Journal articles on the topic 'TRACTION MOTOR DRIVE'

To see the other types of publications on this topic, follow the link: TRACTION MOTOR DRIVE.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'TRACTION MOTOR DRIVE.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Baek, Seung-Yun, Seung-Min Baek, Hyeon-Ho Jeon, Wan-Soo Kim, Yeon-Soo Kim, Tae-Yong Sim, Kyu-Hong Choi, Soon-Jung Hong, Hyunggun Kim, and Yong-Joo Kim. "Traction Performance Evaluation of the Electric All-Wheel-Drive Tractor." Sensors 22, no. 3 (January 20, 2022): 785. http://dx.doi.org/10.3390/s22030785.

Full text
Abstract:
This study aims to design, develop, and evaluate the traction performance of an electric all-wheel-drive (AWD) tractor based on the power transmission and electric systems. The power transmission system includes the electric motor, helical gear reducer, planetary gear reducer, and tires. The electric system consists of a battery pack and charging system. An engine-generator and charger are installed to supply electric energy in emergency situations. The load measurement system consists of analog (current) and digital (battery voltage and rotational speed of the electric motor) components using a controller area network (CAN) bus. A traction test of the electric AWD tractor was performed towing a test vehicle. The output torques of the tractor motors during the traction test were calculated using the current and torque curves provided by the motor manufacturer. The agricultural work performance is verified by comparing the torque and rpm (T–N) curve of the motor with the reduction ratio applied. The traction is calculated using torque and specifications of the wheel, and traction performance is evaluated using tractive efficiency (TE) and dynamic ratio (DR). The results suggest a direction for the improvement of the electric drive system in agricultural research by comparison with the conventional tractor through the analysis of the agricultural performance and traction performance of the electric AWD tractor.
APA, Harvard, Vancouver, ISO, and other styles
2

DOROFEEV, O. V., V. I. VOROBYEV, M. I. BORZENKOV, O. V. IZMEROV, and S. N. ZLOBIN. "TRACTION DRIVE OF LOCOMOTIVES WITH HIGH MOMENTUM COLLECTOR TRACTION ELECTRIC MOTOR." Fundamental and Applied Problems of Engineering and Technology 2 (2021): 118–29. http://dx.doi.org/10.33979/2073-7408-2021-346-2-118-129.

Full text
Abstract:
The issues of development of traction drives of locomotives are considered. It was found that with the existing limitations of the traction force and the speed of continuous operation, asynchronous traction motors do not have clear advantages over collector motors. The possibility of creating collector motors for electric locomotives with a power equal to the used asynchronous ones has been proved, new technical solutions have been proposed for units that ensure the reliability of the latter when using high-torque motors (elastic gearwheel with chevron teeth, two-layer rubber-metal hinge, rubber-cord clutch options), as an optimal solution for the drive with collector motors, it is proposed to use a drive with a support frame motor and an axial gearbox. The directions of research necessary for the practical implementation of drives with a high-torque traction motor are determined, it is proposed to conduct research on the feasibility of creating diesel locomotives with bogies, unified with electric locomotives. The proposed solutions received two patents for inventions, eight patents for utility models, two patent applications were filed.
APA, Harvard, Vancouver, ISO, and other styles
3

Liudvinavičius, Lionginas, Leonas Povilas Lingaitis, Stasys Dailydka, and Virgilijus Jastremskas. "THE ASPECT OF VECTOR CONTROL USING THE ASYNCHRONOUS TRACTION MOTOR IN LOCOMOTIVES." TRANSPORT 24, no. 4 (December 31, 2009): 318–24. http://dx.doi.org/10.3846/1648-4142.2009.24.318-324.

Full text
Abstract:
The article examines curves controlling asynchronous traction motors increasingly used in locomotive electric drives the main task of which is to create a tractive effort‐speed curve of an ideal locomotive Fk = f(v), including a hyperbolic area the curve of which will create conditions showing that energy created by the diesel engine of diesel locomotives (electric locomotives and in case of electric trains, electricity taken from the contact network) over the entire range of locomotive speed is turned into efficient work. Mechanical power on wheel sets is constant Pk = Fkv = const, the power of the diesel engine is fully used over the entire range of locomotive speed. Tractive effort‐speed curve Fk(v) shows the dependency of locomotive traction power Fk on movement speed v. The article presents theoretical and practical aspects relevant to creating the structure of locomotive electric drive and selecting optimal control that is especially relevant to creating the structure of locomotive electric drive using ATM (asynchronous traction motor) that gains special popularity in traction rolling stock replacing DC traction motors having low reliability. __e frequency modes of asynchronous motor speed regulation are examined. To control ATM, the authors suggest the method of vector control presenting the structural schemes of a locomotive with ATM and control algorithm.
APA, Harvard, Vancouver, ISO, and other styles
4

Goolak, Sergey, Viktor Tkachenko, Pavol Šťastniak, Svitlana Sapronova, and Borys Liubarskyi. "Analysis of Control Methods for the Traction Drive of an Alternating Current Electric Locomotive." Symmetry 14, no. 1 (January 13, 2022): 150. http://dx.doi.org/10.3390/sym14010150.

Full text
Abstract:
The analysis of operating conditions of traction drives of electric locomotives with asynchronous traction motors has been carried out. It was found that during operation in the output converter of an asynchronous motor, defects may occur, which leads to asymmetric modes of its operation. Models of a traction drive of an electric locomotive with asynchronous motors with scalar and vector control of the output converter are proposed, taking into account asymmetric operating modes. As a result of the simulation, the starting characteristics of the traction drive were obtained for various control methods both in normal and emergency modes of the drive. For the drive-in emergency mode, the following cases were investigated: the balance of the converter output voltages and the turn-to-turn circuit of 10% of phase A winding of the motor stator; imbalance of the output voltages of the inverter and an intact motor; imbalance of the output voltages of the converter and interturn short circuit of 10% of phase A winding of the motor stator. Comparison of the simulation results have shown that in emergency modes in the traction drive, the torque ripple on the motor shaft in the drive with vector control is 13% less, and in scalar control, the phase current unbalance coefficient is 22% less. The results of this work can be used to study the influence of the output converter control methods on the energy efficiency indicators of the traction drive of an AC electric locomotive.
APA, Harvard, Vancouver, ISO, and other styles
5

Godzhaev, Zakhid A. "Justifi cation of the parameters of an electromechanical transmission for a tractor of traction class of 0.6-0.9 traction class and coordination of traction characteristics." Agricultural Engineering, no. 1 (2023): 63–70. http://dx.doi.org/10.26897/2687-1149-2023-1-63-70.

Full text
Abstract:
The parameters of electromechanical transmission for the tractor of 0.6-0.9 traction class are selected based on the analysis of traction and hitching characteristics of the complete machine. The authors have made theoretical calculations of the operating characteristics of the prototype tractor with an internal combustion engine and the tractor layout with an electric drive, traction calculation of the prototype tractor and the tractor layout, and calculation of the characteristics of the electric drive and electric motors. For the calculations, a six-speed manual variable gearbox was selected. The initial data for performing the calculations were obtained from the results of tractor traction tests in the North Caucasian machine test station. Two profi le backgrounds of the support base were selected: a fi eld prepared for sowing (fallow) and stubble. As a result of research, it was established that a tractor-model designed on the basis of the self-propelled chassis of a pulling class 0.6 to. 0.9 with capacity up to 50 kW on the “Fiel d prepared for sowing” background reaches the greatest towing effi ciency (0.53) with the 15 kW electric motor and the greatest drawbar pull (5.78 kN) with the 18 kW electric motor. On the “Stubble” background, for 15, 18 and 22kW electric motors, the pulling effi ciency is 68%, but the tractor layout with the 22kW electric motor can develop the maximum drawbar pull of 11.35kN. The maximum pulling power of 16.7 kN is observed in the prototype tractor with an internal combustion engine. Therefore, the 15-kW electric motor can be the only most suitable substitute for a combustion engine by traction effi ciency.
APA, Harvard, Vancouver, ISO, and other styles
6

Стриженок, Александр, Aleksandr Strizhenok, Владимир Воробьев, Vladimir Vorobev, Олег Измеров, and Oleg Izmerov. "SEARCH OF NEW DESIGN SCHEMES OF GEARED AND DIRECT-DRIVE TRACTION MECHANISM OF LOCOMOTIVE WITH MASS PARTIAL SPRINGING." Bulletin of Bryansk state technical university 2016, no. 1 (March 31, 2016): 16–21. http://dx.doi.org/10.12737/18171.

Full text
Abstract:
The problem of search new design schemes of a traction mechanism for a locomotive with mass drive partial springing is under consideration. New design schemes are offered: a drive with a movable joint of a drive motor and an axial reducing gear and a drive with a disk motor with the separation of a stator and rotor. The authors offer to return to the development of supportframe drives with an axial reducing gear as it is simpler in manufacturing and assemblage on the basis of updated data of their operating modes. The authors also offer their own design of an integrated traction drive with a swivel of a motor and reducing gear which is simpler in manufacturing and assemblage as compared with the foreign analogues. The introduction of nonsynchronous traction electric motors having a smaller mass and higher reliability as compared with commutator motors resulted in new designs of a supportaxial drive by foreign manufacturers and their introduction in the market of domestic rolling-stock. This work shows an attempt to determine possibilities to eliminate dependence mentioned by means of the analysis of basic problems in the development of supportaxial drive design and new structural scheme searches.
APA, Harvard, Vancouver, ISO, and other styles
7

Zong, Jian, Yi Ruan, Ming Hui Chen, and Li Bo Xu. "Study on Narrow-Gauge Traction Locomotive Control System." Advanced Materials Research 418-420 (December 2011): 2074–77. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.2074.

Full text
Abstract:
Most narrow-gauge vehicles driven by DC motor now, as DC drive due to power constraints and high maintenance costs, most of them will gradually be replaced by AC drives. But VVVF(Variable Voltage Variable Frequency) control method adopt in some running narrow-track traction locomotives, that can reduce over-current with load starting and should be compensated at low frequency. Based on study the Control strategies of narrow-track locomotives, comparing with the characteristics of power distribution of dual-motor drive system. The motor ought to have the same mechanical feature in dual-motor drive system, vector control strategy select in the control system. Experiments prove the system has good performance of stability, reliability, and good control performance, which can meet the narrow-track traction locomotive control requirements.
APA, Harvard, Vancouver, ISO, and other styles
8

Proshutinsky, Roman, and Oleg Kolodkin. "Computer aided design of electromechanical transducer of gated traction motor by using modern software." Bulletin of scientific research results, no. 1 (March 20, 2016): 72–79. http://dx.doi.org/10.20295/2223-9987-2016-1-72-79.

Full text
Abstract:
Objective: To develop a system of computer aided design for electrical traction drive complex, as a component of CAD for electric rolling stock. Modern approach for electrical traction drive complex design means the development of assembly of interconnected systems, such as electrical traction motor, transducer, control system, etc. The most striking instance of such an assembly is gated traction motor, that is somehow in-between electric machines and electric drives. It is usefull to start the developing of CAD gated traction motor by developing the CAD system for electromechanical transducer of gated traction motor. Methods: In the base of CAD system under development there is a technology of design of electromechanical transducer of gated traction motor. At the stage of electromechanical transducer magnetic circuit calculation the software for simulation of magnetic fields by finite elements method was used. Results: The paper suggests the structure diagram of CAD system for electromechanical transducer of gated traction motor. Calculating software language is Octave. The paper provides the results of magnetic field calculations for electromechanical transducer of gated traction motor FEMM software for finite-element simulation. Based on the results of magnetic field calculations the curve of electromechanical transducer energizing is plot. Also the practicability of FEMM software implementation at the design stage of magnetic circuit is confirmed. Practical importance: Obtained results are useful for creation of educational and research system for CAD for electric traction drive complex. Development of CAD system for gated traction motor will allow to master methods and approaches of design for electric machines and semiconductor complexes of electric traction drives in general.
APA, Harvard, Vancouver, ISO, and other styles
9

Kuznetsov, Valeriy, Ewa Kardas-Cinal, Piotr Gołębiowski, Borys Liubarskyi, Magomedemin Gasanov, Ievgen Riabov, Lilia Kondratieva, and Michał Opala. "Method of Selecting Energy-Efficient Parameters of an Electric Asynchronous Traction Motor for Diesel Shunting Locomotives—Case Study on the Example of a Locomotive Series ChME3 (ЧMЭ3, ČME3, ČKD S200)." Energies 15, no. 1 (January 3, 2022): 317. http://dx.doi.org/10.3390/en15010317.

Full text
Abstract:
One of the assumptions made during the modernization process of diesel shunting locomotives is the replacement of a diesel traction motor with a DC generator with an electric asynchronous traction motor. The article aimed to develop a method of selecting energy-efficient parameters of an asynchronous electric traction motor for diesel shunting locomotives, which will ensure that its operating energy efficiency will be as high as possible. The method was verified on the example of a locomotive series ChME3 (ЧMЭ3, ČME3, ČKD S200). It has been found that using a traction asynchronous electric drive on a ChME3 locomotive, its efficiency increases in comparison with DC electric motors by 3–5% under the long-term operation modes and by 7–10% during locomotive operation with traction at the adhesion limit. Using a new traction gearbox with a higher gear ratio expands the speed range in which the asynchronous traction drive operates with a high-efficiency factor. It is effective to use a traction asynchronous electric drive to modernize ChME3 diesel locomotives in case of their use under the modes requiring the implementation of maximum traction forces at low speeds. A further increase in the efficiency of the traction asynchronous electric drive is possible based on the optimal design of the wheel-motor unit and the asynchronous traction electric drive.
APA, Harvard, Vancouver, ISO, and other styles
10

Sengamalai, Usha, T. M. Thamizh Thentral, Palanisamy Ramasamy, Mohit Bajaj, Syed Sabir Hussain Bukhari, Ehab E. Elattar, Ahmed Althobaiti, and Salah Kamel. "Mitigation of Circulating Bearing Current in Induction Motor Drive Using Modified ANN Based MRAS for Traction Application." Mathematics 10, no. 8 (April 8, 2022): 1220. http://dx.doi.org/10.3390/math10081220.

Full text
Abstract:
Induction motors are popularly used in various applications because of the proposed modest construction, substantiated process, and limited size of specific power. The traditional AC traction drives are experimentally analyzed. There is a high circulating current due to the high Common-Mode Voltage (CMV). The high Circulating Bearing Current (CBC) is a major problem in conventional two-level voltage source inverter fed parallel-connected sensor-based induction motors for traction applications. A sensorless method is well known for shrinking costs and enhancing the reliability of an induction motor drive. The modified artificial neural network-based model reference adaptive system is designed to realize speed estimation methods for the sensorless drive. Four dissimilar multilevel inverter network topologies are being implemented to reduce CBC in the proposed sensorless traction motor drives. The multilevel inverter types are T-bridge, Neutral Point Clamped Inverter (NPC), cascaded H-bridge, and modified reduced switch topologies. The four methods are compared, and the best method has been identified in terms of 80% less CMV compared to the conventional one. The modified cascaded H-bridge inverter reduces the CBC of the proposed artificial neural network-based parallel connected induction motor; it is 50% compared to the conventional method. The CBC of the modified method is analyzed and associated with the traditional method. Finally, the parallel-connected induction motor traction drive hardware is implemented, and the performance is analyzed.
APA, Harvard, Vancouver, ISO, and other styles
11

Pugachev, Alexander. "Induction Motor Traction Drive with Slipping Protection." Applied Mechanics and Materials 792 (September 2015): 101–6. http://dx.doi.org/10.4028/www.scientific.net/amm.792.101.

Full text
Abstract:
The advantages and shortcomings of three-level voltage source inverters to be applied on locomotive traction electric drives are highlighted in relation to two-level ones. To protect wheels from slipping on rails, the control system is designed. The control system with protection from slipping uses system of direct torque control as the subordinated contour to produce control signals on voltage source inverter. The topology and principles of operation of both protections from slipping and direct torque control of traction induction motor with three-level voltage source inverters are described. The simplified structure of mechanical part of traction drive using basic and axle suspension is considered. The adequacy of designed control system is confirmed by means of Matlab, the results of mathematical modeling show a high convergence with the results of physical model of traction drive.
APA, Harvard, Vancouver, ISO, and other styles
12

Kosmodamianskiy, Andrey Sergeevich, Vladimir Ivanovich Vorobyev, Oleg Vasilyevich Izmerov, and Dmitriy Nikolaevich Shevchenko. "Modernization of wheels and motors units for diesel locomotives in conditions of import substitution." Transport of the Urals, no. 3 (2022): 40–48. http://dx.doi.org/10.20291/1815-9400-2022-3-40-48.

Full text
Abstract:
The paper considers problems of import substitution of parts for wheels and motors units for freight and shunting diesel locomotives with 1050 and 1250 mm wheels and it also considers a task of modernization of technically outdated assemblies. In result of the analysis the authors revealed that it is necessary to: 1) develop a new assembly of motor support bearings with the use of domestic parts; 2) create a new design of an electric traction motor suspension for the substitution of a spring suspension that has wearable parts; 3) organize a search for solutions for perspective diesel locomotives that are intended to operate on the Eastern polygon. For diesel locomotives with 1050 mm wheels the authors propose designs of a frame support traction drive equipped with flat rubber-metal elements and a traction drive with rigid support of an electric traction motor on wheel centres by the use of domestic bearings. Instead of the spring suspension the authors recommend to use suspensions with flat rubber elements and spherical rubber-metal mounting, which will provide interoperability of bogies with modified and unmodified electric traction motors. For perspective diesel locomotives with 1250 mm wheels the authors propose designs of two-axle bogies equipped with high-torque commutator motors and a traction drive with a frame support suspension of a traction motor and an axial gearbox.
APA, Harvard, Vancouver, ISO, and other styles
13

Goolak, Sergey, Viktor Tkachenko, Svitlana Sapronova, Vaidas Lukoševičius, Robertas Keršys, Rolandas Makaras, Artūras Keršys, and Borys Liubarskyi. "Synthesis of the Current Controller of the Vector Control System for Asynchronous Traction Drive of Electric Locomotives." Energies 15, no. 7 (March 24, 2022): 2374. http://dx.doi.org/10.3390/en15072374.

Full text
Abstract:
This paper deals with the analysis of the operating conditions of traction drives of the electric locomotives with asynchronous traction motors. The process of change of the catenary system voltage was found to have a stochastic character. The method of current controller synthesis based on the Wiener–Hopf equation was proposed to enable efficient performance of the traction drive control system under the condition of the stochastic nature of the catenary system voltage and the presence of interferences, when measuring the stator current values of the tractor motor. Performance simulation of the proposed current controller and the current controller used in the existing vector control systems of the traction drives used in the electric locomotives was implemented. The results of the performance simulation of the proposed current controller were compared with the performance of the current controller in existing vector control systems of the traction drives. The results are applicable to the design of vector control systems of traction drives in electric locomotives and to the study of the influence of performance of electric traction drives in electric locomotives on the quality indicators of the power supplied by the traction power supply system under the actual operating conditions of the locomotive.
APA, Harvard, Vancouver, ISO, and other styles
14

Fedotov, Ilya, and Vyacheslav Tikhonov. "Simulation of Traction Electric Drive with Vector Systems of Direct Torque Control." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 2 (August 8, 2015): 106. http://dx.doi.org/10.17770/etr2013vol2.846.

Full text
Abstract:
The article deals with investigation of electromechanical and energetic characteristics of traction electric drive with vector systems of direct torque control. As a controlled object the traction asynchronous motor ДТА-1У1, which is used to drive the trolley-bus is considered. At the present time the usage of traction asynchronous electric drives for town transport is relevant. Due to development of power electronic devices and microprocessor-based control systems it became possible to replace DC electric drives with electric drives with asynchronous motors. The article contains brief description of two different types of control systems: field-oriented control (FOC) and direct torque control (DTC). Principles of work for both systems are considered and the main advantages and disadvantages associated with the use of these systems are pointed out. The models of both systems for traction asynchronous electric drive, built in modeling environment MATLAB/Simulink, are given in this article for further comparative analysis. As the main quality factor of control total harmonic distortion (THD) is used.
APA, Harvard, Vancouver, ISO, and other styles
15

Savoskyn, O. M., Ye V. Serdobintsev, S. D. Krushev, and P. M. Zvantsev. "INVESTIGATION OF THE COUPLING PROPERTIES OF THE ELECTRIC TRAINS ON FOUR UNIAXIAL TRUCKS." Science and Transport Progress, no. 8 (September 25, 2005): 95–100. http://dx.doi.org/10.15802/stp2005/20145.

Full text
Abstract:
In given article are considered processes, appearing in tractive электроприводе motor coach электропоезда on four одноосных pushcart at failure of the traction. Also happen to the frequencies of the fluctuations this drive element both before, and after failure of the traction.
APA, Harvard, Vancouver, ISO, and other styles
16

Goolak, Sergey, Borys Liubarskyi, Ievgen Riabov, Vaidas Lukoševičius, Artūras Keršys, and Sigitas Kilikevičius. "Analysis of the Efficiency of Traction Drive Control Systems of Electric Locomotives with Asynchronous Traction Motors." Energies 16, no. 9 (April 25, 2023): 3689. http://dx.doi.org/10.3390/en16093689.

Full text
Abstract:
An analysis of the operating conditions of the traction drives of an electric rolling stock with asynchronous traction motors was conducted. In the process of operation, the electric traction drive with both direct torque control and vector control was found to possibly experience unstable modes, both in terms of power supply and load. The models of electric locomotive traction drives with asynchronous electric motors with either vector or direct torque control were adapted to account for the possible presence of the aforementioned operational factors. As a result of the modeling, the starting characteristics of the electric traction drives with different control systems were obtained both in the absence and in the presence of power supply and load disturbances. The following cases were investigated for the drive with vector and direct torque control in the absence of power supply and torque disturbances: drive output at the rated speed of rotation of the electric motor shaft; 10% reduction in the rated speed; 10% increase in the rated speed. The comparison of the results obtained has demonstrated that, at lower than nominal frequencies, the electric traction drive with direct torque control has higher accuracy in its regulation of the rotational speed and torque, lower power consumption from the power supply, lower torque overshooting, but a higher level of torque pulsations than the electric traction drive with vector control. Meanwhile, at higher than nominal frequencies, the vector control has higher accuracy in its regulation of the speed, lower torque overshooting, shorter duration of transient processes, and lower torque pulsations than the direct torque control. Moreover, as a result of the investigations, the traction drive with direct torque control has been found to be more resistant to power supply and load disturbances. The results of this work are applicable to the investigation of the influence of electric traction drive control methods on the energy efficiency of the traction drive of an electric locomotive with an alternating current (AC).
APA, Harvard, Vancouver, ISO, and other styles
17

Gronwald, Peer-Ole, and Thorsten Alexander Kern. "Experimental Validation and Parameter Study of a 2D Geometry-Based, Flexible Designed Thermal Motor Model for Different Cooled Traction Motor Drives." World Electric Vehicle Journal 12, no. 2 (May 14, 2021): 76. http://dx.doi.org/10.3390/wevj12020076.

Full text
Abstract:
For identifying new improvement potentials for electric traction motors, accurate models are needed. In this paper, a geometry-based 2D lumped parameter thermal network model for different electric traction motor and cooling concepts is studied and validated. In the second section, the design and functionality of the thermal model is explained. In the third section, the best fit of the literature correlations for describing the different heat transfer mechanisms was identified and a parameter study of the heat transfer coefficients was carried out and discussed. In the last section, the model is validated with measurement results from six different electric traction motors and drives units. For validation measurement results of stationary operating points, peak operating points and drive cycles are used. Based on the validation results, a model error of less than 10% is achieved for the most motor components in the different cooling concepts and traction motor designs. Inaccuracies and deviations are discussed and suggestions for improvement are made.
APA, Harvard, Vancouver, ISO, and other styles
18

Goolak, Sergey, Borys Liubarskyi, Vaidas Lukoševičius, Robertas Keršys, and Artūras Keršys. "Operational Diagnostics System for Asymmetric Emergency Modes in Traction Drives with Direct Torque Control." Applied Sciences 13, no. 9 (April 27, 2023): 5457. http://dx.doi.org/10.3390/app13095457.

Full text
Abstract:
This article presents an analysis of the causes behind the development of asymmetric modes in a traction drive system that features direct torque control (DTC) of a rolling stock with asynchronous traction motors. The development of asymmetric modes in the traction drive system was found to be caused by the asymmetry of the supply voltage system, the asymmetry of the traction motor windings, and transient processes triggered by a change in the inverter supply voltage and variation in the traction motor load. At the same time, the asymmetric modes caused by the asymmetry of the feed voltage system and the windings of the traction motor are the emergency modes. The influence of the asymmetry of the feed voltage system and asymmetry of the windings of traction motor on the starting characteristics of the phase currents and flux linkages of the stator in the steady-state mode was investigated. In these cases, the ratio of the amplitudes of phase currents and flux linkages of the stator of different phases was found to be constant. The effect of a variation in the feed voltage and load acting on the motor shaft on the starting characteristics of phase currents and flux linkages of the stator was investigated in the case of absence of the emergency modes. In these cases, the ratio of the amplitudes of phase currents and flux linkages of the stator of different phases was found to not be constant. The amplitudes of the phase current and stator flux linkage were proposed as criteria for diagnosis and identification of asymmetric emergency modes. An algorithm and a structural scheme have been proposed for the diagnosis of emergency asymmetric modes in the traction drive system with direct torque control. Modifications to the traction drive system with direct torque control are suggested in order to diagnose the presence of faulty asymmetric modes and identify the damaged traction drive element.
APA, Harvard, Vancouver, ISO, and other styles
19

Bizhaev, A. V. "Research of Tractor Power Unit with Electric Drive Parameters." Agricultural Machinery and Technologies 14, no. 4 (December 18, 2020): 33–42. http://dx.doi.org/10.22314/2073-7599-2020-14-4-33-42.

Full text
Abstract:
The author showed that it was possible to reduce the exhaust gases toxicity and increase tractors effi ciency using an electric power unit to implement traction. The effi ciency of modern electric motors was at its peak of 96 percent, compared to 45 for a diesel engine. He emphasized that this parameter for modern sources of electrical energy was 85-90 percent, which opened up opportunities for the implementation of an electric tractor.(Research purpose) To present the general concept of an electric drive power unit for a tractor of a small traction class and to evaluate its parameters as a fi rst approximation.(Materials and methods) For the tractor’s electric drive lithium-ion batteries were chosen as a source of electrical energy, showing the best characteristics of energy intensity – 432-864 kilojoule per kilogram with a unit cost of 4200-17400 rubles per kilogram. During the analyses of the power unit drive types, a D-120 diesel engine with a power of 20 kilowatt, a DC electric motor and an asynchronous motor with similar parameters were studied. The VTZ-2032 tractor with a nominal tractive eff ort of 600 Newtons when working on stubble was taken as the basis for the calculation.(Results and discussion) The author determined the best indicators of the electric drive by the power characteristics fullness in the gears with a decrease in unit costs per kWh from 24 to 15-16 rubles.(Conclusions) The most effi cient engine was determined – a brushless DC electric motor. The author calculated that the specifi c cost of its energy was 1.5-1.8 times less than that of a diesel engine, and amounted to 15-27 rubles per kilowatt-hour with a maximum effi ciency of 95 percent. It was found that lithium-ion batteries would be the optimal solution for powering the electric drive. They were distinguished by a high specifi c energy consumption – 432-864 kilojoule per kilogram – and a low price per energy unit, amounting to 5-45 rubles per kilojoule.
APA, Harvard, Vancouver, ISO, and other styles
20

Kamar, Syamsul, Meiyanne Lestari, Respatya Teguh Soewono, Sofwan Hidayat, Hilda Luthfiyah, Okghi Adam Qowiy, Fauzi Dwi Setiawan, and Mulyadi Sinung Harjono. "Performance analysis of three-phase induction motor for railway propulsion system." International Journal of Power Electronics and Drive Systems (IJPEDS) 14, no. 3 (September 1, 2023): 1433. http://dx.doi.org/10.11591/ijpeds.v14.i3.pp1433-1441.

Full text
Abstract:
A three-phase induction motor absorbs the most electric power among other electrical loads. Therefore, three-phase induction motors are the primary electric motors used in industrial applications thanks to their simple construction and easy operation, as well as low cost and low maintenance costs. Efficiency is a critical parameter that characterizes an induction motor as a traction motor. The traction motor is defined as the engine's effectiveness in converting electrical power at its input into mechanical energy by rotating torque on its axis. One way to analyze the efficiency is to use test data obtained from laboratory tests in case-loaded and no-load tests. Calculations using several formulas on the efficiency of an induction motor as a traction motor produce the same result, namely the efficiency of 98.6% by applying variable frequency drive (VFD). The result of laboratory tests and their analysis can be used as a reference for designing three-phase induction motors for railway traction motors, especially traction motors for high-speed trains<em>.</em>
APA, Harvard, Vancouver, ISO, and other styles
21

Sierikov, Georgy, and Iryna Sierikova. "Analysis of lithium-ion thermostabilization systems traction batteries of electric vehicles." Bulletin of Kharkov National Automobile and Highway University, no. 96 (May 24, 2022): 151. http://dx.doi.org/10.30977/bul.2219-5548.2022.96.0.151.

Full text
Abstract:
Problem. The paper solves an important scientific and practical problem that allows to increase the competitive advantages of agricultural producers through the use of modern energy-efficient tractors with electric transmission. The control system of the traction electric drive is a component of the modern electric tractor of the fourth traction class which has become the most widespread and is intended for providing movement in the modes of various loading. The study of electric motors of a modern electric tractor of the fourth traction class is carried out. The electric motor is characterized by input and output parameters, internal parameters or state parameters, external influences. Methodology. The methods of theoretical basic electrical engineering have been developed in the production and calculation of circuits. Also classical methods of statistics of signals from ADC are used. Results. The technique of processing information from the current, voltage and temperature sensors using a mathematical apparatus without using harmonic analysis is presented. The hardware implementation of the proposed method allows the use of simplified computing tools. Originality. Complex analysis of the data obtained from the current, voltage and temperature sensors is carried out. During the analysis, the range of velocities with stable operation of the measurement system was determined. Based on the data obtained, it is concluded that the use of a horn antenna as a concentrator substantially eliminates lateral interference and extends the range of possible velocity measurements. It is shown that the level of sampling significantly affects the upper limit of the measurement speed. Practical value. It is shown that: As a result of the work, an important scientific and practical problem was solved, which allows to increase the energy efficiency of tractors through the use of tractors of the fourth traction class electric drive. To maintain the maximum energy efficiency of the traction electric drive of the tractor in the modes of various loads, its control system must include means of displaying the current state of the energy parameters of the power plant. The electrical equipment must include an on-board computer, which helps the driver to make the optimal tasks of work, according to preliminary calculations, as well as display the information needed on the route, the state of the vehicle, means of communication. communication of the car with the external environment, with the navigation system, etc. The on-board computer provides information to the touch screen with programmable virtual controls, and communicates with the driver's mobile systems. The study of electric motors of a fifth traction class electric tractor was carried out. As an object of motor control, it is characterized by input and output parameters, internal parameters or state parameters, external influences. An algorithm for selecting the parameters of the traction motor system has been developed and a circuit implementation of the control system has been offered.
APA, Harvard, Vancouver, ISO, and other styles
22

Kholodilin, I. Yu, A. V. Korzhov, M. A. Grigoriev, Yu I. Khokhlov, and N. V. Savosteenko. "Highly efficient electric drive with vision system for traction applications in heavy tracked vehicles." Omsk Scientific Bulletin, no. 180 (2021): 41–47. http://dx.doi.org/10.25206/1813-8225-2021-180-41-47.

Full text
Abstract:
A new type of electric motor as a traction drive DET400 based on a field regulated reluctance machine (FRRM) provides high energy efficiency and high specific torque. A comparison is made between FRRM and various types of traction electric drives. The issues of designing the FRRM are considered, the geometric parameters of the electric machine are optimized to achieve the maximum specific indicators. To expand the functionality and ensure operational safety, it is proposed to introduce computer vision into the electronic control system. As a result, the FRRM is designed for traction applications based on the real requirements of a Russian-made crawler tractor.
APA, Harvard, Vancouver, ISO, and other styles
23

Titova, T. S., A. M. Evstaf’ev, and A. A. Pugachev. "Vector control system of electric traction drive with power losses minimization." Journal of Physics: Conference Series 2131, no. 4 (December 1, 2021): 042090. http://dx.doi.org/10.1088/1742-6596/2131/4/042090.

Full text
Abstract:
Abstract Based on the operating conditions analysis of electric traction drives of locomotives, it has been established that the vector control systems for an asynchronous motor fully satisfy all the requirements. On the basis of a T-shaped equivalent circuit, a mathematical model of an induction motor is presented, taking into account losses in the stator steel, the effect of the rotor current and saturation displacement. An algorithm for the formation of the optimal, from the point of view of power losses, task for the rotor flux linkage when using a vector control system with the orientation of the axes of the coordinate system along the rotor magnetic field, is developed. The limiting factors are the limitations on the current and voltage of the motor stator, the diesel generator set power. A shared control system for an electric traction drive with asynchronous motors has been developed, which provides direct control of wheel slip with a subordinate vector control system that minimizes power losses. The results of modeling in a steady-state operation and a start-up mode for an electric traction drive of a two-axle bogie with axial support and 630 kW asynchronous motors with the use of various options for organizing circuit reentrances are presented.
APA, Harvard, Vancouver, ISO, and other styles
24

Wen, Jing, Liang Chu, Jun Nian Wang, Jian Kun Yin, and Yan Bo Wang. "Motor Parameters Matching Based on Motor Loss Model and the Actual Drive Cycle of Hybrid Electric Vehicle." Applied Mechanics and Materials 246-247 (December 2012): 154–58. http://dx.doi.org/10.4028/www.scientific.net/amm.246-247.154.

Full text
Abstract:
The paper describes a way of matching the traction motor’s continuous parameters without changing the vehicle’s power performance. First, the traction motor’s peak parameters were matched according to the power performance of the HEV. Second, using the statistical tool, the region of the continuous parameter is set according to traction motor working distribution under actual drive cycle. Third, the continuous parameters were matched according to the motor loss model and the motor test cycle. Finally, vehicle simulation is done in CRUISE, simulation results show HEV traction motor matched using this method can improve the economy performance of the vehicle under certain drive cycle.
APA, Harvard, Vancouver, ISO, and other styles
25

Lokhnin, V. V., and I. A. Berbirenkov. "Valve Traction Motors in Vehicle Electric Drive." Izvestiya MGTU MAMI 2, no. 1 (January 10, 2008): 79–82. http://dx.doi.org/10.17816/2074-0530-69578.

Full text
Abstract:
A valve traction motor (VTM) is a contactless analogue of a DC traction motor (there is a mechanical collector-brush contact). The VTM with permanent magnet excitation has supplementary advantages: reliable exitation and its loss absence, the possibility of working with 1 or less zero coefficient of power.
APA, Harvard, Vancouver, ISO, and other styles
26

Tong, Yikun, Junjiang Zhang, Liyou Xu, and Xianghai Yan. "Driving System Design and Power Source Parameter Optimization of Tractor with Dual-Motor Coupling Drive." World Electric Vehicle Journal 14, no. 3 (March 2, 2023): 63. http://dx.doi.org/10.3390/wevj14030063.

Full text
Abstract:
For the poor working conditions of tractors, single-motor drive tractors usually choose a motor with large parameters, which leads to the lower efficiency of the motor under low-load conditions. Taking a wheeled tractor of YTO as the research object, a driving scheme of a dual-motor electric tractor was proposed, and the main components of the tractor electric drive system were matched. Based on MATLAB/Simulink, the electric tractor drive system model was established. On the premise of meeting the dynamic needs of the tractor, an optimization model was established with the tractor power consumption as the optimization goal and the power distribution coefficient of dual motors as the decision variable. The optimization model was solved by a genetic algorithm. The driving characteristics of the optimized electric tractor and the original tractor, as well as the instantaneous power consumption and total power consumption of the tractor before and after optimization, are compared and analyzed. The results show that the traction efficiency of the optimized electric tractor is about 2.7% higher than that of the original tractor, and the total power consumption of the electric tractor before and after optimization is reduced by 8.2%. The power performance and economy of the tractor after parameter matching and optimization are significantly improved.
APA, Harvard, Vancouver, ISO, and other styles
27

Mao, Yawei, Yiwei Wu, Xianghai Yan, Mengnan Liu, and Liyou Xu. "Simulation and experimental research of electric tractor drive system based on Modelica." PLOS ONE 17, no. 11 (November 17, 2022): e0276231. http://dx.doi.org/10.1371/journal.pone.0276231.

Full text
Abstract:
The electric tractor has the advantages of zero-emission, high efficiency, and low noise, which is the direction of future development and transformation of agricultural power machinery. Aim at the problem that the simulation methods commonly used in the development of electric tractor drive system are poorly generalized and cannot meet the simulation needs of complex multi-domain physical systems. This paper proposes a modeling method for an electric tractor drive system, takes the YTO-500 tractor as the research object, designs and calculates the overall scheme and parameters of its drive system, divides the drive system into modules, establishes the energy system, motor system and mechanical parts model based on Modelica, and integrates the simulation model of electric tractor drive system on this basis. The traction performance and transportation working conditions were simulated and tested. With compared and analyzed, in the traction characteristics, the simulation and test results of maximum speed, maximum traction force, and maximum traction power of each gear are consistent; within 400s transportation simulation conditions, the speed range of electric tractor is 13~28km·h-1, which is consistent with the speed range of electric tractor transportation gear. The results show that the simulation and the test results are consistent, which verifies the credibility of the simulation and the correctness of the model built, providing a basis for future research and development of agricultural machinery.
APA, Harvard, Vancouver, ISO, and other styles
28

Klimov, Aleksandr V. "Synthesis of an adaptive observer of the resistance torque at a shaft of a traction electric motor." Tractors and Agricultural Machinery 90, no. 2 (July 27, 2023): 99–105. http://dx.doi.org/10.17816/0321-4443-119856.

Full text
Abstract:
BACKGROUND: Operating companies and consumers have demands to vehicles for efficiency improvement and cost cut. A part of substantial expenses is fuel cost, therefore use of vehicles with electric drive such as hybrid or pure electric (battery-electric) has potential for agriculture. It is mainly important for them to have the drivetrain characterized by high efficiency that increases autonomous mileage for one charge. To achieve this, it is necessary to control electric motors in the way to ensure maximal surface grip coefficient without wheel slipping. In this case, real-time defining of wheel resistance torque in necessary for efficient control. AIMS: Development of the theoretical basis and the law of optimal estimation of the resistance torque at a shaft of traction electric motor of transport vehicles for the sake of efficient control of traction electric drive. METHODS: Simulation of the law of optimal estimation of the resistance torque at a shaft of traction electric motor was carried out in the MATLAB/Simulink software package. RESULTS: The article provides with theoretical basis of formatting the law of optimal estimation of the resistance torque at a shaft of traction electric motor of transport vehicles for the sake of efficient control of traction electric drive, the law of optimal estimation of the resistance torque at a shaft of traction electric motor and the results of simulation of the law of optimal estimation of the resistance torque at a shaft of traction electric motor obtained in the MATLAB/Simulink. CONCLUSIONS: Practical value of the study lies in ability of using the proposed control laws for development of transport vehicles drivetrain control system.
APA, Harvard, Vancouver, ISO, and other styles
29

Puzakov, Andrey. "Developing the model of normal operation of starter motor traction relays." E3S Web of Conferences 124 (2019): 05039. http://dx.doi.org/10.1051/e3sconf/201912405039.

Full text
Abstract:
Malfunction of motor starter traction relays cause the impossibility of the reliable start of internal combustion engines which, if the worst comes to the worst, can create the risk of traffic accident occurrence. Electric resistances of traction relay coils are structural and diagnostic parameters at the same time. Emergence and development of failures causes the change of magnetomotive force generated by the traction relay coils. Critical values of electric resistances correspond to failures of traction relay coils, i.e., inability to perform the built-in functions. The developed mathematical model of traction relay normal operation includes the amount of effort generated and voltage loss on contacts as controlled values for the drive mechanism and the starter electric motor, respectively. The results obtained contribute to the development of the method of motor-and-tractor starter diagnostics without removing it from the engine.
APA, Harvard, Vancouver, ISO, and other styles
30

Sulym, A. "A METHODOLOGY TO SELECT ASYNCHRONOUS TRACTION ELECTRIC DRIVE FOR INNOVATIVE METRO ROLLING STOCK." Collection of scientific works of the State University of Infrastructure and Technologies series "Transport Systems and Technologies" 1, no. 37 (June 29, 2021): 97–118. http://dx.doi.org/10.32703/2617-9040-2021-37-11.

Full text
Abstract:
The paper deals with the justification of the need to use an asynchronous traction electric drive on the metro rolling stock. The advantages of using an asynchronous traction electric drive in comparison with a DC commutator motor drive are formulated. The characteristics of modern innovative metro rolling stock with asynchronous traction electric drive of domestic and foreign production are analyzed. Aspects of the choice of a variable frequency asynchronous traction electric drive for innovative rolling stock are formulated and the existing typical algorithm of such choice is given. The main reasons for the irrational choice of traction asynchronous electric drive for the metro rolling stock are considered and the consequences of such a choice are analyzed. It is proposed to improve the methodology for selecting a variable frequency traction asynchronous electric drive for the metro rolling stock in terms of such an important operational factor as the specific cost of electrical energy for traction. The rational parameters of the variable frequency asynchronous traction electric drive according to the proposed procedure for the specified characteristics of the metro rolling stock are specified. The reserves of energy savings for the given conditions due to the introduction of an asynchronous traction electric drive with rational parameters on the innovative rolling stock are determined. It is established that the efficiency factor of the asynchronous traction motor significantly affects the specific electric energy consumption for the metro rolling stock traction and operating costs.
APA, Harvard, Vancouver, ISO, and other styles
31

Biryukov, V. V., Yu A. Fedorova, and M. V. Rozhkova. "Simulation of drive power in mechatronic systems." Journal of Physics: Conference Series 2061, no. 1 (October 1, 2021): 012035. http://dx.doi.org/10.1088/1742-6596/2061/1/012035.

Full text
Abstract:
Abstract The results of research on determining the parameters and circuit solutions of traction drives of funicular cars are presented in this paper. As a result of the research, it has been revealed that the funiculars, the bodies of which have an articulated joint, possess the greatest advantages. It is effectually to use three-phase AC machines with permanent magnets as traction electric motors. The mechanical part of the drive must contain a speed transformer with a gear rack-wheel type gearing. The wheels of the running gears perform the function of holding the car on the track structure. The traction force is performed in a gearing, the rack of which is placed between the rails of the track structure. The given method for calculating the power of the drive motor made it possible without question to determine its dependence on the angle of inclination of the railroad bed.
APA, Harvard, Vancouver, ISO, and other styles
32

Arkadan, A. A., and N. Al Aawar. "Taguchi-EM-AI Design Optimization Environment for SynRM Drives in Traction Applications." Applied Computational Electromagnetics Society 35, no. 11 (February 5, 2021): 1372–73. http://dx.doi.org/10.47037/2020.aces.j.351155.

Full text
Abstract:
Multi-objective design optimization environments are used for electric vehicles and other traction applications to arrive at efficient motor drives. Typically, the environment includes characterization modules that involve the use of Electromagnetic Finite Element and State-Space models that require large number of iterations and computational time. This work proposes the utilization of a Taguchi orthogonal arrays method in conjunction with a Particle Swarm Optimization search algorithm to reduce computational time needed in the design optimization of electric motors for traction applications. The effectiveness of the Taguchi method in conjunction with the optimization environment is demonstrated in a case study involving a prototype of a Synchronous Reluctance Motor drive system.
APA, Harvard, Vancouver, ISO, and other styles
33

Thanh Ha, Vo, Pham Thi Giang, and Phuong Vu. "Multilevel inverter application for railway traction motor control." Bulletin of Electrical Engineering and Informatics 11, no. 4 (August 1, 2022): 1855–66. http://dx.doi.org/10.11591/eei.v11i4.3964.

Full text
Abstract:
This paper will present why choosing a 7-level reverse voltage source fed to three-phase induction motors to the railway traction motor. In addition, this paper shows the implementation of space vector pulse width modulation (SVPWM) and the math model of induction motor, stator currents, and speed controller design of electric traction drive system based on field-oriented control (FOC). By MATLAB/Simulink method, this multi-level inverter in FOC structure reduces total harmonic distortion (THD) more than other multi-level inverters such as 3 and 5-level inverter. Furthermore, this FOC control structure combined with 7-level inverter improved speed and torque responses required for railway traction motor load.
APA, Harvard, Vancouver, ISO, and other styles
34

Mihal'chuk, Nikolay, Yuriy Popov, Anatoliy Savos'kin, Oleg Pudovikov, and Anton Chuchin. "Improving the Efficiency of the Electric Locomotive Drive with a Controllable Converter for Traction Motor Excitation." Bulletin of scientific research results 2023, no. 2 (June 26, 2023): 81–91. http://dx.doi.org/10.20295/2223-9987-2023-2-104-114.

Full text
Abstract:
Purpose: To substantiate the circuit design and algorithms for individual smooth and automatic control of single-phase direct current electric locomotives according to the laws of constant traction force and constant power without breaking the electric locomotive power circuits in order to increase the efficiency of its electric drive with controllable traction motor excitation converters. As a circuit design solution, it is proposed to apply a power electrical circuit with two rectifier-inverter converters for each section of the electric locomotive for bogie-based traction control, as well as individually controlled bridge transistor converters, shunting field windings, for axial traction control within each bogie. Methods: The development of circuit solutions using modern power semiconductor converters; theory of automatic control and design of finite state machines; mathematical modeling of electromagnetic, electromechanical and mechanical processes. Results: The developed control algorithms provide the possibility of obtaining traction characteristics of an electric locomotive that vary according to the laws of constancy of traction force or constancy of power, bringing the traction characteristics of electric locomotives with collector traction motors to the characteristics of electric locomotives with asynchronous traction motors. The calculations performed confirmed the possibility of implementing an algorithm for individual control of traction motor currents and their excitation currents, as well as traction forces, which ensures a smooth increase in the traction force of an electric locomotive.Practical significance: The developed technical solutions applicable in the manufacture of modern and modernization of operated electric locomotives will ensure an increase in the traction properties of singlephase DC electric locomotives and will contribute to an increase in the throughput and carrying capacity of the railway network.
APA, Harvard, Vancouver, ISO, and other styles
35

Evstaf’ev, Andrey, and Alexander Pugachev. "Modeling of energy-efficient direct torque control system for traction induction motor." E3S Web of Conferences 383 (2023): 01013. http://dx.doi.org/10.1051/e3sconf/202338301013.

Full text
Abstract:
A brief analysis of existing control systems for traction electric drives with induction motors has been carried out, as a result of which it has been established that vector control and direct torque control systems are the most promising. The comparative characteristic of these control systems according to different parameters of electric drive quality has shown that in energy-saving algorithms it is appropriate to use the systems of direct torque control. The work aims to simulate the electric drive with a direct torque control system, which provides the reduction of power losses in an asynchronous motor. The value of the stator winding power factor is chosen as a control action. The calculation and functional dependences between the main parameters of the control system and the induction motor are synthesized, the fulfillment of which allows reducing duce power losses. The functional diagram of the electric drive with an energy-efficient control system is given. The hardware of this control system does not differ from the currently used frequency converters. In the power channel of the frequency converter, a three-level autonomous voltage inverter with locking diodes is used. The results of modeling for electric drive with 11 kW motor, analysis of which showed the adequacy of the developed model and performance of the synthesized control system, the efficiency of the electric drive with energy-efficient control system increases to 18% compared with the classical direct torque control system.
APA, Harvard, Vancouver, ISO, and other styles
36

Nazarenko, Ihor, and Oleksandr Kovalov. "ENERGY EFFICIENT ELECTROMECHANICAL SOIL TREATMENT SYSTEM BASED ON ELECTRIC MOTORBLOCK." Bulletin of the National Technical University "KhPI". Series: Energy: Reliability and Energy Efficiency, no. 1 (2) (July 2, 2021): 71–78. http://dx.doi.org/10.20998/2224-0349.2021.01.10.

Full text
Abstract:
In Ukraine, the number of farms, private land users and protected soil structures has increased significantly in recent years. To increase the efficiency of vegetable production, small-sized mobile units in the form of motoblocks with internal combustion engines of domestic and foreign production have been widely used. However, during the operation of mobile units with internal combustion engines in greenhouses and hotbeds, the noise level and air pollution increase, which negatively affect not only people but also plants. The disadvantages of motoblocks with internal combustion engines should also include a fairly high specific consumption of liquid fuel, which has a high cost, difficulties in starting and stopping the unit, as well as the relatively low reliability of the internal combustion engine. More promising for work in protected soil structures are mobile units with traction motors, called electric motors, as environmentally friendly units that do not have these shortcomings. The main technical characteristics of the experimental sample of a small-sized electrified soil-cultivating motoblock are given in the work. The structural scheme of the power energy channel of the electric motor unit is substantiated, which clearly demonstrates the processes of energy conversion in it. The equation of energy balance of the electric motor unit and the main energy ratios that determine the properties of the traction motor in the drive of the electric motor unit are obtained. The algorithm of optimal control of a direct current traction motor by the maximum efficiency for direct current motors of serial and mixed excitation is substantiated. The results of field tests of the prototype of the electric motor unit are presented. The analysis of the obtained results of experimental researches of the electrified tillage motor-drive driven by the direct current motor of sequential excitation testifies to the reduction of specific energy consumption for the main types of tillage by 12-15%.
APA, Harvard, Vancouver, ISO, and other styles
37

T, Sathees. "Design and Analysis of Four Wheel Drive Electric Vehicle." International Journal for Research in Applied Science and Engineering Technology 11, no. 4 (April 30, 2023): 255–59. http://dx.doi.org/10.22214/ijraset.2023.50047.

Full text
Abstract:
Abstract: Due to the increase in the cost of fuels and pollution, alternative to conventional internal combustion engine powered vehicles is needed. As electric vehicles are environment friendly, they are considered green transportation. In an electric vehicle various components like motor, battery, controllers are used. While designing an electric vehicle, the first and foremost component to be selected is an electric motor which replaces the Internal Combustion engines of conventional vehicles. Therefore, electric motor used in an electric vehicle must produce appropriate power and other characteristics that are required for traction purpose. The important task is to select an appropriate rating of motor based on the load to be carried. This paper describes the procedure for proper selection of rating of electric motor with an example of DC motor for an electric car. Vehicle dynamics is considered for selecting the proper electric motor that would provide required power and torque for traction. To achieve all traction characteristics in compact size, a proper selection of motor rating should be done based on the load.
APA, Harvard, Vancouver, ISO, and other styles
38

Yıldırım, Doğan, Mehmet Hakan Akşit, Işık Çadırcı, and Muammer Ermiş. "All-SiC Traction Converter for Light Rail Transportation Systems: Design Methodology and Development of 165 kVA Prototype." Electronics 11, no. 9 (April 29, 2022): 1438. http://dx.doi.org/10.3390/electronics11091438.

Full text
Abstract:
The design and development of a high-performance 165 kVA, 750 V DC all-silicon carbide (SiC) traction converter for new generation light rail transportation systems (LRTSs) are described. In the design of the traction motor drive, the efficiency of the overall system is maximized and the line current harmonic content of the traction motor is minimized. A complete mathematical model of the physical system is derived to carry out real-time simulations and proper control of the LRTS on a real rail track. The electrical and thermal performances of traction-type SiC power MOSFET modules are compared with those of alternative hybrid and Si-IGBT modules for various switching frequencies. The implementation of the developed system is also described. The performance of the resulting system is verified experimentally on a full-scale physical simulator as well as for various track conditions. Very promising results for the next generation railway traction motor drives have been obtained in terms of performance criteria, such as very high efficiency, low harmonic distortion of the motor line current, low cooling requirement, relatively high switching frequency, and hence, superior controller performance. The effects of the SiC power MOSFET operation on the insulation of the available traction motors are also examined experimentally. This paper is accompanied by a video demonstrating the experimental work.
APA, Harvard, Vancouver, ISO, and other styles
39

Sidorov, Mikhail Yu, Aleksey G. Kalinin, Vladimir A. Bakshaev, Evgeny L. Gorshkov, and Evgeny E. Gorshkov. "TRACTION MOTOR FOR FRONT LOADER CHASSIS." Vestnik Chuvashskogo universiteta, no. 3 (September 29, 2022): 95–102. http://dx.doi.org/10.47026/1810-1909-2022-3-95-102.

Full text
Abstract:
The purpose of the work is the import substitution of traction electric drives as part of the project to create in the Chuvash Republic a serial production of a family of front loaders with a hybrid electric drive. For most transport electric motors, operation in the high-torque electric motor mode is not the main operating mode, since the vehicle acceleration is carried out in a short time with overcoming low-efficiency low-speed modes. A distinctive feature of the traction motor for the chassis of a front loader is the rearrangement of priorities in favor of operating technological modes. The analytical results of the stage of the preliminary design of the traction electric motor of each wheel for a front loader with a hybrid electric transmission are presented. Based on the results of calculations, it was found that for the given traction-dynamic, temperature and overall characteristics, the most efficient type of engine is NdFeB magnet motor, the phase ratio is 6, the magnetic system is radial with magnetic supports, the non-magnetic gap is 3 mm, the shroud is based on a carbon filament, cooling is forced liquid, the highest efficiency of 92% falls on the cycle of heavy operating modes of the front loader. The cost of manufacturing a motor with an axial magnetic system is higher compared to cylindrical type motors provided the electromagnetic power is equal. The choice of a magnetic system based on the ratio of magnetic fluxes of different combinations of rotor poles and stator teeth is substantiated. The materials of the article illustrate diagrams of magnetic fields and temperature distribution of the traction motor, calculated at the stage of preliminary design by the finite element method, as well as a dimensional drawing of a sketch of an electric motor for given performance characteristics, transferred to the stage of technical design.
APA, Harvard, Vancouver, ISO, and other styles
40

V. M. Bezruchenko and O. A. Khoroshko. "The traction electric operation and its exploitation abilities." Science and Transport Progress, no. 38 (September 25, 2011): 63–67. http://dx.doi.org/10.15802/stp2011/6808.

Full text
Abstract:
The possibilities of asynchronous traction electric motor drive are considered at the certain coupling mass taking into account the coupling restrictions. A variant of using the regulation law for electric motor drive allowing realizing traction force more rationally is offered. The possibility of reaching the speeds to 220 km/h for electric locomotive DS3 is shown
APA, Harvard, Vancouver, ISO, and other styles
41

Riabov, I., S. Sapronova, V. Tkachenko, S. Goolak, and R. Keršys. "CALCULATION OF TRACTION AND ENERGY CHARACTERISTICS ELECTRIC ROLLING STOCK WITH ASYNCHRONOUS TRACTION ELECTRIC DRIVE." Collection of scientific works of the State University of Infrastructure and Technologies series "Transport Systems and Technologies" 1, no. 38 (December 24, 2021): 141–52. http://dx.doi.org/10.32703/2617-9040-2021-38-138-13.

Full text
Abstract:
The issue of determining the traction and energy characteristics of electric rolling stock with asynchronous traction drive is considered. It is noted that such rolling stock can work at any point of the traction area, resulting in the need to determine the characteristics of the rolling stock for the entire traction area. The calculation of the characteristics of the traction induction motor, which are the basis for determining the traction and energy characteristics of the electric rolling stock, is considered in detail. A procedure based on the calculation of the replacement circuit of an induction motor is proposed. The calculation of power losses due to higher harmonic voltages and currents is considered. An example of calculation of traction and energy characteristics of an DC electric shunting locomotive with a traction asynchronous electric drive is given.
APA, Harvard, Vancouver, ISO, and other styles
42

Chandra Rao, A. Purna, Y. P. Obulesh, and Ch Sai Babu. "Power Factor Correction in Two Leg Inverter Fed BLDC Drive Using Cuk Dc-Dc Converter." International Journal of Power Electronics and Drive Systems (IJPEDS) 6, no. 2 (June 1, 2015): 196. http://dx.doi.org/10.11591/ijpeds.v6.i2.pp196-204.

Full text
Abstract:
Earlier for variable speed application conventional motors were used, but these motors have poor characteristics. These drawbacks were overcome by brushless Dc motor drive. Now days in most of the applications such as industrial, domestic, aerospace, defense, medical and traction etc, brushless DC motor (BLDCM) is popular for its high efficiency, high torque to weight ratio, small size, and high reliability, ease of control and low maintenance etc. BLDC motor is a electronic commutator driven drive i.e. it uses a three-phase voltage source inverter for its operation, electronic devices means there is a problem of poor power quality, more torque ripple and speed fluctuations. This paper deals with the CUK converter two leg inverter fed BLDCM drive in closed loop operation. The proposed control strategy on CUK converter two leg inverter fed BLDCM drive with split DC source is modeled and implemented using MATLAB / Simulink. The proposed method improves the efficiency of the drive system with Power factor correction feature in wide range of the speed control, less torque ripple and smooth speed control.
APA, Harvard, Vancouver, ISO, and other styles
43

Zubkov, Yuri V., and Vladislav E. Vereshagin. "Designing of traction motor stators core." Vestnik of Samara State Technical University. Technical Sciences Series 30, no. 4 (February 1, 2023): 102–14. http://dx.doi.org/10.14498/tech.2022.4.7.

Full text
Abstract:
Electric drive is widely used in automotive practice. Its basis is an electric traction motor (TM), which, compared with an internal combustion engine (ICE), has such advantages as high efficiency, high overload capacity, a wide range of speed control, and the possibility of torque direct transmission to the drive wheels. The main requirements for a traction motor are high efficiency over the entire load range, ease of speed and torque control, high overload capacity, small weight and dimensions, regenerative braking capability, wide speed control range, simplicity and ease of maintenance. The most widely used as traction motors are synchronous electric machines with excitation from permanent magnets (PM). They are characterized by high torque density, efficiency and power consistency over a wide speed range. However, there are a number of problems that hinder the introduction of these electric machines in the traction drive of home cars, one of which is the lack of a methodology for choosing the design of an armature and an inductor at the stage of calculating the main dimensions of an TM with magnetoelectric excitation, taking into account the variety of schemes and methods of winding, PM placement in the inductor. The article deals with the issues of choosing electromagnetic loads for various cooling methods, the size of the non-magnetic gap, an algorithm for electromagnetic calculation based on the maximum torque, containing a number of refining cycles, is proposed. The values of inductances and design factors are determined by numerical simulation of the magnetic field. The features of the design and circuit design of the core and armature winding are considered. Distribution curves of magnetomotive forces of distributed and concentrated windings are obtained, their harmonic analysis is made, recommendations are given on the configuration of the TD armature active zone.
APA, Harvard, Vancouver, ISO, and other styles
44

Pugachev, Aleksandr, Vladimir Vorob'ev, Oleg Izmerov, and Evgeniy Nikolaev. "DEVELOPMENT OF A SUPPORT-AXIAL DRIVE OF PASSENGER ELECTRIC TRAINS WITH ASYNCHRONOUS TRACTION ENGINES." Transport engineering 2023, no. 3 (March 14, 2023): 45–58. http://dx.doi.org/10.30987/2782-5957-2023-3-45-58.

Full text
Abstract:
The problem of import-substituting components for the support-axial traction drive of an electric train with a wheel diameter of 950 mm is considered. As a result of the analysis, the disadvantages of the drive using foreign components are revealed: a high unsprung mass, which worsens the impact of the crew on the track, the difficulty of providing the required dynamic properties with elastic support of the motor-gear unit on the axle, the complexity of manufacturing and assembling the drive. The inexpediency of copying foreign solutions to create a domestic analogue of a traction drive is established. Variants of technically possible traction drive adapted for domestic production and easier to manufacture are considered. It is proposed to use a traction drive with a high-torque support - frame traction engine, with an increased outer diameter and the same circumferential speed of the rotor and an axial gearbox. It is proved that in this case, due to a decrease in the speed of the drive shaft, the design of the gearbox is simplified, which can be made single-reduction, and it becomes possible to use the developed and studied domestic flat rubber-cord couplings. A new design of the transverse rubber-cord coupling is proposed. For the case of using a domestic high-speed traction electric motor in the drive, it is proposed to use an aggregate-type traction drive. Two utility model patents are obtained for the proposed technical solutions and a patent application is filed.
APA, Harvard, Vancouver, ISO, and other styles
45

Hiramoto, Kenji, Hideo Nakai, Eiji Yamada, and Ryoji Mizutani. "Application of the Integrated Diode Synchronous Motor to Traction Drive Motors." IEEJ Transactions on Industry Applications 137, no. 7 (2017): 592–98. http://dx.doi.org/10.1541/ieejias.137.592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

HIRAMOTO, KENJI, HIDEO NAKAI, EIJI YAMADA, and RYOJI MIZUTANI. "Application of the Integrated Diode Synchronous Motor to Traction Drive Motors." Electrical Engineering in Japan 204, no. 3 (April 17, 2018): 53–60. http://dx.doi.org/10.1002/eej.23097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Behera, Ranjan, and Shyama Das. "Multilevel converter fed induction motor drive for industrial and traction drive." IEEE Potentials 29, no. 5 (September 2010): 28–32. http://dx.doi.org/10.1109/mpot.2010.937049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Кеlisbekov, А. К. "CONTROL OF STARTING MODES OF AN APRON CONVEYOR MULTI-MOTOR ELECTRIC DRIVE." Eurasian Physical Technical Journal 18, no. 4 (38) (December 21, 2021): 74–81. http://dx.doi.org/10.31489/2021no4/74-81.

Full text
Abstract:
The practice of operating an apron conveyor at mining enterprises has shown that, due to their design features, they can be successfully applied in various industries for transporting a wide range of goods. Starting a multi-drive chain conveyor of large length is a rather difficult task, since this process can be accompanied by excessive relaxation of the traction body. Especially unfavorable are the conditions for starting an apron conveyor, the belt of which has sagging sections, as a result of which the rigidity of the working body, which is a function of its tension and load on it, is relatively small. In this regard, ensuring a smooth start of a multi-motor chain conveyor is an important practical task and is undoubtedly relevant for managing and maintaining a workable dynamic state of the main an apron conveyor structure operated in difficult mining and geological conditions.A method of controlling the starting mode of a multi-motor electric drive operation of an apron conveyor to ensure its smooth start and to reduce dynamic loads, to increase the service life of the traction belt and to reduce maintenance costs was developed.
APA, Harvard, Vancouver, ISO, and other styles
49

Breido, I. V. "MATHEMATICAL MODEL OF MULTI-MOTOR PLATE CONVEYOR TRACTION BODY WITH FREQUENCY-CONTROLLED ELECTRIC DRIVE." Eurasian Physical Technical Journal 16, no. 2 (December 25, 2019): 94–100. http://dx.doi.org/10.31489/2019no2/94-100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tătar, Mihai Olimpiu, Florin Haiduc, and Dan Mândru. "Design of a Synchro-Drive Omnidirectional Mini-Robot." Solid State Phenomena 220-221 (January 2015): 161–67. http://dx.doi.org/10.4028/www.scientific.net/ssp.220-221.161.

Full text
Abstract:
Using the synchro-drive principle, the paper presents a new omnidirectional mini-robot with conventional wheels. The synchro-drive principle is achieved applying geared mechanisms: three for steering and another three for displacement. The mini-robot uses two DC motors and three pairs of conventional wheels. The first DC motor controls the rotation of three pairs of the wheels around the horizontal axis thus generating the driving force (traction) to the mini-robot. The second motor controls the rotation of three pairs of the wheels around the vertical axis hence generating their orientation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography