Academic literature on the topic 'Traffic signs and signals Australia'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Traffic signs and signals Australia.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Traffic signs and signals Australia"
Rash-ha Wahi, Rabbani, Narelle Haworth, Ashim Kumar Debnath, and Mark King. "Influence of Type of Traffic Control on Injury Severity in Bicycle–Motor Vehicle Crashes at Intersections." Transportation Research Record: Journal of the Transportation Research Board 2672, no. 38 (May 14, 2018): 199–209. http://dx.doi.org/10.1177/0361198118773576.
Full textInagaki, Joji. "Traffic message signals and signs." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 76, no. 1 (1992): 21–24. http://dx.doi.org/10.2150/jieij1980.76.1_21.
Full textC, Bharanidharan, Jeevan Chandra, Hitesh Kumar, Jayasurya s, and Stella A. "GLOBAL IMAGE IDENTIFIER." International Research Journal of Computer Science 9, no. 8 (August 12, 2022): 195–200. http://dx.doi.org/10.26562/irjcs.2022.v0908.08.
Full textSreenivas, Dr M. "Traffic Sign Recognition Using CNN." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 3522–34. http://dx.doi.org/10.22214/ijraset.2022.44532.
Full textAlmusawi, Husam A., Mohammed Al-Jabali, Amro M. Khaled, Korondi Péter, and Husi Géza. "Self-Driving robotic car utilizing image processing and machine learning." IOP Conference Series: Materials Science and Engineering 1256, no. 1 (October 1, 2022): 012024. http://dx.doi.org/10.1088/1757-899x/1256/1/012024.
Full textXiong, Jun Yu, Xiao Hui Du, Jia Qi Wang, and Hui Li Zhai. "A Optimized Design of One Traffic Circle." Advanced Materials Research 588-589 (November 2012): 1632–35. http://dx.doi.org/10.4028/www.scientific.net/amr.588-589.1632.
Full textSatpute, Ms Bhumika Vasant, Ms Dhanlaxmi Balavant Don, Ms Rakhi Ajaykumar Salave, Ms Abrar Zameer Shaikh, and Prof Akash K. Gunjal. "Intelligent Transportation System." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 4560–69. http://dx.doi.org/10.22214/ijraset.2022.43354.
Full textAllen, R. Wade, Zareh Parseghian, and Theodore J. Rosenthal. "Simulator Evaluation of Road Signs and Signals." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 38, no. 14 (October 1994): 903–6. http://dx.doi.org/10.1177/154193129403801423.
Full textLee, Suzanne E., Sarah B. Brown, Miguel A. Perez, Zachary R. Doerzaph, and Vicki L. Neale. "Normal and Hard Braking Behavior at Stop Signs and Traffic Signals." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 49, no. 22 (September 2005): 1897–901. http://dx.doi.org/10.1177/154193120504902203.
Full textWani, Gulzar Ahmad, and Dr Gurinder Kaur Sodhi. "Implementation of Bootstrap Technique in Detection of Road Sign using Machine Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 12 (December 31, 2022): 2299–304. http://dx.doi.org/10.22214/ijraset.2022.48460.
Full textDissertations / Theses on the topic "Traffic signs and signals Australia"
Peiffer, John P. "Fatigue testing of stiffened traffic signal structures." Laramie, Wyo. : University of Wyoming, 2009. http://proquest.umi.com/pqdweb?did=1888253611&sid=11&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textFranz, Mark L. "Local agency traffic sign retroreflectivity case study and model of observed traffic sign light intensity." Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10473.
Full textTitle from document title page. Document formatted into pages; contains viii, 85 p. : ill. (some col.), col. map. Includes abstract. Includes bibliographical references (p. 79-82).
Sullivan, Andrew J. "Developing a traffic signal design manual for Alabama." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009m/sullivan.pdf.
Full textJrew, Basim K. "Application of off-line computer programs to arterial signal timing and railroad preemption." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/20131.
Full textWong, Lo-kwan. "The use of vehicular countdown traffic signal in Hong Kong a feasibility analysis /." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41549296.
Full textAmanzholov, Anuar. "Analysis of off-peak traffic signal operations." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 129 p, 2008. http://proquest.umi.com/pqdweb?did=1605156311&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textMalek, Shahram. "EASINET : a procedural package for development and analysis of intersection control strategies." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/33612.
Full textBrunot, Douglas Clair. "SPECIFICATION RECOMMENDATIONS FOR STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS, LUMINAIRES AND TRAFFIC SIGNALS." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1145887924.
Full textYang, Chun-Ming. "Enhancing driving safety through proper message design on variable message signs /." View online ; access limited to URI, 2005. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3206259.
Full textEinhorn, Mark David. "Self-organising traffic control algorithms at signalised intersections." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96751.
Full textENGLISH ABSTRACT: The debilitating social, economic and environmental ramifications of traffic congestion are experienced in large cities the world over. The optimisation of traffic signal timings at signalised road intersections attempts to mitigate the extent of these adverse effects of traffic congestion by reducing the delay time experienced by vehicles in a transport network. Today, traffic signal control schemes may be classiffied into one of two main classes, namely fixed-time traffic signal control strategies, which are typically cyclic in nature, and vehicle-actuated traffic signal control strategies, which are typically acyclic in nature. Generally, cyclic control strategies tend to lack exibility, and are unable to adapt to short-term uctuations in traffic ow rates, resulting in green times that are either too long or too short. On the other hand, acyclic control strategies tend to lack coordination between intersections, resulting in vehicles being required to stop at the majority of signalised intersections they encounter. Self-organising traffic signal control has been proposed as an attractive alternative form of control which both exhibits exibility and facilitates a global coordination between intersections as a result of localised signal switching policies. Two examples of existing self-organising traffic signal control algorithms from the literature include an algorithm proposed by Lammer and Helbing in 2008 and an algorithm proposed by Gershenson and Rosenblueth in 2012. These algorithms have been shown to outperform both optimised fixed-time traffc signal control techniques as well as state-of-the-art vehicle actuated trffic signal control techniques, in terms of reducing vehicle delay time in a transport network. A draw-back of both of these self-organising approaches, however, is that their effective operation relies on carefully selected parameter values; poorly selected parameter values may render these algorithms very ineffectual. In this dissertation, three novel self-organising traffic signal traffic control algorithms are proposed. These three algorithms assume the use of existing radar detection sensors mounted at the intersection to provide the necessary input data. The radar detection sensors are capable of detecting and tracking individual vehicles approaching an intersection, providing real-time information pertaining to their physical dimensions, velocities, and ranges from the intersection in terms of both time and distance. The three traffic signal control algorithms are free of any user-specialised parameters, and instead rely solely on the data provided by the radar detection sensors to inform their signal switching policies. The first of these traffic signal control algorithms is inspired by inventory control theory, and draws parallels between the monetary costs typically considered in inventory control models and the delay time costs associated with traffic control at signalised intersections, which the algorithm attempts to minimise. The second novel traffic control algorithm is inspired by the chemical process of osmosis in which solvent molecules move unaided from a region where they are highly concentrated, across a semi-permeable membrane, into a region of high solute molecule concentration. The algorithm models vehicles approaching an intersection as solvent molecules and the physical space available for the vehicles to occupy once they have passed through the intersection as solute molecules. Following this analogy, the intersection is considered to be the semi-permeable membrane. The third traffic control algorithm is a hybrid of the inventory and osmosis-inspired algorithms together with an intersection utilisation maximisation technique, which prevents unnecessary or prolonged underutilisation of an intersection. The three novel trafficc control algorithms, together with the algorithms of Lammer and Helbing, and of Gershenson and Rosenblueth, as well as a fixed-time control algorithm, are implemented in a purpose-built microscopic traffic simulation modelling framework. Several measures are employed to evaluate the relative performances of the algorithms. These measures include the usual mean and maximum resulting delay times incurred by vehicles and the saturation level of the roadways in the transport network, as well as three novel performance measure indicators which include the mean number of stops made by vehicles, their mean normalised delay time and the mean normalised number of stops made. The algorithms are compared in the context of a linear corridor road network topology as well as a grid road network topology under various traffic ow conditions. The overall performance of the novel hybrid traffic signal control algorithm is found to be superior for the corridor road network topology, while the performance of the osmosis-inspired algorithm is found to be superior for the grid road network topology.
AFRIKAANSE OPSOMMING:Die negatiewe sosiale, ekonomiese en omgewingsimpak van verkeersopeenhoping word in groot stede regoor die w^ereld ervaar. Die doel met die optimering van verkeersligwerkverrigting by straatkruisings is om die omvang van hierdie negatiewe impak tee te werk deur die vertraging van voertuie in 'n vervoernetwerk te verminder. Hedendaagse verkeersbeheeralgoritmes kom in een van twee hoofklasse voor, naamlik vaste-tyd beheerstrategiee, wat gewoonlik siklies van aard is, en beheerstrategiee gebaseer op voertuigopsporing, wat tipies asiklies van aard is. Oor die algemeen beskik sikliese beheerstrategiee nie oor genoegsame buigsaambeid om aan te pas by kort-termyn fluktuasies in verkeersvloei nie, wat tipies daartoe lei dat hul groentye spesifiseer wat of te lank of te kort is. Aan die ander kant is asikliese beheerstrategiee nie daartoe in staat om koordinasie tussen naasliggende straatkruisings te bewerkstellig nie, wat weer daartoe lei dat voertuie genoodsaak word om by die oorgrote meerderheid straatkruisings op hul pad te stop. Die self-organiserende beheer van verkeersligte is as 'n aantrektlike, buigsame alternatief voorgestel wat in staat is om globale koordinasie tussen naasliggende straatkruisings as gevolg van gelokaliseerde seinstrategiee te bewerkstellig. Twee voorbeelde van bestaande self-organiserende verkeersbeheeralgoritmes in die literatuur is die algoritmes wat in 2008 deur Lammer and Helbing en in 2012 deur Gershenson en Rosenblueth voorgestel is. Daar is aangetoon dat hierdie algoritmes daartoe in staat is om ge-optimeerde vaste-tyd beheerstrategiee sowel as gevorderde strategiee gebaseer op voertuigopsporing uit te stof in terme van 'n vermindering van die vertraging van voertuie in 'n vervoernetwerk. 'n Nadeel van beide hierdie self-organiserende benaderings is egter dat hul doeltreffende werkverrigting berus op versigtig-gekose parameterwaardes; willekeurige parameterwaardes mag lei na hoogs ondoeltreffende werkverrigitng van die algoritmes. Drie nuwe self-organiserende verkeersbeheeralgoritmes word in hierdie proefskrif voorgestel. Hierdie drie algoritmes maak vir hul toevoerdata staat op die beskikbaarhed van bestaande radar opsporingsensors wat by straatkruisings geinstalleer is. Die sensors is daartoe in staat om individuele voertuie wat 'n straatkruising nader, op te spoor, te volg en intydse data oor hul fisiese dimensies, snelhede, en afstande na die kruising (in terme van beide tyd en afstand) te lewer. Die drie algoritmes bevat geen gebruikers-gespesifiseerde parameters nie, en maak in plaas daarvan slegs gebruik van die sensortoevoerdata om hul beheerstrategiee te bepaal. Die eerste van hierdie verkeersbeheeralgoritmes is deur die teorie van voorraadbeheer geinspireer en maak gebruik van parallelle tussen die monet^ere kostes wat tipies in voorraadbeheermodelle voorkom en die kostes in terme van vertragingstyd wat met verkeersbeheer by straatkruisings aangegaan word, en wat deur die algoritme geminimeer word. Die tweede verkeersbeheeralgoritme is deur die chemiese proses van osmose geinspireer, waar molekules van 'n oplossingsmiddel sonder eksterne hulp vanaf 'n gebied waar hul in hoe konsentrasie voorkom, deur 'n gedeeltelik-deurlaatbare membraan beweeg na 'n gebied waarin hul ook in hoe konsentrasie, maar in opgeloste vorm voorkom. Die algoritme modelleer voertuie wat 'n straatkruising nader as die molekules van die oplossingsmiddel en die fisiese ruimte wat aan die ander kant van die kruising beskikbaar is om deur voertuie beset te word, as molekules in opgeloste vorm. In hierdie analogie word die kruising self as die gedeeltelik-deurlaatbare membraan beskou. Die derde algoritme is 'n hibriede strategie waarin elemente van die eerste twee algoritmes in samewerking met 'n tegniek vir die maksimering van straatkruisingsbenutting gekombineer word, en wat wat ten doel het om onnodige of verlengte onderbenutting van die kruising te vermy. Hierdie drie nuwe verkeersbeheeralgoritmes word, tesame met die bestaande algoritmes van Lammer en Helbing, en van Gershenson en Rosenblueth, asook 'n vaste-tyd beheeralgoritme, in 'n mikroskopiese verkeersimulasiemodelleringsraamwerk wat spesifiek vir die doel ontwerp is, geimplementeer. Verskeie maatstawwe word ingespan om die relatiewe werkverrigting van die algoritmes te evalueer. Hierdie maatstawwe sluit in die gebruiklike gemiddelde en maksimum vertragingstye van voertuie en die versadigingsvlak van strate in die vervoernetwerk, sowel as drie nuwe maatstawwe, naamlik die gemiddelde aantal stoppe deur voertuie, hul genormaliseerde vertragingstye en die gemiddelde, genormaliseerde aantal stoppe. Die algoritmes word in die kontekste van 'n line^ere topologie van opeenvolgende straatkruisings en 'n netwerktopologie van reghoekige straatblokke onder verskeie verkeersdigthede met mekaar vergelyk. Daar word bevind dat die nuwe hibriede algoritme die beste vaar in die line^ere topologie, terwyl die osmose-ge inspireerde algoritme die ander algoritmes uitstof in die straatblok-netwerktopologie.
Books on the topic "Traffic signs and signals Australia"
Ireland. Department of the Environment. Traffic signs manual. Dublin: Stationery Office, 1996.
Find full textMcDonald, M. Obscuration of traffic signs and signals. [Crowthorne, Berks: Transport and Road Research Laboratory], 1988.
Find full textDudek, Conrad L. Changeable message signs. Washington, D.C: National Academy Press, 1997.
Find full textGreat Britain. Department of Transport. Traffic Advisory Unit. Traffic signs, signals and road marking bibliography. London: Department of Transport, Traffic Advisory Unit, 1989.
Find full textS, Tabor Lee, and Architectural and Transportation Barriers Compliance Board, eds. Accessible pedestrian signals. Washington, DC (1331 F St., NW, Ste. 1000, Washington 20004-1111): U.S. Access Board, 1998.
Find full textMacken, JoAnn Early. Road signs. Mankato, Minn: Amicus, 2011.
Find full textOrcutt, Fred L. The traffic signal book. Englewood Cliffs, N.J: Prentice Hall, 1993.
Find full textCurtis, Owen. Time-based coordination of traffic signals. [Washington, D.C.]: U.S. Dept. of Transportation, Federal Highway Administration, 1985.
Find full textCurtis, Owen. Time-based coordination of traffic signals. [Washington, D.C.]: U.S. Dept. of Transportation, Federal Highway Administration, 1985.
Find full textCurtis, Owen. Time-based coordination of traffic signals. [Washington, D.C.]: U.S. Dept. of Transportation, Federal Highway Administration, 1985.
Find full textBook chapters on the topic "Traffic signs and signals Australia"
"Markings, Signs, and Traffic Signals." In Lighting for Driving, 143–60. CRC Press, 2008. http://dx.doi.org/10.1201/9781420008159-9.
Full text"Markings, Signs, and Traffic Signals." In Lighting for Driving, 125–42. CRC Press, 2008. http://dx.doi.org/10.1201/9781420008159.ch5.
Full textPerlovsky, Leonid I. "Symbols." In Semiotics and Intelligent Systems Development, 121–51. IGI Global, 2007. http://dx.doi.org/10.4018/978-1-59904-063-9.ch005.
Full textLauter, Paul. "Whose Culture? Whose Literacy?" In Canons and Contexts. Oxford University Press, 1991. http://dx.doi.org/10.1093/oso/9780195055931.003.0019.
Full textConference papers on the topic "Traffic signs and signals Australia"
Harasthy, Tomas, Jan Turan, and L'ubos Ovsenik. "Optical correlator based Traffic Signs Inventory system." In 2013 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2013. http://dx.doi.org/10.1109/iwssip.2013.6623463.
Full textRoyle, M. C. "Optical aspects of traffic signals and variable message signs." In Eighth International Conference on Road Traffic Monitoring and Control. IEE, 1996. http://dx.doi.org/10.1049/cp:19960323.
Full textKonstantinopoulou, Lina, Anthony Germanchev, Marko Ševrović, and James Bradford. "Assessing the Readiness of Infrastructure for Automated Vehicles from a Safety Perspective." In FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2020-acm-065.
Full textChowdhury, Sohini Roy, Lars Tornberg, Robin Halvfordsson, Jonatan Nordh, Adam Suhren Gustafsson, Joel Wall, Mattias Westerberg, et al. "Automated Augmentation with Reinforcement Learning and GANs for Robust Identification of Traffic Signs using Front Camera Images." In 2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2019. http://dx.doi.org/10.1109/ieeeconf44664.2019.9049005.
Full textYoung, William, and John Dovel. "Powering Traffic Signals in an Emergency With Alternative Power Sources." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1053.
Full text