Journal articles on the topic 'Transcriptional co-activator with PDZ-Binding motif (TAZ)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Transcriptional co-activator with PDZ-Binding motif (TAZ).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wu, Chia-Lin, Chia-Chu Chang, Tao-Hsiang Yang, Alexander Charng-Dar Tsai, Jui-Lin Wang, Chung-Ho Chang, and Der-Cherng Tarng. "Tubular transcriptional co-activator with PDZ-binding motif protects against ischemic acute kidney injury." Clinical Science 134, no. 13 (June 30, 2020): 1593–612. http://dx.doi.org/10.1042/cs20200223.

Full text
Abstract:
Abstract Transcriptional co-activator with PDZ-binding motif (TAZ) is a key downstream effector of the Hippo tumor-suppressor pathway. The functions of TAZ in the kidney, especially in tubular epithelial cells, are not well-known. To elucidate the adaptive expression, protective effects on kidney injury, and signaling pathways of TAZ in response to acute kidney injury (AKI), we used in vitro (hypoxia-treated human renal proximal tubular epithelial cells [RPTECs]) and in vivo (mouse ischemia–reperfusion injury [IRI]) models of ischemic AKI. After ischemic AKI, TAZ was up-regulated in RPTECs and the renal cortex or tubules. Up-regulation of TAZ in RPTECs subjected to hypoxia was controlled by IκB kinase (IKK)/nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB) signaling. TAZ overexpression attenuated hypoxic and oxidative injury, inhibited apoptosis and activation of p38 and c-Jun N-terminal kinase (JNK) proteins, and promoted wound healing in an RPTEC monolayer. However, TAZ knockdown aggravated hypoxic injury, apoptosis, and activation of p38 and JNK signaling, delayed wound closure of an RPTEC monolayer, and promoted G0/G1 phase cell-cycle arrest. Chloroquine and verteporfin treatment produced similar results to TAZ overexpression and knockdown in RPTECs, respectively. Compared with vehicle-treated mice, chloroquine treatment increased TAZ in the renal cortex and tubules, improved renal function, and attenuated tubular injury and tubular apoptosis after renal IRI, whereas TAZ siRNA and verteporfin decreased TAZ in the renal cortex and tubules, deteriorated renal failure and tubular injury, and aggravated tubular apoptosis. Our findings indicate the renoprotective role of tubular TAZ in ischemic AKI. Drugs augmenting (e.g., chloroquine) or suppressing (e.g., verteporfin) TAZ in the kidney might be beneficial or deleterious to patients with AKI.
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Yao, Xueqian Ouyang, Jinghua Tan, Zhenyu Meng, Xiuwen Ma, and Yiguo Yan. "The physiological and pathogenic roles of yes-associated protein/transcriptional co-activator with PDZ-binding motif in bone or skeletal motor system-related cells." Cytojournal 22 (February 8, 2025): 13. https://doi.org/10.25259/cytojournal_237_2024.

Full text
Abstract:
Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are the primary downstream effectors of the Hippo signaling pathway. This pathway plays a crucial role in regulating organ size, maintaining tissue homeostasis, and controlling cellular processes such as fate determination and tissue development. This review provides an overview of the current understanding of how the transcriptional regulators YAP and TAZ contribute to the physiological and pathological processes in tissues and cells associated with the skeletal motor system. The underlying molecular mechanisms and mechanical transduction were reviewed.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Tao, Jiaojiao Zhou, Yanmin Chen, Jia Fang, Song Liu, Costa Frangou, Hai Wang, and Jianmin Zhang. "Genome-Wide Characterization of TAZ Binding Sites in Mammary Epithelial Cells." Cancers 15, no. 19 (September 25, 2023): 4713. http://dx.doi.org/10.3390/cancers15194713.

Full text
Abstract:
The transcriptional co-activator with PDZ binding motif (TAZ) is a key effector of the Hippo signaling pathway. We and others previously reported that high expression levels of TAZ are positively associated with decreased survival rates and shorter times to relapse in basal-like breast cancer (BLBC) patients. The oncogenic activity of TAZ involves the regulation of diverse signal transduction pathways that direct processes such as cell proliferation, migration, and resistance to apoptosis, albeit through poorly characterized gene expression programs. Here, using a tet-inducible system in mammary epithelial MCF10A cells, we have characterized the TAZ-regulated transcription program using RNA sequencing in a temporal and spatial manner. We further identified global TAZ binding sites at different TAZ activation time points by chromatin immunoprecipitation (ChIP) sequencing analysis. We found that the vast majority of TAZ was rapidly localized in enhancer regions at the early TAZ activation time point and then gradually spread to promoter regions. TAZ bound to enhancer regions following a switch in potential TEAD and FOSL2 transcription factor motifs. Furthermore, the ATAC sequencing analysis indicated that TAZ activation led to chromatin structural alterations. Together, our results have revealed the landscape of genome-wide TAZ binding sites and may lead to improvements in the current understanding of how TAZ regulates the gene expression program that contributes to the development of breast cancer.
APA, Harvard, Vancouver, ISO, and other styles
4

Salem and Hansen. "The Hippo Pathway in Prostate Cancer." Cells 8, no. 4 (April 23, 2019): 370. http://dx.doi.org/10.3390/cells8040370.

Full text
Abstract:
Despite recent efforts, prostate cancer (PCa) remains one of the most common cancers in men. Currently, there is no effective treatment for castration-resistant prostate cancer (CRPC). There is, therefore, an urgent need to identify new therapeutic targets. The Hippo pathway and its downstream effectors—the transcriptional co-activators, Yes-associated protein (YAP) and its paralog, transcriptional co-activator with PDZ-binding motif (TAZ)—are foremost regulators of stem cells and cancer biology. Defective Hippo pathway signaling and YAP/TAZ hyperactivation are common across various cancers. Here, we draw on insights learned from other types of cancers and review the latest advances linking the Hippo pathway and YAP/TAZ to PCa onset and progression. We examine the regulatory interaction between Hippo-YAP/TAZ and the androgen receptor (AR), as main regulators of PCa development, and how uncontrolled expression of YAP/TAZ drives castration resistance by inducing cellular stemness. Finally, we survey the potential therapeutic targeting of the Hippo pathway and YAP/TAZ to overcome PCa.
APA, Harvard, Vancouver, ISO, and other styles
5

Tiffon, Camille, Julie Giraud, Silvia Elena Molina-Castro, Sara Peru, Lornella Seeneevassen, Elodie Sifré, Cathy Staedel, et al. "TAZ Controls Helicobacter pylori-Induced Epithelial–Mesenchymal Transition and Cancer Stem Cell-Like Invasive and Tumorigenic Properties." Cells 9, no. 6 (June 13, 2020): 1462. http://dx.doi.org/10.3390/cells9061462.

Full text
Abstract:
Helicobacter pylori infection, the main risk factor for gastric cancer (GC), leads to an epithelial–mesenchymal transition (EMT) of gastric epithelium contributing to gastric cancer stem cell (CSC) emergence. The Hippo pathway effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ) control cancer initiation and progression in many cancers including GC. Here, we investigated the role of TAZ in the early steps of H. pylori-mediated gastric carcinogenesis. TAZ implication in EMT, invasion, and CSC-related tumorigenic properties were evaluated in three gastric epithelial cell lines infected by H. pylori. We showed that H. pylori infection increased TAZ nuclear expression and transcriptional enhancer TEA domain (TEAD) transcription factors transcriptional activity. Nuclear TAZ and zinc finger E-box-binding homeobox 1 (ZEB1) were co-overexpressed in cells harboring a mesenchymal phenotype in vitro, and in areas of regenerative hyperplasia in gastric mucosa of H. pylori-infected patients and experimentally infected mice, as well as at the invasive front of gastric carcinoma. TAZ silencing reduced ZEB1 expression and EMT phenotype, and strongly inhibited invasion and tumorsphere formation induced by H. pylori. In conclusion, TAZ activation in response to H. pylori infection contributes to H. pylori-induced EMT, invasion, and CSC-like tumorigenic properties. TAZ overexpression in H. pylori-induced pre-neoplastic lesions and in GC could therefore constitute a biomarker of early transformation in gastric carcinogenesis.
APA, Harvard, Vancouver, ISO, and other styles
6

MAHONEY, William M., Jeong-Ho HONG, Michael B. YAFFE, and Iain K. G. FARRANCE. "The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members." Biochemical Journal 388, no. 1 (May 10, 2005): 217–25. http://dx.doi.org/10.1042/bj20041434.

Full text
Abstract:
Members of the highly related TEF-1 (transcriptional enhancer factor-1) family (also known as TEAD, for TEF-1, TEC1, ABAA domain) bind to MCAT (muscle C, A and T sites) and A/T-rich sites in promoters active in cardiac, skeletal and smooth muscle, placenta, and neural crest. TEF-1 activity is regulated by interactions with transcriptional co-factors [p160, TONDU (Vgl-1, Vestigial-like protein-1), Vgl-2 and YAP65 (Yes-associated protein 65 kDa)]. The strong transcriptional co-activator YAP65 interacts with all TEF-1 family members, and, since YAP65 is related to TAZ (transcriptional co-activator with PDZ-binding motif), we wanted to determine if TAZ also interacts with members of the TEF-1 family. In the present study, we show by GST (glutathione S-transferase) pull-down assays, by co-immunoprecipitation and by modified mammalian two-hybrid assays that TEF-1 interacts with TAZ in vitro and in vivo. Electrophoretic mobility-shift assays with purified TEF-1 and GST–TAZ fusion protein showed that TAZ interacts with TEF-1 bound to MCAT DNA. TAZ can interact with endogenous TEF-1 proteins, since exogenous TAZ activated MCAT-dependent reporter promoters. Like YAP65, TAZ interacted with all four TEF-1 family members. GST pull-down assays with increasing amounts of [35S]TEF-1 and [35S]RTEF-1 (related TEF-1) showed that TAZ interacts more efficiently with TEF-1 than with RTEF-1. This differential interaction also extended to the interaction of TEF-1 and RTEF-1 with TAZ in vivo, as assayed by a modified mammalian two-hybrid experiment. These data show that differential association of TEF-1 proteins with transcriptional co-activators may regulate the activity of TEF-1 family members.
APA, Harvard, Vancouver, ISO, and other styles
7

Chu, Cong-Qiu, and Taihao Quan. "Fibroblast Yap/Taz Signaling in Extracellular Matrix Homeostasis and Tissue Fibrosis." Journal of Clinical Medicine 13, no. 12 (June 7, 2024): 3358. http://dx.doi.org/10.3390/jcm13123358.

Full text
Abstract:
Tissue fibrosis represents a complex pathological condition characterized by the excessive accumulation of collagenous extracellular matrix (ECM) components, resulting in impaired organ function. Fibroblasts are central to the fibrotic process and crucially involved in producing and depositing collagen-rich ECM. Apart from their primary function in ECM synthesis, fibroblasts engage in diverse activities such as inflammation and shaping the tissue microenvironment, which significantly influence cellular and tissue functions. This review explores the role of Yes-associated protein (Yap) and Transcriptional co-activator with PDZ-binding motif (Taz) in fibroblast signaling and their impact on tissue fibrosis. Gaining a comprehensive understanding of the intricate molecular mechanisms of Yap/Taz signaling in fibroblasts may reveal novel therapeutic targets for fibrotic diseases.
APA, Harvard, Vancouver, ISO, and other styles
8

Warren, Janine, Yuxuan Xiao, and John Lamar. "YAP/TAZ Activation as a Target for Treating Metastatic Cancer." Cancers 10, no. 4 (April 10, 2018): 115. http://dx.doi.org/10.3390/cancers10040115.

Full text
Abstract:
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
APA, Harvard, Vancouver, ISO, and other styles
9

Park, Sangryong, Ho-Young Lee, Jayoung Kim, Hansol Park, Young Seok Ju, Eung-Gook Kim, and Jaehong Kim. "Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells." Cancers 13, no. 5 (March 5, 2021): 1125. http://dx.doi.org/10.3390/cancers13051125.

Full text
Abstract:
Enhanced Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling is correlated with the extraprostatic extension of prostate cancer. However, the mechanism by which YAP/TAZ signaling becomes hyperactive and drives prostate cancer progression is currently unclear. In this study, we revealed that higher expression of CCM1, which is uniquely found in advanced prostate cancer, is inversely correlated with metastasis-free and overall survival in patients with prostate cancer. We also demonstrated that CCM1 induces the metastasis of multiple types of prostate cancer cells by regulating YAP/TAZ signaling. Mechanistically, CCM1, a gene mutated in cerebral cavernous malformation, suppresses DDX5, which regulates the suppression of YAP/TAZ signaling, indicating that CCM1 and DDX5 are novel upstream regulators of YAP/TAZ signaling. Our findings highlight the importance of CCM1-DDX5-YAP/TAZ signaling in the metastasis of prostate cancer cells.
APA, Harvard, Vancouver, ISO, and other styles
10

Lauriola, Angela, Elisa Uliassi, Matteo Santucci, Maria Laura Bolognesi, Marco Mor, Laura Scalvini, Gian Marco Elisi, et al. "Identification of a Quinone Derivative as a YAP/TEAD Activity Modulator from a Repurposing Library." Pharmaceutics 14, no. 2 (February 10, 2022): 391. http://dx.doi.org/10.3390/pharmaceutics14020391.

Full text
Abstract:
The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27-member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP–TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, Yuchen, Xiaohui Wang, and Yingzi Yang. "Hepatic Hippo signaling inhibits development of hepatocellular carcinoma." Clinical and Molecular Hepatology 26, no. 4 (October 1, 2020): 742–50. http://dx.doi.org/10.3350/cmh.2020.0178.

Full text
Abstract:
Primary liver cancer is one of the most common cancer worldwide. Hepatocellular carcinoma (HCC) in particular, is the second leading cause of cancer deaths in the world. The Hippo signaling pathway has emerged as a major oncosuppressive pathway that plays critical roles inhibiting hepatocyte proliferation, survival, and HCC formation. A key component of the Hippo pathway is the inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcription factors by the Hippo kinase cascade. Aberrant activation of YAP or TAZ has been found in several human cancers including HCC. It is also well established that YAP/TAZ activation in hepatocytes causes HCC in mouse models, indicating that YAP/TAZ are potential therapeutic targets for human liver cancer. In this review, we summarize the recent findings regarding the multifarious roles of Hippo/YAP/TAZ in HCC development, and focus on their cell autonomous roles in controlling hepatocyte proliferation, differentiation, survival and metabolism as well as their non-cell autonomous in shaping the tumor microenvironment.
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Guangyuan, Ping Huang, Jiabin Xie, and Rihong Li. "Overexpression of transcriptional co-activator with PDZ-binding motif promotes epithelial mesenchymal transformation of ovarian cancer cells by upregulating Smad3 and Snail1." Materials Express 10, no. 1 (January 1, 2020): 120–26. http://dx.doi.org/10.1166/mex.2020.1617.

Full text
Abstract:
This study is intended to explore the effect of transcriptional coactivator with PDZ binding motif (TAZ) expression in ovarian cancer cells as well as investigate the expression of signal proteins Smad3 and Snail1. Ovarian cancer cells (SKOV-3) were divided into two groups: control and TAZ overexpression. The overexpression of TAZ in SKOV-3 cells was determined by immunofluorescence, western blot, and qRT-PCR. The proliferation, invasiveness, and expression of epithelial mesenchymal transformation (EMT)-associated proteins were detected, and the expression of Smad3 and Snail1 proteins was determined by qRT-PCR and western blot, respectively. Small interfering RNA (siRNA) targeting TAZ were synthesized and used to transfect SKOV-3. Cell migration and invasion were observed via a wound healing assay and a transwell assay, respectively. The expressions of representative genes involved in proliferation and migration, EMT-associated proteins and Smad3 and Snail1 proteins were also detected by western blot assays. The results of qRT-PCR, immunofluorescence, and western blot showed that, compared with the control group, the expressions of Smad3 and Snail1 protein were upregulated, and the expression of EMT-related genes-including Actin, N-cadherin, and Vimentin protein-was downregulated in the TAZ overexpression group. After TAZ mRNA was suppressed, the migration and invasion ability of the TAZ siRNA group was weaker than that of the control group. In addition, the expression level of Smad3 and Snail1 decreased when TAZ was silenced, while the expression of EMT-related genes increased. Therefore, TAZ in ovarian cancer cells can promote growth, migration, and invasiveness of cancer cells by regulating genes related to proliferation, migration, and invasion.
APA, Harvard, Vancouver, ISO, and other styles
13

Van Haele, Matthias, Iván Moya, Ruçhan Karaman, Guy Rens, Janne Snoeck, Olivier Govaere, Frederik Nevens, et al. "YAP and TAZ Heterogeneity in Primary Liver Cancer: An Analysis of Its Prognostic and Diagnostic Role." International Journal of Molecular Sciences 20, no. 3 (February 1, 2019): 638. http://dx.doi.org/10.3390/ijms20030638.

Full text
Abstract:
Primary liver cancer comprises a diverse group of liver tumors. The heterogeneity of these tumors is seen as one of the obstacles to finding an effective therapy. The Hippo pathway, with its downstream transcriptional co-activator Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), has a decisive role in the carcinogenesis of primary liver cancer. Therefore, we examined the expression pattern of YAP and TAZ in 141 patients with hepatocellular carcinoma keratin 19 positive (HCC K19+), hepatocellular carcinoma keratin 19 negative (HCC K19−), combined hepatocellular–cholangiocarcinoma carcinoma (cHCC-CCA), or cholangiocarcinoma (CCA). All cHCC-CCA and CCA patients showed high expression levels for YAP and TAZ, while only some patients of the HCC group were positive. Notably, we found that a histoscore of both markers is useful in the challenging diagnosis of cHCC-CCA. In addition, positivity for YAP and TAZ was observed in the hepatocellular and cholangiocellular components of cHCC-CCA, which suggests a single cell origin in cHCC-CCA. Within the K19− HCC group, our results demonstrate that the expression of YAP is a statistically significant predictor of poor prognosis when observed in the cytoplasm. Nuclear expression of TAZ is an even more specific and independent predictor of poor disease-free survival and overall survival of K19− HCC patients. Our results thus identify different levels of YAP/TAZ expression in various liver cancers that can be used for diagnostics.
APA, Harvard, Vancouver, ISO, and other styles
14

El Yousfi, Younes, Rocío Mora-Molina, Abelardo López-Rivas, and Rosario Yerbes. "Role of the YAP/TAZ-TEAD Transcriptional Complex in the Metabolic Control of TRAIL Sensitivity by the Mevalonate Pathway in Cancer Cells." Cells 12, no. 19 (September 27, 2023): 2370. http://dx.doi.org/10.3390/cells12192370.

Full text
Abstract:
Different studies have reported that inhibiting the mevalonate pathway with statins may increase the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), although the signaling mechanism leading to this sensitization remains largely unknown. We investigated the role of the YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex in the metabolic control of TRAIL sensitivity by the mevalonate pathway. We show that depleting nuclear YAP/TAZ in tumor cells, either via treatment with statins or by silencing YAP/TAZ expression with siRNAs, facilitates the activation of apoptosis by TRAIL. Furthermore, the blockage of TEAD transcriptional activity either pharmacologically or through the ectopic expression of a disruptor of the YAP/TAZ interaction with TEAD transcription factors, overcomes the resistance of tumor cells to the induction of apoptosis by TRAIL. Our results show that the mevalonate pathway controls cellular the FLICE-inhibitory protein (cFLIP) expression in tumor cells. Importantly, inhibiting the YAP/TAZ-TEAD signaling pathway induces cFLIP down-regulation, leading to a marked sensitization of tumor cells to apoptosis induction by TRAIL. Our data suggest that a combined strategy of targeting TEAD activity and selectively activating apoptosis signaling by agonists of apoptotic TRAIL receptors could be explored as a potential therapeutic approach in cancer treatment.
APA, Harvard, Vancouver, ISO, and other styles
15

Thrash, Hannah L., and Ann Marie Pendergast. "Multi-Functional Regulation by YAP/TAZ Signaling Networks in Tumor Progression and Metastasis." Cancers 15, no. 19 (September 24, 2023): 4701. http://dx.doi.org/10.3390/cancers15194701.

Full text
Abstract:
The Hippo pathway transcriptional co-activators, YES-associated protein (YAP) and Transcriptional Co-Activator with PDZ Binding Motif (TAZ), have both been linked to tumor progression and metastasis. These two proteins possess overlapping and distinct functions, and their activities lead to the expression of genes involved in multiple cellular processes, including cell proliferation, survival, and migration. The dysregulation of YAP/TAZ-dependent cellular processes can result in altered tumor growth and metastasis. In addition to their well-documented roles in the regulation of cancer cell growth, survival, migration, and invasion, the YAP/TAZ-dependent signaling pathways have been more recently implicated in cellular processes that promote metastasis and therapy resistance in several solid tumor types. This review highlights the role of YAP/TAZ signaling networks in the regulation of tumor cell plasticity mediated by hybrid and reversible epithelial–mesenchymal transition (EMT) states, and the promotion of cancer stem cell/progenitor phenotypes. Mechanistically, YAP and TAZ regulate these cellular processes by targeting transcriptional networks. In this review, we detail recently uncovered mechanisms whereby YAP and TAZ mediate tumor growth, metastasis, and therapy resistance, and discuss new therapeutic strategies to target YAP/TAZ function in various solid tumor types. Understanding the distinct and overlapping roles of YAP and TAZ in multiple cellular processes that promote tumor progression to metastasis is expected to enable the identification of effective therapies to treat solid tumors through the hyper-activation of YAP and TAZ.
APA, Harvard, Vancouver, ISO, and other styles
16

Zhang, Jinglin, Yuhang Zhou, Patrick Tang, Alfred Cheng, Jun Yu, Ka To, and Wei Kang. "Mechanotransduction and Cytoskeleton Remodeling Shaping YAP1 in Gastric Tumorigenesis." International Journal of Molecular Sciences 20, no. 7 (March 29, 2019): 1576. http://dx.doi.org/10.3390/ijms20071576.

Full text
Abstract:
The essential role of Hippo signaling pathway in cancer development has been elucidated by recent studies. In the gastrointestinal tissues, deregulation of the Hippo pathway is one of the most important driving events for tumorigenesis. It is widely known that Yes-associated protein 1 (YAP1) and WW domain that contain transcription regulator 1 (TAZ), two transcriptional co-activators with a PDZ-binding motif, function as critical effectors negatively regulated by the Hippo pathway. Previous studies indicate the involvement of YAP1/TAZ in mechanotransduction by crosstalking with the extracellular matrix (ECM) and the F-actin cytoskeleton associated signaling network. In gastric cancer (GC), YAP1/TAZ functions as an oncogene and transcriptionally promotes tumor formation by cooperating with TEAD transcription factors. Apart from the classic role of Hippo-YAP1 cascade, in this review, we summarize the current investigations to highlight the prominent role of YAP1/TAZ as a mechanical sensor and responder under mechanical stress and address its potential prognostic and therapeutic value in GC.
APA, Harvard, Vancouver, ISO, and other styles
17

Tóth, Marcell, Shan Wan, Jennifer Schmitt, Patrizia Birner, Teng Wei, Fabian von Bubnoff, Carolina de la Torre, et al. "The Cell Polarity Protein MPP5/PALS1 Controls the Subcellular Localization of the Oncogenes YAP and TAZ in Liver Cancer." International Journal of Molecular Sciences 26, no. 2 (January 14, 2025): 660. https://doi.org/10.3390/ijms26020660.

Full text
Abstract:
The oncogenes yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause YAP/TAZ activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ. Co-immunoprecipitation (Co-IP) experiments confirmed that membrane protein palmitoylated 5 (MPP5; synonym: PALS1) physically interacts with YAP and TAZ. After removing different MPP5 protein domains, Co-IP analyses revealed that the PDZ domain plays a crucial role in YAP binding. The interaction between YAP and MPP5 in the cytoplasm of cancer cells was demonstrated by proximity ligation assays (PLAs). In human hepatocellular carcinoma (HCC) tissues, a reduction in apical MPP5 expression was observed, correlating with the nuclear accumulation of YAP and TAZ. Expression data analysis illustrated that MPP5 is inversely associated with YAP/TAZ target gene signatures in human HCCs. Low MPP5 levels define an HCC patient group with a poor clinical outcome. In summary, MPP5 facilitates the nuclear exclusion of YAP and TAZ in liver cancer. This qualifies MPP5 as a potential tumor-suppressor gene and explains how changes in cell polarity can foster tumorigenesis.
APA, Harvard, Vancouver, ISO, and other styles
18

Gandhirajan, Rajesh Kumar, Manaswita Jain, Benedikt Walla, Marc Johnsen, Malte P. Bartram, Minh Huynh Anh, Markus M. Rinschen, Thomas Benzing, and Bernhard Schermer. "CysteineS-Glutathionylation Promotes Stability and Activation of the Hippo Downstream Effector Transcriptional Co-activator with PDZ-binding Motif (TAZ)." Journal of Biological Chemistry 291, no. 22 (April 5, 2016): 11596–607. http://dx.doi.org/10.1074/jbc.m115.712539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Di Benedetto, Giorgia, Silvia Parisi, Tommaso Russo, and Fabiana Passaro. "YAP and TAZ Mediators at the Crossroad between Metabolic and Cellular Reprogramming." Metabolites 11, no. 3 (March 8, 2021): 154. http://dx.doi.org/10.3390/metabo11030154.

Full text
Abstract:
Cell reprogramming can either refer to a direct conversion of a specialized cell into another or to a reversal of a somatic cell into an induced pluripotent stem cell (iPSC). It implies a peculiar modification of the epigenetic asset and gene regulatory networks needed for a new cell, to better fit the new phenotype of the incoming cell type. Cellular reprogramming also implies a metabolic rearrangement, similar to that observed upon tumorigenesis, with a transition from oxidative phosphorylation to aerobic glycolysis. The induction of a reprogramming process requires a nexus of signaling pathways, mixing a range of local and systemic information, and accumulating evidence points to the crucial role exerted by the Hippo pathway components Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ). In this review, we will first provide a synopsis of the Hippo pathway and its function during reprogramming and tissue regeneration, then we introduce the latest knowledge on the interplay between YAP/TAZ and metabolism and, finally, we discuss the possible role of YAP/TAZ in the orchestration of the metabolic switch upon cellular reprogramming.
APA, Harvard, Vancouver, ISO, and other styles
20

Kim, Jongwan, Haiyan Jin, Jinhyuk Kim, Seon Yeon Cho, Sungho Moon, Jianmin Wang, Jiashun Mao, and Kyoung Tai No. "Leveraging the Fragment Molecular Orbital and MM-GBSA Methods in Virtual Screening for the Discovery of Novel Non-Covalent Inhibitors Targeting the TEAD Lipid Binding Pocket." International Journal of Molecular Sciences 25, no. 10 (May 14, 2024): 5358. http://dx.doi.org/10.3390/ijms25105358.

Full text
Abstract:
The Hippo pathway controls organ size and homeostasis and is linked to numerous diseases, including cancer. The transcriptional enhanced associate domain (TEAD) family of transcription factors acts as a receptor for downstream effectors, namely yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which binds to various transcription factors and is essential for stimulated gene transcription. YAP/TAZ-TEAD facilitates the upregulation of multiple genes involved in evolutionary cell proliferation and survival. TEAD1–4 overexpression has been observed in different cancers in various tissues, making TEAD an attractive target for drug development. The central drug-accessible pocket of TEAD is crucial because it undergoes a post-translational modification called auto-palmitoylation. Crystal structures of the C-terminal TEAD complex with small molecules are available in the Protein Data Bank, aiding structure-based drug design. In this study, we utilized the fragment molecular orbital (FMO) method, molecular dynamics (MD) simulations, shape-based screening, and molecular mechanics–generalized Born surface area (MM-GBSA) calculations for virtual screening, and we identified a novel non-covalent inhibitor—BC-001—with IC50 = 3.7 μM in a reporter assay. Subsequently, we optimized several analogs of BC-001 and found that the optimized compound BC-011 exhibited an IC50 of 72.43 nM. These findings can be used to design effective TEAD modulators with anticancer therapeutic implications.
APA, Harvard, Vancouver, ISO, and other styles
21

Elisi, Gian, Matteo Santucci, Domenico D’Arca, Angela Lauriola, Gaetano Marverti, Lorena Losi, Laura Scalvini, Maria Bolognesi, Marco Mor, and Maria Costi. "Repurposing of Drugs Targeting YAP-TEAD Functions." Cancers 10, no. 9 (September 14, 2018): 329. http://dx.doi.org/10.3390/cancers10090329.

Full text
Abstract:
Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway’s terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be relevant to obtain new molecular tools and potential therapeutic assets. In this review, we discuss the main mechanisms of action of the best-known compounds, clinically approved or investigational drugs, able to cross-talk and modulate the Hippo pathway, as an attractive strategy for the discovery of new potential lead compounds.
APA, Harvard, Vancouver, ISO, and other styles
22

Sung, Mi Sun, So Young Kim, Gwang Hyeon Eom, and Sang Woo Park. "High VEGF Concentrations Accelerate Human Trabecular Meshwork Fibrosis in a TAZ-Dependent Manner." International Journal of Molecular Sciences 24, no. 11 (June 1, 2023): 9625. http://dx.doi.org/10.3390/ijms24119625.

Full text
Abstract:
We aimed to investigate the effects of different concentrations of vascular endothelial growth factor (VEGF) on the extracellular matrix (ECM) and fibrotic proteins in human trabecular meshwork (TM) cells. We also explored how the Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway modulates VEGF-induced fibrosis. We determined cross-linked actin network (CLAN) formation using TM cells. Changes in fibrotic and ECM protein expression were determined. High VEGF concentrations (10 and 30 ng/mL) increased TAZ and decreased p-TAZ/TAZ expression in TM cells. Western blotting and real-time PCR revealed no YAP expression changes. Fibrotic and ECM protein expression decreased at low VEGF concentrations (1 and 10 ρg/mL) and significantly increased at high VEGF concentrations (10 and 30 ng/mL). CLAN formation increased in TM cells treated with high VEGF concentrations. Moreover, TAZ inhibition by verteporfin (1 μM) rescued TM cells from high-VEGF-concentration-induced fibrosis. Low VEGF concentrations reduced fibrotic changes, whereas high VEGF concentrations accelerated fibrosis and CLAN formations in TM cells in a TAZ-dependent manner. These findings reflect the dose-dependent influences of VEGF on TM cells. Moreover, TAZ inhibition might be a therapeutic target for VEGF-induced TM dysfunction.
APA, Harvard, Vancouver, ISO, and other styles
23

Qu, Huinan, Da Qi, Xinqi Wang, Yuan Dong, Qiu Jin, Junyuan Wei, and Chengshi Quan. "CLDN6 Suppresses c–MYC–Mediated Aerobic Glycolysis to Inhibit Proliferation by TAZ in Breast Cancer." International Journal of Molecular Sciences 23, no. 1 (December 23, 2021): 129. http://dx.doi.org/10.3390/ijms23010129.

Full text
Abstract:
Claudin 6 (CLDN6) was found to be a breast cancer suppressor gene, which is lowly expressed in breast cancer and inhibits breast cancer cell proliferation upon overexpression. However, the mechanism by which CLDN6 inhibits breast cancer proliferation is unclear. Here, we investigated this issue and elucidated the molecular mechanisms by which CLDN6 inhibits breast cancer proliferation. First, we verified that CLDN6 was lowly expressed in breast cancer tissues and that patients with lower CLDN6 expression had a worse prognosis. Next, we confirmed that CLDN6 inhibited breast cancer proliferation through in vitro and in vivo experiments. As for the mechanism, we found that CLDN6 inhibited c–MYC–mediated aerobic glycolysis based on a metabolomic analysis of CLDN6 affecting cellular lactate levels. CLDN6 interacted with a transcriptional co–activator with PDZ-binding motif (TAZ) and reduced the level of TAZ, thereby suppressing c–MYC transcription, which led to a reduction in glucose uptake and lactate production. Considered together, our results suggested that CLDN6 suppressed c–MYC–mediated aerobic glycolysis to inhibit the proliferation of breast cancer by TAZ, which indicated that CLDN6 acted as a novel regulator of aerobic glycolysis and provided a theoretical basis for CLDN6 as a biomarker of progression in breast cancer.
APA, Harvard, Vancouver, ISO, and other styles
24

Shrestha, Madhu, Toshinori Ando, Chanbora Chea, Shinnichi Sakamoto, Takashi Nishisaka, Ikuko Ogawa, Mutsumi Miyauchi, and Takashi Takata. "The transition of tissue inhibitor of metalloproteinases from -4 to -1 induces aggressive behavior and poor patient survival in dedifferentiated liposarcoma via YAP/TAZ activation." Carcinogenesis 40, no. 10 (May 10, 2019): 1288–97. http://dx.doi.org/10.1093/carcin/bgz023.

Full text
Abstract:
AbstractLiposarcoma (LS) is the most common soft-tissue sarcoma. Dedifferentiated liposarcoma (DDLS) shows more aggressive biological behavior than that of well-differentiated liposarcoma (WDLS), so advanced therapeutic agents based on molecular mechanism are urgently needed. Here we show that tissue inhibitors of metalloproteinases (TIMPs) from TIMP-1 to TIMP-4 are differently expressed and regulate yes-associated protein (YAP)/transcriptional co-activator with PDZ binding motif (TAZ) in LS. Database analysis showed high TIMP-1 expression in DDLS patients correlating with poor prognosis, but high TIMP-4 expression in WDLS patients with better prognosis. Stable TIMP-1 knockdown inactivated YAP/TAZ and inhibited proliferation, colony formation and migration in DDLS cells, which was rescued by a constitutive active YAP. However, stable overexpression of TIMP-1 showed the opposite in WDLS cells. Stable TIMP-4 knockdown activated YAP/TAZ and promoted proliferation and migration in WDLS cells, which was suppressed by YAP/TAZ inhibitor (verteporfin) or knockdown of YAP/TAZ. Recombinant TIMP-4 showed opposite results in DDLS cells. These results indicate that dedifferentiation in LS shifts the expression of TIMPs from type 4 to type 1, inducing more aggressive behavior and poor prognosis through YAP/TAZ activation, which can be prognostic markers and therapeutic targets for LS patients.
APA, Harvard, Vancouver, ISO, and other styles
25

Ando, Toshinori, Kento Okamoto, Tomoaki Shintani, Souichi Yanamoto, Mutsumi Miyauchi, J. Silvio Gutkind, and Mikihito Kajiya. "Integrating Genetic Alterations and the Hippo Pathway in Head and Neck Squamous Cell Carcinoma for Future Precision Medicine." Journal of Personalized Medicine 12, no. 10 (September 20, 2022): 1544. http://dx.doi.org/10.3390/jpm12101544.

Full text
Abstract:
Genetic alterations and dysregulation of signaling pathways are indispensable for the initiation and progression of cancer. Understanding the genetic, molecular, and signaling diversities in cancer patients has driven a dynamic change in cancer therapy. Patients can select a suitable molecularly targeted therapy or immune checkpoint inhibitor based on the driver gene alterations determined by sequencing of cancer tissue. This “precision medicine” approach requires detailed elucidation of the mechanisms connecting genetic alterations of driver genes and aberrant downstream signaling pathways. The regulatory mechanisms of the Hippo pathway and Yes-associated protein/transcriptional co-activator with PDZ binding motif (YAP/TAZ) that have central roles in cancer cell proliferation are not fully understood, reflecting their recent discovery. Nevertheless, emerging evidence has shown that various genetic alterations dysregulate the Hippo pathway and hyperactivate YAP/TAZ in cancers, including head and neck squamous cell carcinoma (HNSCC). Here, we summarize the latest evidence linking genetic alterations and the Hippo pathway in HNSCC, with the aim of contributing to the continued development of precision medicine.
APA, Harvard, Vancouver, ISO, and other styles
26

Ahmad, Usama Sharif, Jutamas Uttagomol, and Hong Wan. "The Regulation of the Hippo Pathway by Intercellular Junction Proteins." Life 12, no. 11 (November 5, 2022): 1792. http://dx.doi.org/10.3390/life12111792.

Full text
Abstract:
The Hippo pathway is an evolutionarily conserved pathway that serves to promote cell death and differentiation while inhibiting cellular proliferation across species. The downstream effectors of this pathway, yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are considered vital in promoting the output of the Hippo pathway, with activation of upstream kinases negatively regulating YAP/TAZ activity. The upstream regulation of the Hippo pathway is not entirely understood on a molecular level. However, several studies have shown that numerous cellular and non-cellular mechanisms such as cell polarity, contact inhibition, soluble factors, mechanical forces, and metabolism can convey external stimuli to the intracellular kinase cascade, promoting the activation of key components of the Hippo pathway and therefore regulating the subcellular localisation and protein activity of YAP/TAZ. This review will summarise what we have learnt about the role of intercellular junction-associated proteins in the activation of this pathway, including adherens junctions and tight junctions, and in particular our latest findings about the desmosomal components, including desmoglein-3 (DSG3), in the regulation of YAP signalling, phosphorylation, and subcellular translocation.
APA, Harvard, Vancouver, ISO, and other styles
27

Miyajima, Chiharu, Yurika Hayakawa, Yasumichi Inoue, Mai Nagasaka, and Hidetoshi Hayashi. "HMG-CoA Reductase Inhibitor Statins Activate the Transcriptional Activity of p53 by Regulating the Expression of TAZ." Pharmaceuticals 15, no. 8 (August 17, 2022): 1015. http://dx.doi.org/10.3390/ph15081015.

Full text
Abstract:
Transcriptional coactivator with PDZ-binding motif (TAZ) is a downstream transcriptional regulator of the Hippo pathway that controls cell growth and differentiation. The aberrant activation of TAZ correlates with a poor prognosis in human cancers, such as breast and colon cancers. We previously demonstrated that TAZ inhibited the tumor suppressor functions of p53 and enhanced cell proliferation. Statins, which are used to treat dyslipidemia, have been reported to suppress the activity of TAZ and exert anti-tumor effects. In the present study, we focused on the regulation of p53 functions by TAZ and investigated whether statins modulate these functions via TAZ. The results obtained suggest that statins, such as simvastatin and fluvastatin, activated the transcriptional function of p53 by suppressing TAZ protein expression. Furthermore, co-treatment with simvastatin and anti-tumor agents that cooperatively activate p53 suppressed cancer cell survival. These results indicate a useful mechanism by which statins enhance the effects of anti-tumor agents through the activation of p53 and may represent a novel approach to cancer therapy.
APA, Harvard, Vancouver, ISO, and other styles
28

Plewes, Michele R., Xiaoying Hou, Pan Zhang, Aixin Liang, Guohua Hua, Jennifer R. Wood, Andrea S. Cupp, Xiangmin Lv, Cheng Wang, and John S. Davis. "Yes-associated protein 1 is required for proliferation and function of bovine granulosa cells in vitro†." Biology of Reproduction 101, no. 5 (August 9, 2019): 1001–17. http://dx.doi.org/10.1093/biolre/ioz139.

Full text
Abstract:
Abstract Yes-associated protein 1 (YAP1) is a major component of the Hippo signaling pathway. Although the exact extracellular signals that control the Hippo pathway are currently unknown, increasing evidence supports a critical role for the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. Granulosa cells (GCs) within the ovarian follicle proliferate and produce steroids and growth factors, which facilitate the growth of follicle and maturation of the oocyte. We hypothesize that YAP1 plays a role in proliferation and estrogen secretion of GCs. In the current study, we examined the expression of the Hippo signaling pathway in bovine ovaries and determined whether it was important for GC proliferation and estrogen production. Mammalian STE20-like protein kinase 1 (MST1) and large tumor suppressor kinase 2 (LATS2) were identified as prominent upstream components of the Hippo pathway expressed in granulosa and theca cells of the follicle and large and small cells of the corpus luteum. Immunohistochemistry revealed that YAP1 was localized to the nucleus of growing follicles. In vitro, nuclear localization of the downstream Hippo signaling effector proteins YAP1 and transcriptional co-activator with PDZ-binding motif (TAZ) was inversely correlated with GC density, with greater nuclear localization under conditions of low cell density. Treatment with verteporfin and siRNA targeting YAP1 or TAZ revealed a critical role for these transcriptional co-activators in GC proliferation. Furthermore, knockdown of YAP1 in GCs inhibited follicle-stimulating hormone (FSH)-induced estradiol biosynthesis. The data indicate that Hippo pathway transcription co-activators YAP1/TAZ play an important role in GC proliferation and estradiol synthesis, two processes necessary for maintaining normal follicle development.
APA, Harvard, Vancouver, ISO, and other styles
29

Zuo, Q.-F., R. Zhang, B.-S. Li, Y.-L. Zhao, Y. Zhuang, T. Yu, L. Gong, S. Li, B. Xiao, and Q.-M. Zou. "MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ." Cell Death & Disease 6, no. 1 (January 2015): e1623-e1623. http://dx.doi.org/10.1038/cddis.2014.573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Strakova, Zuzana, Jennifer Reed, Mark Livak, and Ivanna Ihnatovych. "Localization of Transcriptional Co-Activator with PDZ Binding Motif (TAZ) in Human Endometrium and Its Involvement in the Regulation of Decidualization." Biology of Reproduction 81, Suppl_1 (July 1, 2009): 398. http://dx.doi.org/10.1093/biolreprod/81.s1.398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhao, Wanxia, Ziteng Wang, Yichen Lei, Xiaoqin Tang, Xiaohua Yi, Junyi Jiang, Jiapeng Li, Shuhui Wang, and Xiuzhu Sun. "Investigating InDels in YAP and TAZ genes and their impact on growth characteristics in goats." Archives Animal Breeding 67, no. 3 (July 9, 2024): 343–51. http://dx.doi.org/10.5194/aab-67-343-2024.

Full text
Abstract:
Abstract. Yes-associated protein (YAP) and a transcriptional co-activator with PDZ-binding motif (TAZ) genes are crucial for regulating the size of mammalian tissues and organs as well as for many biological processes such as bone formation, cell lineage determination, tissue regeneration, and cell proliferation. The purpose of this study was to characterize the YAP and TAZ gene polymorphisms in 266 Guanzhong Dairy Goats and 299 Shanbei White Cashmere Goats and to explore their potential relationship with growth characteristics such as body weight and body length. After genotyping and using PCR amplification and Sanger sequencing to find polymorphisms in the YAP and TAZ genes, five InDels loci were found in the goat YAP gene and three InDels loci in the TAZ gene. The findings of the association analysis demonstrated that the goats' body weight, height, cannon circumference, chest depth, chest breadth, and chest circumference were all substantially influenced by five InDels loci in the YAP gene (p<0.05). Goat body height, trunk breadth, trunk length, body length, and body weight were all substantially impacted by three InDels loci in the TAZ gene (p<0.05). In conclusion, eight InDels loci of goat YAP and TAZ were found in this study, and their impacts on goat phenotype were disclosed. These results might offer fresh avenues for boosting goat molecular breeding.
APA, Harvard, Vancouver, ISO, and other styles
32

Cherrett, Claire, Makoto Furutani-Seiki, and Stefan Bagby. "The Hippo pathway: key interaction and catalytic domains in organ growth control, stem cell self-renewal and tissue regeneration." Essays in Biochemistry 53 (August 28, 2012): 111–27. http://dx.doi.org/10.1042/bse0530111.

Full text
Abstract:
The Hippo pathway is a conserved pathway that interconnects with several other pathways to regulate organ growth, tissue homoeostasis and regeneration, and stem cell self-renewal. This pathway is unique in its capacity to orchestrate multiple processes, from sensing to execution, necessary for organ expansion. Activation of the Hippo pathway core kinase cassette leads to cytoplasmic sequestration of the nuclear effectors YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), consequently disabling their transcriptional co-activation function. Components upstream of the core kinase cassette have not been well understood, especially in vertebrates, but are gradually being elucidated and include cell polarity and cell adhesion proteins.
APA, Harvard, Vancouver, ISO, and other styles
33

Lee, Jieun, Moonhyung Choi, Seungyeon Joe, Kabsoo Shin, Sung-Hak Lee, and Ahwon Lee. "Growth Pattern of Hepatic Metastasis as a Prognostic Index Reflecting Liver Metastasis-Associated Survival in Breast Cancer Liver Metastasis." Journal of Clinical Medicine 11, no. 10 (May 18, 2022): 2852. http://dx.doi.org/10.3390/jcm11102852.

Full text
Abstract:
Breast cancer with liver metastasis (BCLM) frequently cause hepatic failure owing to extensive liver metastasis compared to other cancers; however, there are no clinicopathologic or radiologic parameters for estimating BCLM prognosis. We analyzed the relationship between radiologic and clinicopathologic characteristics with survival outcomes in BCLM. During 2009–2019, baseline and final abdomen computed tomography or liver magnetic resonance imaging of BCLM patients were reviewed. Liver metastasis patterns were classified as oligometastasis (≤3 metastatic lesions), non-confluent or confluent mass formation, infiltration, and pseudocirrhosis. Thirty-one surgical or biopsy specimens for liver metastasis were immunostained for L1 adhesion molecule (L1CAM), Yes-associated protein 1/Transcriptional co-activator with PDZ-binding motif (YAP/TAZ), and β1-integrin. Out of 156 patients, 77 initially had oligometastasis, 58 had nonconfluent mass formation, 14 had confluent mass formation, and 7 had infiltrative liver metastasis. Confluent or infiltrative liver metastasis showed inferior liver metastasis-associated survival (LMOS) compared to others (p = 0.001). Positive staining for L1CAM and YAP/TAZ was associated with inferior survival, and YAP/TAZ was related to final liver metastasis. Initial hepatic metastasis was associated with LMOS, especially confluent mass formation, and infiltrative liver metastasis pattern was associated with poor survival. Positive staining for YAP/TAZ and L1CAM was associated with inferior LMOS, and YAP/TAZ was related to final liver metastasis.
APA, Harvard, Vancouver, ISO, and other styles
34

Wan, Qiuyuan, Qing Chen, Dongge Cai, Yan Zhao, and Xiaoling Wu. "OTUB2 Promotes Homologous Recombination Repair Through Stimulating Rad51 Expression in Endometrial Cancer." Cell Transplantation 29 (January 1, 2020): 096368972093143. http://dx.doi.org/10.1177/0963689720931433.

Full text
Abstract:
Genetic instability, raised from dysregulation of DNA repair, is involved in tumor development. OTUB2 (ovarian tumor domain protease domain-containing ubiquitin aldehyde-binding protein 2), which is responsible for DNA double-strand break (DSB), is implicated in carcinogenesis of various tumors. The effect of OTUB2 on endometrial cancer progression was then investigated. First, OTUB2 was found to be upregulated in endometrial cancer tissues and cell lines, and was closely associated with overall survival of endometrial cancer patients. Cell Counting Kit-8 and flow cytometry assay results revealed that overexpression of OTUB2 enhanced cell viability of endometrial cancer cells, while knockdown of OTUB2 inhibited cell viability. Moreover, as demonstrated by promoting cell viability and suppression of cell apoptosis, cisplatin-induced cell damage was reversed by OTUB2. Mechanistically, OTUB2 could activate Yes-associated protein/transcriptional co-activator with PDZ-binding motif (TAZ) to promote homologous recombination repair via depletion of γH2AX (phosphorylation of histone H2AX) and accumulation of Rad51. In vivo xenograft model also showed that silence of OTUB2 suppressed the growth of endometrial cancer and increased tumor sensitivity to antitumor drugs. In conclusion, OTUB2 promoted homologous recombination repair in endometrial cancer via YAP/TAZ-mediated Rad51 expression, providing a potential therapeutic target for endometrial cancer.
APA, Harvard, Vancouver, ISO, and other styles
35

Liu, Fei, David Lagares, Kyoung Moo Choi, Lauren Stopfer, Aleksandar Marinković, Vladimir Vrbanac, Clemens K. Probst, et al. "Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis." American Journal of Physiology-Lung Cellular and Molecular Physiology 308, no. 4 (February 15, 2015): L344—L357. http://dx.doi.org/10.1152/ajplung.00300.2014.

Full text
Abstract:
Pathological fibrosis is driven by a feedback loop in which the fibrotic extracellular matrix is both a cause and consequence of fibroblast activation. However, the molecular mechanisms underlying this process remain poorly understood. Here we identify yes-associated protein (YAP) (homolog of drosophila Yki) and transcriptional coactivator with PDZ-binding motif (TAZ) (also known as Wwtr1), transcriptional effectors of the Hippo pathway, as key matrix stiffness-regulated coordinators of fibroblast activation and matrix synthesis. YAP and TAZ are prominently expressed in fibrotic but not healthy lung tissue, with particularly pronounced nuclear expression of TAZ in spindle-shaped fibroblastic cells. In culture, both YAP and TAZ accumulate in the nuclei of fibroblasts grown on pathologically stiff matrices but not physiologically compliant matrices. Knockdown of YAP and TAZ together in vitro attenuates key fibroblast functions, including matrix synthesis, contraction, and proliferation, and does so exclusively on pathologically stiff matrices. Profibrotic effects of YAP and TAZ operate, in part, through their transcriptional target plasminogen activator inhibitor-1, which is regulated by matrix stiffness independent of transforming growth factor-β signaling. Immortalized fibroblasts conditionally expressing active YAP or TAZ mutant proteins overcome soft matrix limitations on growth and promote fibrosis when adoptively transferred to the murine lung, demonstrating the ability of fibroblast YAP/TAZ activation to drive a profibrotic response in vivo. Together, these results identify YAP and TAZ as mechanoactivated coordinators of the matrix-driven feedback loop that amplifies and sustains fibrosis.
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Chenji, Jian An, Pingzhao Zhang, Chen Xu, Kun Gao, Di Wu, Dejie Wang, Hongxiu Yu, Jun O. Liu, and Long Yu. "The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitin-dependent degradation." Biochemical Journal 444, no. 2 (May 11, 2012): 279–89. http://dx.doi.org/10.1042/bj20111983.

Full text
Abstract:
AMOT (angiomotin) is a membrane-associated protein that is expressed in ECs (endothelial cells) and controls migration, TJ (tight junction) formation, cell polarity and angiogenesis. Recent studies have revealed that AMOT and two AMOT-like proteins, AMOTL1 and AMOTL2, play critical roles in the Hippo pathway by regulating the subcellular localization of the co-activators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif). However, it has been unclear how AMOT is regulated. In the present study, we report that AMOT undergoes proteasomal degradation. We identify three members of Nedd4 (neural-precursor-cell-expressed developmentally down-regulated)-like ubiquitin E3 ligases, Nedd4, Nedd4-2 and Itch, as the ubiquitin E3 ligases for the long isoform of AMOT, AMOT/p130. We demonstrate that Nedd4, Nedd4-2 and Itch mediate poly-ubiquitination of AMOT/p130 in vivo. Overexpression of Nedd4, Nedd4-2 or Itch leads to AMOT/p130 proteasomal degradation. Knockdown of Nedd4, Nedd4-2 and Itch causes an accumulation of steady-state level of AMOT/p130. We also show that three L/P-PXY motifs of AMOT/p130 and the WW domains of Nedd4 mediate their interaction. Furthermore, Nedd4-like ubiquitin E3 ligases might compete with YAP for the binding to AMOT/p130, and subsequently targeting AMOT/p130 for ubiquitin-dependent degradation. Together, these observations reveal a novel post-translational regulatory mechanism of AMOT/p130.
APA, Harvard, Vancouver, ISO, and other styles
37

Mondal, Varsha, Paul J. Higgins, and Rohan Samarakoon. "Emerging Role of Hippo-YAP (Yes-Associated Protein)/TAZ (Transcriptional Coactivator with PDZ-Binding Motif) Pathway Dysregulation in Renal Cell Carcinoma Progression." Cancers 16, no. 15 (August 3, 2024): 2758. http://dx.doi.org/10.3390/cancers16152758.

Full text
Abstract:
Although Hippo-YAP/TAZ pathway involvement has been extensively studied in the development of certain cancers, the involvement of this cascade in kidney cancer progression is not well-established and, therefore, will be the focus of this review. Renal cell carcinoma (RCC), the most prevalent kidney tumor subtype, has a poor prognosis and a high mortality rate. Core Hippo signaling inactivation (e.g., LATS kinases) leads to the nuclear translocation of YAP/TAZ where they bind to co-transcriptional factors such as TEAD promoting transcription of genes which initiates various fibrotic and neoplastic diseases. Loss of expression of LATS1/2 kinase and activation of YAP/TAZ correlates with poor survival in RCC patients. Renal-specific ablation of LATS1 in mice leads to the spontaneous development of several subtypes of RCC in a YAP/TAZ-dependent manner. Genetic and pharmacological inactivation of YAP/TAZ reverses the oncogenic potential in LATS1-deficient mice, highlighting the therapeutic benefit of network targeting in RCC. Here, we explore the unique upstream controls and downstream consequences of the Hippo-YAP/TAZ pathway deregulation in renal cancer. This review critically evaluates the current literature on the role of the Hippo pathway in RCC progression and highlights the recent scientific evidence designating YAP/TAZ as novel therapeutic targets against kidney cancer.
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Yongshun, Wei Cao, Jinjin Cui, Yang Yu, Yubo Zhao, Jian Shi, Jian Wu, Zhengyuan Xia, Bo Yu, and Jingjin Liu. "Arterial Wall Stress Induces Phenotypic Switching of Arterial Smooth Muscle Cells in Vascular Remodeling by Activating the YAP/TAZ Signaling Pathway." Cellular Physiology and Biochemistry 51, no. 2 (2018): 842–53. http://dx.doi.org/10.1159/000495376.

Full text
Abstract:
Background/Aims: Increasing wall stress or biomechanical stretch experienced by arteries influences the initiation of atherosclerotic lesions. This initiation is mediated by Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which are both effectors of the Hippo pathway. In this study, the functional roles of YAP/TAZ proteins in the regulation of the stretch-mediated programing of human umbilical arterial smooth muscle cells (HUASMCs) to a proliferative phenotype were examined. Methods: HUASMCs were seeded on a Matrigel-coated silicone chamber and subjected to biomechanical stretch for 24 h after 48 h of growth. YAP/TAZ small interfering RNA was used to specifically knockdown YAP/ TAZ expression in HUASMCs. Results: We observed that YAP/TAZ activation via biomechanical stretching is involved in the regulation of critical aspects of the HUASMC phenotypic switch. YAP/TAZ knockdown significantly attenuated the stretch-induced proliferative and pro-inflammatory phenotypes in HUASMCs. Furthermore, treatment with atorvastatin, an anti-atherosclerotic drug, attenuated the stretch-induced phenotypic switch of HUASMCs from the contractile to synthetic state by suppressing YAP/TAZ expression. Additional investigations demonstrated the role of stretch in inhibiting the Hippo pathway, leading to the activation of PI3-kinase (PI3K) and phosphoinositide dependent kinase (PDK1); the key molecule for the regulation of the PDK1 and Hippo complex interaction was Sav1. These results showed the importance of YAP/TAZ activation, induced by biomechanical stretch, in promoting atheroprone phenotypes in HUASMCs. Conclusion: Taken together, our findings revealed a mechanism by which YAP/TAZ activation contributes to the pathogenesis of atherosclerosis.
APA, Harvard, Vancouver, ISO, and other styles
39

Laiman, Vincent, Didik Setyo Heriyanto, Yueh-Lun Lee, Ching-Huang Lai, Chih-Hong Pan, Wei-Liang Chen, Chung-Ching Wang, Kai-Jen Chuang, Jer-Hwa Chang, and Hsiao-Chi Chuang. "Zinc Oxide Nanoparticles Promote YAP/TAZ Nuclear Localization in Alveolar Epithelial Type II Cells." Atmosphere 13, no. 2 (February 16, 2022): 334. http://dx.doi.org/10.3390/atmos13020334.

Full text
Abstract:
We investigated roles of Hippo signaling pathway components in alveolar type II cells (AECII) after zinc oxide nanoparticle (ZnONP) exposure. ZnONPs physicochemistry was characterized using field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) microanalysis. ZnONP deposition in human respiratory tract was estimated using multiple-path particle dosimetry (MPPD) model. MLE-12 AECII were cultured and exposed to 0, 1, and 5 μg/mL of ZnONPs for 24 h. Western blots were used to investigate signaling pathways associated with Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), cell adherens junctions, differentiation, and senescence. ZnONPs morphology was irregular, with Zn and O identified. Approximately 72% of inhaled ZnONPs were deposited in lungs, with 26% being deposited in alveolar regions. ZnONP exposure increased nuclear YAP expression and decreased cytoplasmic YAP expression by AECII. Adherens junction proteins, E-cadherin, α-catenin, and β-catenin, on AECII decreased after ZnONP exposure. ZnONP exposure of AECII increased alveolar type I (AECI) transition protein, LGALS3, and the AECI protein, T1α, while decreasing AECII SPC expression. ZnONP exposure induced Sirt1 and p53 senescence proteins by AECII. Our findings showed that inhalable ZnONPs can deposit in alveoli, which promotes YAP nuclear localization in AECII, resulting in decrease tight junctions, cell differentiation, and cell senescence.
APA, Harvard, Vancouver, ISO, and other styles
40

Kodaka, Manami, Fengju Mao, Kyoko Arimoto-Matsuzaki, Masami Kitamura, Xiaoyin Xu, Zeyu Yang, Kentaro Nakagawa, et al. "Characterization of a novel compound that promotes myogenesis via Akt and transcriptional co-activator with PDZ-binding motif (TAZ) in mouse C2C12 cells." PLOS ONE 15, no. 4 (April 8, 2020): e0231265. http://dx.doi.org/10.1371/journal.pone.0231265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Umegaki, Toshihito, Hisashi Moriizumi, Fumiko Ogushi, Mutsuhiro Takekawa, and Takashi Suzuki. "Molecular dynamics simulations of a multicellular model with cell-cell interactions and Hippo signaling pathway." PLOS Computational Biology 20, no. 11 (November 11, 2024): e1012536. http://dx.doi.org/10.1371/journal.pcbi.1012536.

Full text
Abstract:
The transcriptional coactivator Yes-associated protein (YAP)/transcriptional co-activator with PDZ binding motif (TAZ) induces cell proliferation through nuclear localization at low cell density. Conversely, at extremely high cell density, the Hippo pathway, which regulates YAP/TAZ, is activated. This activation leads to the translocation of YAP/TAZ into the cytoplasm, resulting in cell cycle arrest. Various cancer cells have several times more YAP/TAZ than normal cells. However, it is not entirely clear whether this several-fold increase in YAP/TAZ alone is sufficient to overcome proliferation inhibition (contact inhibition) under high-density conditions, thereby allowing continuous proliferation. In this study, we construct a three-dimensional (3D) mathematical model of cell proliferation incorporating the Hippo-YAP/TAZ pathway. Herein, a significant innovation in our approach is the introduction of a novel modeling component that inputs cell density, which reflects cell dynamics, into the Hippo pathway and enables the simulation of cell proliferation as the output response. We assume such 3D model with cell-cell interactions by solving reaction and molecular dynamics (MD) equations by applying adhesion and repulsive forces that act between cells and frictional forces acting on each cell. We assume Lennard-Jones (12-6) potential with a softcore character so that each cell secures its exclusive domain. We set cell cycles composed of mitotic and cell growth phases in which cells divide and grow under the influence of cell kinetics. We perform mathematical simulations at various YAP/TAZ levels to investigate the extent of YAP/TAZ increase required for sustained proliferation at high density. The results show that a twofold increase in YAP/TAZ levels of cancer cells was sufficient to evade cell cycle arrest compared to normal cells, enabling cells to continue proliferating even under high-density conditions. Finally, this mathematical model, which incorporates cell-cell interactions and the Hippo-YAP/TAZ pathway, may be applicable for evaluating cancer malignancy based on YAP/TAZ levels, developing drugs to suppress the abnormal proliferation of cancer cells, and determining appropriate drug dosages. The source codes are freely available.
APA, Harvard, Vancouver, ISO, and other styles
42

Hong, Ganji, Ying Yan, Yali Zhong, Jianer Chen, Fei Tong, and Qilin Ma. "Combined Ischemic Preconditioning and Resveratrol Improved Bloodbrain Barrier Breakdown via Hippo/YAP/TAZ Signaling Pathway." CNS & Neurological Disorders - Drug Targets 18, no. 9 (January 15, 2020): 713–22. http://dx.doi.org/10.2174/1871527318666191021144126.

Full text
Abstract:
Background: Transient Ischemia/Reperfusion (I/R) is the main reason for brain injury and results in disruption of the Blood-Brain Barrier (BBB). It had been reported that BBB injury is one of the main risk factors for early death in patients with cerebral ischemia. Numerous investigations focus on the study of BBB injury which have been carried out. Objective: The objective of this study was to investigate the treatment function of the activation of the Hippo/Yes-Associated Protein (YAP) signaling pathway by combined Ischemic Preconditioning (IPC) and resveratrol (RES) before brain Ischemia/Reperfusion (BI/R) improves Blood-Brain Barrier (BBB) disruption in rats. Methods: Sprague-Dawley (SD) rats were pretreated with 20 mg/kg RES and IPC and then subjected to 2 h of ischemia and 22 h of reperfusion. The cerebral tissues were collected; the cerebral infarct volume was determined; the Evans Blue (EB) level, the brain Water Content (BWC), and apoptosis were assessed; and the expressions of YAP and TAZ were investigated in cerebral tissues. Results: Both IPC and RES preconditioning reduced the cerebral infarct size, improved BBB permeability, lessened apoptosis, and upregulated expressions of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) compared to the Ischemia/Reperfusion (I/R) group, while combined IPC and RES significantly enhanced this action. Conclusion: combined ischemic preconditioning and resveratrol improved blood-brain barrier breakdown via Hippo/YAP/TAZ signaling pathway.
APA, Harvard, Vancouver, ISO, and other styles
43

Lee, Hyun Ji, Yong Jun Hong, and Miri Kim. "Angiogenesis in Chronic Inflammatory Skin Disorders." International Journal of Molecular Sciences 22, no. 21 (November 7, 2021): 12035. http://dx.doi.org/10.3390/ijms222112035.

Full text
Abstract:
Angiogenesis, the growth of new blood vessels from preexisting vessels, is associated with inflammation in various pathological conditions. Well-known angiogenetic factors include vascular endothelial growth factor (VEGF), angiopoietins, platelet-derived growth factor, transforming growth factor-β, and basic fibroblast growth factor. Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) have recently been added to an important angiogenic factor. Accumulating evidence indicates associations between angiogenesis and chronic inflammatory skin diseases. Angiogenesis is deeply involved in the pathogenesis of psoriasis. VEGF, angiopoietins, tumor necrosis factor-a, interleukin-8, and interleukin-17 are unregulated in psoriasis and induce angiogenesis. Angiogenesis may be involved in the pathogenesis of atopic dermatitis, and in particular, mast cells are a major source of VEGF expression. Angiogenesis is an essential process in rosacea, which is induced by LL-37 from a signal cascade by microorganisms, VEGF, and MMP-3 from mast cells. In addition, angiogenesis by increased VEGF has been reported in chronic urticaria and hidradenitis suppurativa. The finding that VEGF is expressed in inflammatory skin lesions indicates that inhibition of angiogenesis is a useful strategy for treatment of chronic, inflammatory skin disorders.
APA, Harvard, Vancouver, ISO, and other styles
44

Steinberg, Thorsten, Martin Philipp Dieterle, Imke Ramminger, Charlotte Klein, Julie Brossette, Ayman Husari, and Pascal Tomakidi. "On the Value of In Vitro Cell Systems for Mechanobiology from the Perspective of Yes-Associated Protein/Transcriptional Co-Activator with a PDZ-Binding Motif and Focal Adhesion Kinase and Their Involvement in Wound Healing, Cancer, Aging, and Senescence." International Journal of Molecular Sciences 24, no. 16 (August 11, 2023): 12677. http://dx.doi.org/10.3390/ijms241612677.

Full text
Abstract:
Mechanobiology comprises how cells perceive different mechanical stimuli and integrate them into a process called mechanotransduction; therefore, the related mechanosignaling cascades are generally important for biomedical research. The ongoing discovery of key molecules and the subsequent elucidation of their roles in mechanobiology are fundamental to understanding cell responses and tissue conditions, such as homeostasis, aging, senescence, wound healing, and cancer. Regarding the available literature on these topics, it becomes abundantly clear that in vitro cell systems from different species and tissues have been and are extremely valuable tools for enabling the discovery and functional elucidation of key mechanobiological players. Therefore, this review aims to discuss the significant contributions of in vitro cell systems to the identification and characterization of three such key players using the selected examples of yes-associated protein (YAP), its paralog transcriptional co-activator with a PDZ-binding motif (TAZ), and focal adhesion kinase (FAK) and their involvement in wound healing, cancer, aging, and senescence. In addition, the reader is given suggestions as to which future prospects emerge from the in vitro studies discussed herein and which research questions still remain open.
APA, Harvard, Vancouver, ISO, and other styles
45

Tang, Miaolu, Kaitlyn Dirks, Soo Yeon Kim, Jessica Thorpe, and Wei Li. "Abstract 2910: Targeting thioredoxin reductase 1 (TrxR1) suppresses TAZ-driven glioblastoma progression." Cancer Research 84, no. 6_Supplement (March 22, 2024): 2910. http://dx.doi.org/10.1158/1538-7445.am2024-2910.

Full text
Abstract:
Abstract Glioblastoma (GBM) is the most common and aggressive primary brain malignancy in adults. Poor outcomes for traditional treatments demand targeted therapies based on identified mechanisms that drive tumor development and sustain its malignancy. Molecular pathology studies have classified GBM into subtypes differing in treatment responses and survival rates. Among these subtypes, the mesenchymal (MES) group is associated with the worst prognosis. The Hippo pathway transcriptional co-activator with PDZ-binding motif (TAZ) is one of the three transcriptional regulators that drive the GBM MES gene expression program. Studies from our lab and others have previously shown that TAZ activation is able to promote GBM MES differentiation and progression. Therefore, finding vulnerabilities of TAZ-driven tumors may help to develop targeted therapeutic methods for MES GBM. In an orthotopic GBM mouse model, we found that TAZ-driven tumors show increased expression of thioredoxin reductase 1 (TrxR1), which is responsible for catalyzing the reduction of thioredoxin and maintaining the cellular redox balance. In searching for the cause of increased expression of TrxR1, we found that glucose deprivation can induce TrxR1 expression, suggesting TrxR1 may be an adaptive mechanism for tumor cells to survive in glucose deprivation conditions. Indeed, either depleting TrxR1 genetically or inhibiting TrxR1 pharmacologically can promote tumor cell death under glucose deprivation. Furthermore, knockout TrxR1 in a TAZ-driven mouse GBM model significantly decelerated tumor progression. Collectively, our studies revealed that inhibition of the Trx redox system under glucose deprivation conditions leads to a synergistic cell death induction in GBM cells, therefore making targeting TrxR1 a potential therapeutic strategy for TAZ-driven MES GBM. Citation Format: Miaolu Tang, Kaitlyn Dirks, Soo Yeon Kim, Jessica Thorpe, Wei Li. Targeting thioredoxin reductase 1 (TrxR1) suppresses TAZ-driven glioblastoma progression [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 2910.
APA, Harvard, Vancouver, ISO, and other styles
46

Mohagheghi, Sina, Zohreh Khajehahmadi, and Heidar Tavilani. "Signaling in Simple Steatosis and Non-alcoholic Steatohepatitis Cirrhosis: TGF-β1, YAP/TAZ, and Hedgehog Pathway Activity." Avicenna Journal of Medical Biochemistry 6, no. 2 (November 27, 2018): 26–30. http://dx.doi.org/10.15171/ajmb.2018.07.

Full text
Abstract:
Non-alcoholic fatty liver disease (NAFLD) refers to the accumulation of fat in the liver tissue that is usually associated with metabolic disorders. Traditionally, the disease is regarded as a spectrum of pathological conditions ranging from simple steatosis (SS) to non-alcoholic steatohepatitis (NASH) and hepatic fibrosis with progression to cirrhosis. However, so far, there is no available explanation for the disease progression. Several signaling pathways such as transforming growth factor (TGF)-β, hedgehog (HH), and yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling are attributed to the NAFLD pathogenesis. TGF-β1 pathway component expression aligns with HH pathway ligands expression elevate in NASH cirrhosis while they decrease in SS. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway. Similarly, the TAZ level (but not YAP1) is higher in NASH cirrhosis compared to SS. In addition, these three signaling pathways have little molecular similarity but their changes are totally similar in SS and NASH cirrhosis. The present review discusses the main changes in the expression of TGF-β, HH, and YAP/TAZ pathway components in SS and NASH cirrhosis. It is hoped that these data provide a better understanding of the mechanisms that underlie the pathophysiology of NAFLD.
APA, Harvard, Vancouver, ISO, and other styles
47

Masliantsev, Konstantin, Lucie Karayan-Tapon, and Pierre-Olivier Guichet. "Hippo Signaling Pathway in Gliomas." Cells 10, no. 1 (January 18, 2021): 184. http://dx.doi.org/10.3390/cells10010184.

Full text
Abstract:
The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis.
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, Yen-Lin, I.-Chuan Yen, Kuen-Tze Lin, Feng-Yi Lai, and Shih-Yu Lee. "4-Acetylantrocamol LT3, a New Ubiquinone from Antrodia cinnamomea, Inhibits Hepatocellular Carcinoma HepG2 Cell Growth by Targeting YAP/TAZ, mTOR, and WNT/β-Catenin Signaling." American Journal of Chinese Medicine 48, no. 05 (January 2020): 1243–61. http://dx.doi.org/10.1142/s0192415x20500615.

Full text
Abstract:
4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from the mycelium of Antrodia cinnamomea (Polyporaceae), has been recently shown to possess anticancer activity. However, the detailed mechanisms of such action remain unclear. In this study, the molecular mechanisms of 4AALT3 on hepatocellular carcinoma cells (HCC) were investigated. Human hepatocellular carcinoma cell line HepG2 cells were treated with concentrations of 4AALT3. Cell viability, colony formation, and the underlying mechanisms were then analyzed by CCK-8, colony formation, qPCR, and Western blotting assays. We found that 4AALT3 significantly decreased cell viability and colony formation in a dose-dependent manner. Accordingly, 4AALT3 significantly decreased protein levels of cyclin B, E1, D1, and D3, thereby facilitating cell cycle arrest. In addition, 4AALT3 significantly suppressed the nuclear localization of Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), mammalian target of rapamycin (mTOR), and WNT/[Formula: see text]-catenin signaling pathways, all of which are well-known signaling pathways that contribute to the malignant properties of HCC. These effects are associated with activation of 5′ AMP-activated protein kinase (AMPK) and autophagy. Our findings indicate that 4AALT3 exerts inhibitory effects on HepG2 cell growth via multiple signaling pathways and may be a potential agent for HCC therapy.
APA, Harvard, Vancouver, ISO, and other styles
49

Abou Nader, Nour, Amélie Ménard, Adrien Levasseur, Guillaume St-Jean, Derek Boerboom, Gustavo Zamberlam, and Alexandre Boyer. "Targeted Disruption of Lats1 and Lats2 in Mice Impairs Testis Development and Alters Somatic Cell Fate." International Journal of Molecular Sciences 23, no. 21 (November 5, 2022): 13585. http://dx.doi.org/10.3390/ijms232113585.

Full text
Abstract:
Hippo signaling plays an essential role in the development of numerous tissues. Although it was previously shown that the transcriptional effectors of Hippo signaling Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) can fine-tune the regulation of sex differentiation genes in the testes, the role of Hippo signaling in testis development remains largely unknown. To further explore the role of Hippo signaling in the testes, we conditionally deleted the key Hippo kinases large tumor suppressor homolog kinases 1 and -2 (Lats1 and Lats2, two kinases that antagonize YAP and TAZ transcriptional co-regulatory activity) in the somatic cells of the testes using an Nr5a1-cre strain (Lats1flox/flox;Lats2flox/flox;Nr5a1-cre). We report here that early stages of testis somatic cell differentiation were not affected in this model but progressive testis cord dysgenesis was observed starting at gestational day e14.5. Testis cord dysgenesis was further associated with the loss of polarity of the Sertoli cells and the loss of SOX9 expression but not WT1. In parallel with testis cord dysgenesis, a loss of steroidogenic gene expression associated with the appearance of myofibroblast-like cells in the interstitial space was also observed in mutant animals. Furthermore, the loss of YAP phosphorylation, the accumulation of nuclear TAZ (and YAP) in both the Sertoli and interstitial cell populations, and an increase in their transcriptional co-regulatory activity in the testes suggest that the observed phenotype could be attributed at least in part to YAP and TAZ. Taken together, our results suggest that Hippo signaling is required to maintain proper differentiation of testis somatic cells.
APA, Harvard, Vancouver, ISO, and other styles
50

Ji, Xinyan, Lihua Song, Li Sheng, Anhui Gao, Yang Zhao, Shixun Han, Yuchao Zhang, et al. "Cyclopeptide RA-V Inhibits Organ Enlargement and Tumorigenesis Induced by YAP Activation." Cancers 10, no. 11 (November 16, 2018): 449. http://dx.doi.org/10.3390/cancers10110449.

Full text
Abstract:
The Hippo pathway restricts organ size during development and its inactivation plays a crucial role in cancer. Yes-associated protein (YAP) and its paralog transcriptional coactivator with PSD-95/Dlg/ZO-1 (PDZ)-binding motif (TAZ) are transcription co-activators and effectors of the Hippo pathway mediating aberrant enlargement of organs and tumor growth upon Hippo pathway inactivation. It has been demonstrated that genetic inactivation of YAP could be an effective approach to inhibit tumorigenesis. In order to identify pharmacological inhibitors of YAP, we screened a library of 52,683 compounds using a YAP-specific reporter assay. In this screen we identified cyclopeptide RA-V (deoxybouvardin) as a specific inhibitor of YAP and TAZ but not other reporters. Unexpectedly, later experiments demonstrated that RA-V represses the protein but not mRNA levels of YAP target genes. Nevertheless, RA-V strongly blocks liver enlargement induced by Mst1/2 knockout. Furthermore, RA-V not only inhibits liver tumorigenesis induced by YAP activation, but also induces regression of established tumors. We found that RA-V inhibits dedifferentiation and proliferation, while inducing apoptosis of hepatocytes. Furthermore, RA-V also induces apoptosis and inhibits proliferation of macrophages in the microenvironment, which are essential for YAP-induced tumorigenesis. RA-V is thus a drug candidate for cancers involving YAP/TAZ activation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography