Academic literature on the topic 'Trans-Himalaya'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Trans-Himalaya.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Trans-Himalaya":

1

Jain, Arvind K. "Continental subduction in the NW-Himalaya and Trans-Himalaya." Italian Journal of Geosciences 136, no. 1 (February 2017): 89–102. http://dx.doi.org/10.3301/ijg.2015.43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bahali, D., M. Sanjappa, and S. Rath. "Geographical distribution of Iridaceae in India." Indian Journal of Forestry 27, no. 3 (September 1, 2004): 251–56. http://dx.doi.org/10.54207/bsmps1000-2004-4hx573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
India is represented by only 34 species and 5 varieties under 14 genera of Iridaceae. The wild and naturalised species are distributed in 5 phytogeographical regions, viz., Trans-Himalaya, West Himalaya, Eastern Himalaya, North East India and Western Ghats. The wild species are restricted to the Himalayas. The regionwise, taxonwise and altitudewise distribution of Indian Iridaceae is given in this paper.
3

Mishra, Asheesh Shivam, Prakash Nautiyal, and Vijay Prakash Semwal. "Distributional Patterns of Benthic Macro-invertebrate Fauna in the Glacier Fed Rivers of Indian Himalaya." Our Nature 11, no. 1 (June 24, 2013): 36–44. http://dx.doi.org/10.3126/on.v11i1.8242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Large-scale distributional pattern for the benthic macro-invertebrate fauna was determined in the glacier fed Himalayan and Trans-Himalayan rivers and streams of India at the elevation range of 2000-3000 m asl. In Trans-Himalaya the family Heptageniidae (Ephemeroptera) alone (Chandra and Bhaga) or in combination with Chironomidae (Diptera) in similar proportions (Chenab) or Diptera alone (Miyar) dominated the assemblages. Its influence seems to extend to Rupin drainage in the Himalaya where Chironomidae alone dominated the assemblages. Except for this Himalayan river. Various families of Trichoptera attained highest abundance in other rivers of the Himalaya. Thus, Leptoceridae in combination with Limnephilidae (Alaknanada at Tapovan) and Heptageniidae and Baetidae (Alaknanada at Mana) is the only instance of similarity in abundant taxa by virtue of same river. The Mandakini was partially similar to Alaknanda by virtue of abundant Limnephilidae. The Bhagirathi was characterized by abundance of Philopotamidae. Thus, assemblages exhibit greater variability in the Himalayan rivers than Trans-Himalayan rivers and are hence entirely different, as also evident from the cluster analysis. This present hypothesis is not applicable to explain the macro-invertebrate assemblages in Himalayan and Trans-Himalayan region.DOI: http://dx.doi.org/10.3126/on.v11i1.8242 Our Nature Vol.11(1) 2013: 36-44
4

Namgail, Tsewang, Joseph L. Fox, and Yash Veer Bhatnagar. "Carnivore-Caused Livestock Mortality in Trans-Himalaya." Environmental Management 39, no. 4 (February 9, 2007): 490–96. http://dx.doi.org/10.1007/s00267-005-0178-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peters, Madhavi, and Zahid Hussain Khan. "Incorporating Islamic Environmentalism in Approaches to Conservation in the Trans-Himalaya." Grassroots Journal of Natural Resources 7, no. 1 (March 15, 2024): 21–42. http://dx.doi.org/10.33002/nr2581.6853.070102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Conservationists increasingly acknowledge the value of co-productive conservation efforts that incorporate the Indigenous perspective. In the Trans-Himalayan context, they have begun to incorporate the Buddhist perspective in recent interventions; yet, there is an omission of Islamic environmentalism in these conversations. This omission is even more glaring when one considers that Muslims make up a significant percentage of the Indigenous population of the Trans-Himalaya. A review of the literature reveals a considerable body of Islamic scholarship on sustainable resource management in extremely harsh climates. In fact, co-productive conservation efforts in collaboration with local Muslim communities elsewhere in the world have been very impactful. While scholarship on the history of Islam in the Trans-Himalaya is limited, historians agree that, rather than being forced upon a passive Indigenous population, the widespread adoption of Islam was an active choice by a population that had plenty of exposure to different ideas and belief systems via trade. Supplementing these findings with qualitative research at the grassroots level among the Dard-Shin Scheduled Tribe in the Trans-Himalaya, the authors find further evidence of the syncretic blending of Indigenous and Islamic beliefs, deployed in service of effective natural resource management. It is, thus, proposed that future conservation efforts in this region would be well advised to adopt a more expansive approach to the Indigenous perspective.
6

Murton, Galen. "Himalayan Highways: STS, the Spatial Fix, and Socio-Cultural Shifts in the Land of Zomia." Perspectives on Global Development and Technology 12, no. 5-6 (2013): 609–21. http://dx.doi.org/10.1163/15691497-12341278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract As China and India build modern highways through the Tibet-Nepal borderlands, traditional livelihoods, land use patterns, and trade relations are rapidly changing for numerous highland communities across the Trans-Himalaya interface. In response to recently opened border crossings, various social and market networks have (re)emerged, transforming the parameters of mobility for the populations of High Asia. New roads are critical to these transformations. Merging Science and Technology Studies (STS) and Marxist analytics to unpack the “black-box” of roads, this study asks two main questions: what are the factors at play in this socio-cultural and geopolitical transition in the Trans-Himalaya borderlands, and how can roads be thought of as technological objects central to this dynamic? After situating the study in the conceptual framework of Zomia, I then draw on Actor Network Theory (ANT), co-production, and the spatial fix to analyze two contemporary trans-border road development projects in Sikkim, India and Mustang, Nepal.
7

AHMED, Tanveer, Afifullah KHAN, and Pankaj CHANDAN. "Photographic Key for the Microhistological Identification of Some Plants of Indian Trans-Himalaya." Notulae Scientia Biologicae 7, no. 2 (June 21, 2015): 171–76. http://dx.doi.org/10.15835/nsb729495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Microhistology techniques have been used in many studies regarding food habits of herbivores. The absence of detailed reference materials and time consumed in creating reference plant materials for a particular study species and area hampers an understanding and extensive use of the technique. On the other hand, the use of direct sighting procedure of animals to study the dietary spectrum of herbivores is interrupted by tough terrain and harsh climatic condition in the Trans-Himalaya. The current study provides a photographic key for identification of 38 plants species belonging to 35 genera and 21 families. Structures such as types of stomata, trichomes and epidermal cells are discussed for different species of plants collected from Kargil, Ladakh. The given information is expected to help researchers working on feeding ecology of mammals in the Indian Trans-Himalaya.
8

Poudel, Tikaram. "Book Review: The Politics of Language Contact in the Himalaya." Journal of Education and Research 10, no. 2 (November 6, 2020): 119–24. http://dx.doi.org/10.3126/jer.v10i2.32724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The arguments of The Politics of Language Contact in the Himalaya are grounded in the multidisciplinary nature of area studies i.e., linguistics, political science, anthropology and geography. Focusing on the area study of the trans-border region of the Himalaya, the contributors enrich their arguments through specific case studies of their respective areas. For all the contributors, the issues of language contact are central and all of them provide contextual analyses of this issue. The contributors raise placing their issues in the emerging discourse of language contact making the collection accessible not only to linguists but also to scholars interested in anthropology, sociolinguistics, political science and Asian studies.
9

Shabir, Mohd, Anzar A. Khuroo, Priyanka Agnihotri, Jay Krishan Tiwari, and Tariq Hussain. "A range extension of Gentiana capitata Buch.-Ham. ex D.Don subsp. harwanensis (G.Singh) Halda (Gentianaceae) to Ladakh Trans-Himalaya, India." Check List 15, no. 1 (February 1, 2019): 105–8. http://dx.doi.org/10.15560/15.1.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We collected Gentiana capitata subsp. harwanensis for the first time from Suru valley in Kargil district of Ladakh region, India, and thus extend this subspecies’ geographic distribution to the Trans-Himalayan biogeographic region. This subspecies is endemic to India and so far recorded from the North-west and Western Himalaya of India.
10

Sharma, Lipika, Sher Samant, and Ashish Kumar. "Fodder Resources of Cold Desert Biosphere Reserve in Trans Himalaya." Journal of Non Timber Forest Products 24, no. 2 (June 1, 2017): 79–92. http://dx.doi.org/10.54207/bsmps2000-2017-h79ikj.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Livestock is one of the major sources of livelihood and vital part of the agriculture and economy for the inhabitants of Cold Desert Biosphere Reserve (CDBR) in the Indian Himalayan Region (IHR). The tribal communities are dependent on plant resources for fodder to feed the livestock. The review of literature revealed that focused studies on fodder resources of the CDBR have not been carried out so far. Therefore, the present study attempts to specify 270 species of fodder representing trees (03 spp.), shrubs (24 spp.) and herbs (243 spp.). Poaceae (105 spp.) and Polygonaceae (34 spp.) were dominant families and Poa (18 spp.), Carex and Polygonum (11 spp., each), and Festuca (10 spp.) were species rich genera. Maximum species were found in the 3000 ~ 4000 m zone. Most collected fodder species from wild includes Trigonella emodii, Cicer microphyllum, Aconogonum tortuosum, Clematis ladakhiana, Cousinea thomsonii, Carex infuscata, Festuca rubra, Leymus secalinus, etc. Only 88 species were native to the Himalayan Region, 11 species were endemic and 37 species were near endemic. Ecological assessment of the fodder species using quadrate method, and rotational grazing of livestock by tribal communities and Gaddis; and development of management plan and policy briefs are suggested.

Dissertations / Theses on the topic "Trans-Himalaya":

1

Ruan, Xiaobai. "Géochimie des rivières du bassin de Chayu (Sud-est du Tibet) et altération du batholithe du Trans-Himalaya." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse vise à apporter des informations sur le refroidissement du climat, la baisse du CO₂ et l'augmentation du rapport isotopique Sr marin au cours de l'Eocène/Oligocène. Ainsi, l'étude de l'altération chimique moderne du batholite du Trans-Himalaya sous le climat de mousson sera considérée comme un analogue de son altération à l'Eocène/Oligocène. Le bassin versant de la rivière Chayu, situé dans le sud-est du Tibet est constitué de granitoïdes du batholite du Trans-Himalaya, actuellement sous un climat de mousson et soumise à une activité tectonique intense. En outre, la partie alpine du bassin versant est dans un environnement périglaciaire. En quoi le processus d'altération périglaciaire dans les montagnes alpines actives du bassin versant de Chayu est important et quel est le bilan d'altération et les rapports ⁸⁷Sr/⁸⁶Sr du bassin versant sont les 2 questions majeures de ce travail. Une campagne d'échantillonnage de la rivière principale, des affluents et des écoulements des dépôts de glissement de masse ont été effectués à la fin de la mousson en 2019. Pour étudier les processus alpins d'altération périglaciaire, nous avons comparé les écoulements des dépôts de masse générés par des processus de gel-dégel dans un environnement périglaciaire et de glissement de terrain dans un climat de mousson, ainsi que les cours d'eau. Les infiltrations des glissement de terrain sous le climat de la mousson sont plus concentrées que les cours d'eau voisins, et les écoulements en milieu périglaciaire sont aussi concentrées que les infiltrations de glissement de terrain mais présentent des différences négligeables par rapport aux cours d'eau voisins. Nos analyses sur les rapports élémentaires indiquent que le processus de gel-dégel fournit un mécanisme d'exposition des minéraux non altérés similaire aux glissements de terrain pour faciliter l'altération des phases réactives telle que la calcite, la biotite et les sulfures. La similarité entre les écoulements périglaciaires et les cours d'eau peut indiquer que le processus de gel-dégel a une influence décisive sur la chimie des cours d'eau dans les zones périglaciaires alpines. La chimie de la rivière Chayu est fortement influencée par des précipitations secondaires de calcite (SCP). Une fois corrigé de la SCP, il s'avère que le budget d'altération est dominé par l'altération carbonatée même si la lithologie est principalement granitoïde, et le degré de SCP est plus élevé dans la partie périglaciaire, et est étroitement lié à la contribution de l'altération carbonatée. Le δ¹³CDIC et la proportion de sulfate indiquent que l'altération chimique du bassin versant du Chayu est principalement menée par l'acide carbonique, bien que l'altération par l'acide sulfurique soit répandue. En combinant les budgets des données cationiques et anioniques et isotopiques, l'altération chimique du bassin versant moderne de la rivière Chayu est une source de CO₂ plutôt qu'un puits de CO₂. Après avoir estimé le débit relatif de chaque affluent par δ¹⁸O de l'eau de la rivière, les taux d'altération des carbonates et des silicates dans chaque bassin d'affluent sont calculés. Les taux d'altération des carbonates sont fondamentalement sans rapport avec les facteurs climatiques, tandis que les taux d'altération des silicates sont positivement corrélés avec la température et le ruissellement du bassin. Les rapports ⁸⁷Sr/⁸⁶Sr de la rivière principale sont d'environ 0,735, ce qui suggère l'impact des carbonate radiogénique. En combinant les résultats, l'altération des silicates du Trans-Himalaya pourrait être plus importante qu'aujourd'hui pendant l'Eocène/Oligocène avec un climat plus chaud et plus humide. Il est ainsi possible que l'altération à cette époque fût un puits de CO₂. Le caractère radiogénique du Sr de la rivière Chayu suggèrent que l'altération du Trans-Himalaya était capable d'élever le ⁸⁷Sr/⁸⁶Sr marin avant l'exhumation de l'Himalaya
This thesis aims to understand better why and how the climate cooling, CO₂ drawdown and the marine Sr isotopic ratio increase all happened during Eocene/Oligocene. I checked the possibility of Trans-Himalaya weathering as the candidate for explaining the early change in marine ⁸⁷Sr/⁸⁶Sr and atmospheric CO₂ during Eocene/Oligocene, by studying the modern chemical weathering of the Trans-Himalaya batholith under monsoon climate. We choose the Chayu River Catchment locating in the SE Tibet as the study area for three reasons: 1) this catchment is mostly covered by the granitoid rocks of the Trans-Himalaya batholith, 2) it is now under the monsoon climate and 3) it is experiencing intense tectonic activity. Besides, the alpine part of the catchment is under periglacial environment, and there is a lack of knowledge about alpine periglacial weathering especially in active mountain ranges. Combining the above, we set two objects of the thesis: first, to study the periglacial weathering process in active alpine mountain of the Chayu Catchment, and second to study the weathering budget and the ⁸⁷Sr/⁸⁶Sr ratios of the catchment, in order to figure out the atmospheric CO₂ sinks and sources, the climatic dependency of chemical weathering rates and the Sr systematics of the Chayu Catchment. Samplings for the main river, tributaries and seepages of mass wasting deposits were conducted at the end of monsoon season in 2019. To study the alpine periglacial weathering processes, we compared the seepages from mass wasting deposits generated by freeze-thaw processes under periglacial environment and landslide under monsoon climate, and the nearby streams of these two climatic conditions. The landslide seepages under monsoon climate are more concentrated than nearby streams, and the seepages under periglacial environment are as concentrated as the landslide seepages but exhibit negligible differences than nearby streams. Our analyses on elemental ratios indicate that the freeze-thaw process provide an exposure mechanism similar to landslide to facilitate the weathering of reactive mineral phases of calcite, biotite and sulphide. The similarity between periglacial seepages and streams may indicate the widespread periglacial mass wasting deposits has a decisive influence on the river chemistry in alpine periglacial areas. To discuss the weathering budgets of the Chayu River Catchment, we first identified and corrected the river composition for the influences of secondary calcite precipitation (SCP). It is found that the weathering budget is dominated by carbonate weathering even though the lithology is mostly granitoid, and the degree of SCP is higher in the periglacial North Chayu than in the South Chayu, and is closely related to the carbonate weathering contribution. The δ¹³CDIC and sulphate proportion together tell that the chemical weathering of the Chayu catchment is mostly driven by carbonic acid, although sulphuric acid weathering is widespread. Combining the budgets of substrates and acids, the chemical weathering of the modern Chayu River Catchment is a CO₂ source rather than a CO₂ sink. After estimating the relative discharge of each tributary by δ¹⁸O of the river water, the carbonate and silicate weathering rates in each tributary basin are calculated. The carbonate weathering rates are basically irrelevant to climatic factors while the silicate weathering rates are positive correlated with basin MAT and runoff. The ⁸⁷Sr/⁸⁶Sr ratios of the main river is around 0.735, suggesting the impact from radiogenic carbonate. Combining the results, the silicate weathering of Trans-Himalaya might be more important than today during Eocene/Oligocene with warmer and wetter climate, and it is also possible that the weathering at that time was thus reversed to a CO₂ sink. The radiogenic Sr signals of the Chayu River suggest the weathering of Trans-Himalaya was capable of rising the marine ⁸⁷Sr/⁸⁶Sr before Himalayan exhumation
2

Oatney, Emily M. "Geology and paleoseismology of the Trans-Yamuna active fault system, Himalayan foothills of northwest India." Thesis, 1998. http://hdl.handle.net/1957/33684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Satellite image interpretation, geologic mapping, and paleoseismic trenching are used to investigate the Trans-Yamuna active fault system in the northwestern Doon Valley of the Indian Himalayan foothills. This east-west fault system is subparallel to and crosses the Main Boundary thrust near the structural transition from the Nahan salient to the Dehra Dun reentrant. The Trans-Yamuna active fault system may terminate to the east at a lateral ramp of the Main Boundary thrust. A south-side-up, relatively linear fault trace with variable fault dips suggests that the fault system is high-angle reverse with a component of strike-slip. It is subdivided into the Sirmurital, Dhamaun, and Bharli faults, which probably connect at depth. The Dhamaun fault is exposed where it cuts the late Holocene upper Bhatrog terrace deposit of the Giri River. A paleoseismic investigation of the Sirmurital fault at another Giri River terrace did not expose the fault, but it suggests that late Holocene terrace deposits there may be folded into a syncline parallel to fault strike. The fold axis of the syncline continues into bedrock to the west. Earthquakes in 1905, 1803, or perhaps earlier may have been the source of folding of the fine-grained sediments within this terrace deposit. The Trans-Yamuna active fault system is a secondary hangingwall fault that may accommodate some strain release above the decollement during large-magnitude earthquakes. Strike-slip motion may be related to the lateral translation of the Karakoram fault block and east-west extension of the southern Tibet block as a result of oblique convergence between the Indian and Eurasian plates in the northwest Himalaya.
Graduation date: 1999

Books on the topic "Trans-Himalaya":

1

Kapadia, Harish. Spiti: Adventures in the trans-Himalaya. New Delhi: Indus Pub. Co., 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chaurasia, Om Prakash. Ethnobotany and plants of Trans-Himalaya. New Delhi: Satish Serial Pub. House, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hedin, Sven Anders. Trans-Himalaya: Discoveries and adventures in Tibet. New Delhi: Asian Educational Services, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Müller, Judith. Urban Mountain Waterscapes in Leh, Indian Trans-Himalaya. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18249-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Loktus, P. S. Negi. The cultural heritage of the trans-Himalaya (Kinnaur). New Delhi: Indira Gandhi National Centre for the Arts, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sanan, Deepak. Exploring Kinnaur and Spiti in the trans-Himalaya. New Delhi: Indus Pub. Co., 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Humbert-Droz, Blaise, Juliane Dame, and Tashi Morup, eds. Environmental Change and Development in Ladakh, Indian Trans-Himalaya. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-42494-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tobdan. Moravian missionaries in western trans-Himalaya: Lahul, Ladakh, and Kinnaur. New Delhi: Kaveri Books, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pān̐ḍe, Rāmakumāra. Japanese expedition experiences in the Nepal Himalaya: Traversing the trans-Himalayan heights. Kathmandu, Nepal: Nepal-Nippon Research Center, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pāṅḍe, Rāmakumāra. Japanese expedition experiences in the Nepal Himalaya: Traversing the Trans-Himalayan heights. Kathmandu, Nepal: Nepal-Nippon Research Center, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Trans-Himalaya":

1

Wangmo, Rigzin, and Subrat Sharma. "Extending Winter Cultivation in Trans-Himalaya for Agricultural Sustainability." In Handbook of Himalayan Ecosystems and Sustainability, Volume 1, 23–36. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003268383-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Namgail, Tsewang, Yash Veer Bhatnagar, and Joseph L. Fox. "Harnessing Traditional Knowledge for Wildlife Conservation in the Ladakh Trans-Himalaya." In Advances in Asian Human-Environmental Research, 163–74. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-42494-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Jianqiang, Amar Deep Regmi, Rongkun Liu, Narendra Raj Khanal, Luca Schenato, Deo Raj Gurung, and Shahriar Wahid. "Landslides Inventory and Trans-boundary Risk Management in Koshi River Basin, Himalaya." In Springer Geography, 409–26. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2890-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chaudhary, Neva, Suresh K. Ghimire, and Ram P. Chaudhary. "Traditional Amchi Medicinal Practice in Trans-Himalaya of Nepal: Conservation and Bioprospecting." In Bioprospecting of Tropical Medicinal Plants, 307–27. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-28780-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt, Susanne, and Marcus Nüsser. "Glaciers of Central Ladakh: Distribution, Changes and Relevance in the Indian Trans-Himalaya." In Advances in Asian Human-Environmental Research, 11–30. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-42494-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Phartiyal, Binita, Randheer Singh, and Debarati Nag. "Trans- and Tethyan Himalayan Rivers: In Reference to Ladakh and Lahaul-Spiti, NW Himalaya." In Springer Hydrogeology, 367–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-2984-4_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deng, Panpan. "Prediction and Regression Analysis of Trans-Himalaya New Energy Development Trends Based on Logistic Model." In Proceedings of the 2022 12th International Conference on Environment Science and Engineering (ICESE 2022), 131–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1381-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharma, Anupam, and Binita Phartiyal. "Geomorphological Changes During Quaternary Period Vis a Vis Role of Climate and Tectonics in Ladakh, Trans-Himalaya." In Himalayan Weather and Climate and their Impact on the Environment, 159–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29684-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, Praveen, Pardeep Kumar, Munish Sharma, Nagender Pal Butail, and Arvind Kumar Shukla. "Quantification of the Soil Organic Carbon and Major Nutrients Using Geostatistical Approach for Lahaul Valley, Cold Arid Region of Trans-Himalaya." In Advances in Carbon Capture and Utilization, 235–47. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0638-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holzer, Nicolai, Tim Golletz, Manfred Buchroithner, and Tobias Bolch. "Glacier Variations in the Trans Alai Massif and the Lake Karakul Catchment (Northeastern Pamir) Measured from Space." In Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya, 139–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28977-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Trans-Himalaya":

1

Zhang, Yi. "Buddhism Exchanges in Trans-Himalaya Region: Development and Recommendations." In Proceedings of the 2019 International Conference on Education Innovation and Economic Management (ICEIEM 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/iceiem-19.2019.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ruan, Xiaobai, Albert Galy, and Yibo Yang. "Trans-Himalaya weathering under monsoon climate: What is the impact of South Tibetan mountain weathering on Paleogene climate cooling?" In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Santosh, Kapil Panwar, Keewook Yi, Youn-Joong Jeong, Subhransu Pani, and Umesh Sharma. "Petrology and U-Pb-Lu-Hf zircon isotopes of mafic to hybrid synplutonic dykes from Ladakh Batholith, Trans Himalaya, India." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bora, Sita, Santosh Kumar, Keewook Yi, Youn-Joong Jeong, Kapil Panwar, and Umesh Sharma. "Miocene leucogranite and porphyritic granitoid from Pangong Metamorphic Complex, eastern Ladakh Trans-Himalaya, India: Evidence of synchronous melting and formation of granitoid pluton." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.14503.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography