly improve optimization and control of processes, or simplify inverse measurements. Furthermore, based on this model, an uncertainty propagation analysis has been performed. It quantifies the effect of uncertainties affecting boundary conditions on the temperature. Finally a Particle Swarm Optimization (PSO) process, based on simulations done by the framework, is successfully carried out
Oubrahim, Imane. "Fiabilisation des approches théoriques pour la caractérisation des matériaux et la modélisation hygrothermique des enveloppes du bâtiment." Thesis, La Rochelle, 2022. http://www.theses.fr/2022LAROS021.
Full textThe renovation of old residential buildings (built before any thermal regulations) is an effective way to reduce the energy consumed by the building sector. However, owners’ reluctance to take action is delaying the objectives set for this sector in terms of energy savings. This hesitation stems from ignorance of the hygrothermal behavior of the materials used in the past for construction. In addition, the tools that integrate hygrothermal models seem unable to deal with complex situations such as those encountered during renovation. We aim to help make reliable the modeling of coupled heat and mass transfer by working on the hygrothermal coefficients involved to establish the physical models. Indeed, it was analyzed the impact of the phenomenon of hysteresis in the water sorption process on the coupled transfers of heat and mass under dynamic conditions. The effect of temperature on water sorption via complementary sorption heat and its impact was examined. The experimental determination of the vapor diffusion coefficient with the cup method was also studied to highlight the impact the traditional use of this experiment could have on the measurement of the concerned parameter. As a result of this analysis, a new method was proposed and tested to simultaneously identify the vapor diffusion coefficient and the air permeability. Finally, having determined all the coefficients characterizing the transfers, identification by an inverse method of the relative liquid permeability could be carried out. In this work, a methodology was proposed to determine this liquid water transfer coefficient. After analyzing the effect of each parameter separately, integration of the modified properties was performed to analyze the coupled impact of these parameters
Mnasri, Faiza. "Étude du transfert de chaleur et de masse dans les milieux complexes : application aux milieux fibreux et à l’isolation des bâtiments." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0169/document.
Full textInternational energy context requires a new orientation to the building sector as in construction or in renovation. Any new solution must be technically efficient and environmentally acceptable. In this thesis, the object is to achieve a numerical and experimental analysis of a building biobased materials. Some of these materials are included from the study of a transborder project to the Lorraine region (France, Belgium and Luxembourg). Indeed an Ecotransfaire project was included in this work. This project has been oriented to the development of a sustainable eco materials chain. A process of analysis has been established in order to select the materials candidates on the basis of scientific, geographical and environmental criteria. The answers are moving towards the integration of bio-based materials. These materials are subject of several heat and mass transfers phenomena. So understanding these mechanisms within a building material has been achieved firstly. This resulted on a coupled model of heat transfer, air, moisture experienced by the HAM model. This model is applied to a wooden building material whose its structure is assumed homogeneous. Then, this model was implemented and solved by the finite element method. Its numerical solution is validated by analytical results available in the literature. The study of sensitivity of the model coupling, dimensions in space, the boundary conditions and the variability of input parameters is also presented. One of the difficulties of using this model is the case of heterogeneous materials. Thus, in this work, we propose an approach of characterization of a heterogeneous lignocellulosic composite material with a porous structure. In fact, this material is composed of two components: Wood and cement. The wood is presented by a shapes aggregates with irregulars sizes and the cement is considered as the binder in the composition. The object was to predict its equivalent intrinsic properties (thermal conductivity and vapor permeability) by using the micro-tomography techniques.The methodology consists to determine the structure of the sample by taking images at the microscopic scale. Once the structure of the sample is generated, we will conduct from a reconstruction of the two-dimensional representation to a three dimensional structure by using a numerical tool which determines the equivalent properties of the 3D reconstructed domain. The permeability as well as the equivalent thermal conductivity are the two properties evaluated in this configuration. These two properties are strongly depend to the porosity and to pore distribution in the continuous phase (the solid one). Moreover the composition of the material and the volume fractions of each components influence the formation of microstructure and consequently the thermal and hydric transfers
Slimani, Zakaria. "Analyse expérimentale et numérique du comportement hygrothermique de parois fortement hygroscopiques." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10344.
Full textSimulation of Heat, Air and Moisture (HAM) transfers in building envelope is a practice which is becoming increasingly popular. The correct evaluation of temperature and moisture fields is important to predict accurately heat and moisture fluxes, hygrothermal comfort and building energy consumption, especially for highly hygroscopic materials. Additionally, moisture has an impact on the health of occupants and can causes damage to building materials. For highly hygroscopic materials, simulation models show discrepancy to the real hygrothermal behavior. The research project HYGRO-BAT is a unifying project on these issues. In this context, we developed a hygrothermal transfer model sufficiently fine allowing the analysis of the main physical phenomena involved. In order to validate the developed model and to study in detail the coupled heat and mass transfers for highly hygroscopic walls, we designed and realized an experimental tool that allows numerous and various measurement and creating climates encountered for building application. The choice of hygrothermal loading allows progressive understanding of involved physical mechanisms in the envelope. Moreover, to simplify the analysis, a dimensionless hygrothermal formulation was proposed. It allows highlighting dimensionless numbers which are very convenient to study the behavior of a very hygroscopic wall. These numbers allow a new representative characterization of transfer mechanisms that rely on the thermodynamic state of the wall
Remond, Romain. "Approche déterministe du séchage des avivés de résineux de fortes épaisseurs pour proposer des conduites industrielles adaptées." Phd thesis, ENGREF (AgroParisTech), 2004. http://pastel.archives-ouvertes.fr/pastel-00001132.
Full text