Academic literature on the topic 'Trachymene incisa'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Trachymene incisa.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Trachymene incisa"

1

Davila, Yvonne C., and Glenda M. Wardle. "Reproductive ecology of the Australian herb Trachymene incisa subsp.incisa (Apiaceae)." Australian Journal of Botany 50, no. 5 (2002): 619. http://dx.doi.org/10.1071/bt02001.

Full text
Abstract:
Within the Apiaceae, subtle variation in reproductive characters such as dichogamy, pollinator specificity and umbel density may cause cryptic specialisation and be responsible for the diversity of life histories and gender expression in the family. To address the paucity of information for Australian species we investigated the reproductive ecology of the native perennial herb, Trachymene incisa Rudge subsp. incisa. T. incisa exhibits protandry within flowers and umbels; however, an overlap of 3 days in male and female phases among umbels of consecutive orders permits geitonogamous pollination. There are 72 ± 2.0 (n = 74) white flowers per umbel and nectar is presented during the male and female phases. Apis mellifera appears to be the main diurnal pollinator. The pollen : ovule ratio is 1902 : 1, indicating that T. incisa is a facultatively xenogamous species. The long phase of pollen presentation and the low natural seed set of about 45% implies that many flowers are functioning as pollen donors only. Controlled pollination experiments showed that self-pollen led to lower seed set than cross, open and supplemental applications. Early and late-produced cohorts differed in days to emergence but not in seed mass or final percentage emergence.
APA, Harvard, Vancouver, ISO, and other styles
2

Palá-Paúl, Jesús, Lachlan M. Copeland, and Joseph J. Brophy. "The Essential Oil Composition of Trachymene incisa Rudge subsp. incisa Rudge from Australia." Plants 10, no. 3 (March 23, 2021): 601. http://dx.doi.org/10.3390/plants10030601.

Full text
Abstract:
Trachymene incisa subsp. incisa is an Australian endemic taxon that varies greatly in the abundance and length of the leaf trichomes. The essential oil composition of five populations of this subspecies, three corresponding to the typical glabrous form and two of the particularly hairy variant, has been analyzed in an attempt to determinate if that variability is also reflected in their composition. The oils have been extracted by hydrodistillation and analyzed by Gas Chromatography (GC) and Gas Chromatography coupled to Mass Spectrometry (GC–MS). The essential oils of T. incisa subsp. incisa were characterized by the high amount of sesquiterpenes that were the major fraction. The sesquiterepene hydrocarbons were significantly higher in the hairy variant in comparison to the glabrous one. According to the main compound, three different chemotypes were found: I.—β-selinene + bicyclogermacrene and II.—γ-bisabolene + α-pinene for the typical glabrous variant and III.—bicyclogermacrene + β-caryophyllene for the hairy variant.
APA, Harvard, Vancouver, ISO, and other styles
3

DAVILA, YVONNE C., and GLENDA M. WARDLE. "Bee boys and fly girls: Do pollinators prefer male or female umbels in protandrous parsnip, Trachymene incisa (Apiaceae)?" Austral Ecology 32, no. 7 (November 2007): 798–807. http://dx.doi.org/10.1111/j.1442-9993.2007.01757.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wardle, Glenda M. "Experimental determination of seed emergence and carry-over in the soil seed bank of the herbaceous perennial, Trachymene incisa (Apiaceae)." Austral Ecology 28, no. 2 (April 2003): 161–72. http://dx.doi.org/10.1046/j.1442-9993.2003.01258.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DAVILA, YVONNE C., and GLENDA M. WARDLE. "Variation in native pollinators in the absence of honeybees: implications for reproductive success of an Australian generalist-pollinated herb Trachymene incisa (Apiaceae)." Botanical Journal of the Linnean Society 156, no. 3 (March 2008): 479–90. http://dx.doi.org/10.1111/j.1095-8339.2007.00774.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Trachymene incisa"

1

Davila, Yvonne Caroline. "Pollination ecology of Trachymene incisa (Apiaceae): Understanding generalised plant-pollinator systems." Thesis, The University of Sydney, 2006. http://hdl.handle.net/2123/1896.

Full text
Abstract:
A renewed focus on generalised pollinator systems has inspired a conceptual framework which highlights that spatial and temporal interactions among plants and their assemblage of pollinators can vary across the individual, population, regional and species levels. Pollination is clearly a dynamic interaction, varying in the number and interdependence of participants and the strength of the outcome of the interaction. Therefore, the role of variation in pollination is fundamental for understanding ecological dynamics of plant populations and is a major factor in the evolution and maintenance of generalised and specialised pollination systems. My study centred on these basic concepts by addressing the following questions: (1) How variable are pollinators in a generalised pollination system? To what degree do insect visitation rates and assemblage composition vary spatially among populations and temporally among flowering seasons? (2) How does variation in pollinators affect plant reproductive success? I chose to do this using a model system, Trachymene incisa subsp. incisa (Apiaceae), which is a widespread Australian herbaceous species with simple white flowers grouped into umbels that attract a high diversity of insect visitors. The Apiaceae are considered to be highly generalist in terms of pollination, due to their simple and uniform floral display and easily accessible floral rewards. Three populations of T. incisa located between 70 km and 210 km apart were studied over 2-3 years. The few studies investigating spatial and temporal variation simultaneously over geographic and yearly/seasonal scales indicate that there is a trend for more spatial than temporal variation in pollinators of generalist-pollinated plants. My study showed both spatial and temporal variation in assemblage composition among all populations and variation in insect visitation rates, in the form of a significant population by year interaction. However, removing ants from the analyses to restrict the assemblage to flying insects and the most likely pollinators, resulted in a significant difference in overall visitation rate between years but no difference in assemblage composition between the Myall Lakes and Tomago populations. These results indicate more temporal than spatial variation in the flying insect visitor assemblage of T. incisa. Foraging behaviour provides another source of variation in plant-pollinator interactions. Trachymene incisa exhibits umbels that function as either male or female at any one time and offer different floral rewards in each phase. For successful pollination, pollinators must visit both male and female umbels during a foraging trip. Insects showed both preferences and non-preferences for umbel phases in natural patches where the gender ratio was male biased. In contrast, insects showed no bias in visitation during a foraging trip or in time spent foraging on male and female umbels in experimental arrays where the gender ratio was equal. Pollinator assemblages consisting of a mixture of different pollinator types coupled with temporal variation in the assemblages of populations among years maintains generalisation at the population/local level. In addition, spatial variation in assemblages among populations maintains generalisation at the species level. Fire alters pollination in T. incisa by shifting the flowering season and reducing the abundance of flying insects. Therefore, fire plays an important role in maintaining spatial and temporal variation in this fire-prone system. Although insect pollinators are important in determining the mating opportunities of 90% of flowering plant species worldwide, few studies have looked at the effects of variation in pollinator assemblages on plant reproductive success and mating. In T. incisa, high insect visitation rates do not guarantee high plant reproductive success, indicating that the quality of visit is more important than the rate of visitation. This is shown by comparing the Agnes Banks and Myall Lakes populations in 2003: Agnes Banks received the highest visitation rate from an assemblage dominated by ants but produced the lowest reproductive output, and Myall Lakes received the lowest visitation rate by an assemblage dominated by a native bee and produced the highest seedling emergence. Interestingly, populations with different assemblage composition can produce similar percentage seed set per umbel. However, similar percentage seed set did not result in similar percentage seedling emergence. Differences among years in reproductive output (total seed production) were due to differences in umbel production (reproductive effort) and proportion of umbels with seeds, and not seed set per umbel. Trachymene incisa is self-compatible and suffers weak to intermediate levels of inbreeding depression through early stages of the life cycle when seeds are self-pollinated and biparentally inbred. Floral phenology, in the form of synchronous protandry, plays an important role in avoiding self-pollination within umbels and reducing the chance of geitonogamous pollination between umbels on the same plant. Although pollinators can increase the rate of inbreeding in T. incisa by foraging on both male and female phase umbels on the same plant or closely related plants, most consecutive insect movements were between plants not located adjacent to each other. This indicates that inbreeding is mostly avoided and that T. incisa is a predominantly outcrossing species, although further genetic analyses are required to confirm this hypothesis. A new conceptual understanding has emerged from the key empirical results in the study of this model generalised pollination system. The large differences among populations and between years indicate that populations are not equally serviced by pollinators and are not equally generalist. Insect visitation rates varied significantly throughout the day, highlighting that sampling of pollinators at one time will result in an inaccurate estimate and usually underestimate the degree of generalisation. The visitor assemblage is not equivalent to the pollinator assemblage, although non-pollinating floral visitors are likely to influence the overall effectiveness of the pollinator assemblage. Given the high degree of variation in both the number of pollinator species and number of pollinator types, I have constructed a model which includes the degree of ecological and functional specialisation of a plant species on pollinators and the variation encountered across different levels of plant organisation. This model describes the ecological or current state of plant species and their pollinators, as well as presenting the patterns of generalisation across a range of populations, which is critical for understanding the evolution and maintenance of the system. In-depth examination of pollination systems is required in order to understand the range of strategies utilised by plants and their pollinators, and I advocate a complete floral visitor assemblage approach to future studies in pollination ecology. In particular, future studies should focus on the role of introduced pollinators in altering generalised plant-pollinator systems and the contribution of non-pollinating floral visitors to pollinator assemblage effectiveness. Comparative studies involving plants with highly conserved floral displays, such as those in the genus Trachymene and in the Apiaceae, will be useful for investigating the dynamics of generalised pollination systems across a range of widespread and restricted species.
APA, Harvard, Vancouver, ISO, and other styles
2

Davila, Yvonne Caroline. "Pollination ecology of Trachymene incisa (Apiaceae): Understanding generalised plant-pollinator systems." University of Sydney, 2006. http://hdl.handle.net/2123/1896.

Full text
Abstract:
Doctor of Philosophy (PhD)
A renewed focus on generalised pollinator systems has inspired a conceptual framework which highlights that spatial and temporal interactions among plants and their assemblage of pollinators can vary across the individual, population, regional and species levels. Pollination is clearly a dynamic interaction, varying in the number and interdependence of participants and the strength of the outcome of the interaction. Therefore, the role of variation in pollination is fundamental for understanding ecological dynamics of plant populations and is a major factor in the evolution and maintenance of generalised and specialised pollination systems. My study centred on these basic concepts by addressing the following questions: (1) How variable are pollinators in a generalised pollination system? To what degree do insect visitation rates and assemblage composition vary spatially among populations and temporally among flowering seasons? (2) How does variation in pollinators affect plant reproductive success? I chose to do this using a model system, Trachymene incisa subsp. incisa (Apiaceae), which is a widespread Australian herbaceous species with simple white flowers grouped into umbels that attract a high diversity of insect visitors. The Apiaceae are considered to be highly generalist in terms of pollination, due to their simple and uniform floral display and easily accessible floral rewards. Three populations of T. incisa located between 70 km and 210 km apart were studied over 2-3 years. The few studies investigating spatial and temporal variation simultaneously over geographic and yearly/seasonal scales indicate that there is a trend for more spatial than temporal variation in pollinators of generalist-pollinated plants. My study showed both spatial and temporal variation in assemblage composition among all populations and variation in insect visitation rates, in the form of a significant population by year interaction. However, removing ants from the analyses to restrict the assemblage to flying insects and the most likely pollinators, resulted in a significant difference in overall visitation rate between years but no difference in assemblage composition between the Myall Lakes and Tomago populations. These results indicate more temporal than spatial variation in the flying insect visitor assemblage of T. incisa. Foraging behaviour provides another source of variation in plant-pollinator interactions. Trachymene incisa exhibits umbels that function as either male or female at any one time and offer different floral rewards in each phase. For successful pollination, pollinators must visit both male and female umbels during a foraging trip. Insects showed both preferences and non-preferences for umbel phases in natural patches where the gender ratio was male biased. In contrast, insects showed no bias in visitation during a foraging trip or in time spent foraging on male and female umbels in experimental arrays where the gender ratio was equal. Pollinator assemblages consisting of a mixture of different pollinator types coupled with temporal variation in the assemblages of populations among years maintains generalisation at the population/local level. In addition, spatial variation in assemblages among populations maintains generalisation at the species level. Fire alters pollination in T. incisa by shifting the flowering season and reducing the abundance of flying insects. Therefore, fire plays an important role in maintaining spatial and temporal variation in this fire-prone system. Although insect pollinators are important in determining the mating opportunities of 90% of flowering plant species worldwide, few studies have looked at the effects of variation in pollinator assemblages on plant reproductive success and mating. In T. incisa, high insect visitation rates do not guarantee high plant reproductive success, indicating that the quality of visit is more important than the rate of visitation. This is shown by comparing the Agnes Banks and Myall Lakes populations in 2003: Agnes Banks received the highest visitation rate from an assemblage dominated by ants but produced the lowest reproductive output, and Myall Lakes received the lowest visitation rate by an assemblage dominated by a native bee and produced the highest seedling emergence. Interestingly, populations with different assemblage composition can produce similar percentage seed set per umbel. However, similar percentage seed set did not result in similar percentage seedling emergence. Differences among years in reproductive output (total seed production) were due to differences in umbel production (reproductive effort) and proportion of umbels with seeds, and not seed set per umbel. Trachymene incisa is self-compatible and suffers weak to intermediate levels of inbreeding depression through early stages of the life cycle when seeds are self-pollinated and biparentally inbred. Floral phenology, in the form of synchronous protandry, plays an important role in avoiding self-pollination within umbels and reducing the chance of geitonogamous pollination between umbels on the same plant. Although pollinators can increase the rate of inbreeding in T. incisa by foraging on both male and female phase umbels on the same plant or closely related plants, most consecutive insect movements were between plants not located adjacent to each other. This indicates that inbreeding is mostly avoided and that T. incisa is a predominantly outcrossing species, although further genetic analyses are required to confirm this hypothesis. A new conceptual understanding has emerged from the key empirical results in the study of this model generalised pollination system. The large differences among populations and between years indicate that populations are not equally serviced by pollinators and are not equally generalist. Insect visitation rates varied significantly throughout the day, highlighting that sampling of pollinators at one time will result in an inaccurate estimate and usually underestimate the degree of generalisation. The visitor assemblage is not equivalent to the pollinator assemblage, although non-pollinating floral visitors are likely to influence the overall effectiveness of the pollinator assemblage. Given the high degree of variation in both the number of pollinator species and number of pollinator types, I have constructed a model which includes the degree of ecological and functional specialisation of a plant species on pollinators and the variation encountered across different levels of plant organisation. This model describes the ecological or current state of plant species and their pollinators, as well as presenting the patterns of generalisation across a range of populations, which is critical for understanding the evolution and maintenance of the system. In-depth examination of pollination systems is required in order to understand the range of strategies utilised by plants and their pollinators, and I advocate a complete floral visitor assemblage approach to future studies in pollination ecology. In particular, future studies should focus on the role of introduced pollinators in altering generalised plant-pollinator systems and the contribution of non-pollinating floral visitors to pollinator assemblage effectiveness. Comparative studies involving plants with highly conserved floral displays, such as those in the genus Trachymene and in the Apiaceae, will be useful for investigating the dynamics of generalised pollination systems across a range of widespread and restricted species.
APA, Harvard, Vancouver, ISO, and other styles
3

Davila, Yvonne Caroline. "Pollination ecology of Trachymeme incisa (Apiaceae) understanding generalised plant-pollinator systems /." Connect to full text, 2006. http://hdl.handle.net/2123/1896.

Full text
Abstract:
Thesis (Ph. D.)--School of Biological Sciences, Faculty of Science, University of Sydney, 2006.
Title from title screen (viewed 15 January 2009). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Biological Sciences, Faculty of Science. Includes bibliographical references. Also available in print form.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography