Academic literature on the topic 'Tracers dispersion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tracers dispersion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tracers dispersion"
Istók, Balázs, and Gergely Kristóf. "Dispersion and Travel Time of Dissolved and Floating Tracers in Urban Sewers." Slovak Journal of Civil Engineering 22, no. 1 (March 1, 2014): 1–8. http://dx.doi.org/10.2478/sjce-2014-0001.
Full textAyuba, Ibrahim, Lateef T. Akanji, Jefferson L. Gomes, and Gabriel K. Falade. "Investigation of Drift Phenomena at the Pore Scale during Flow and Transport in Porous Media." Mathematics 9, no. 19 (October 7, 2021): 2509. http://dx.doi.org/10.3390/math9192509.
Full textDavis, P. M., T. C. Atkinson, and T. M. L. Wigley. "Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, U.K." Hydrology and Earth System Sciences 4, no. 3 (September 30, 2000): 355–71. http://dx.doi.org/10.5194/hess-4-355-2000.
Full textRichards, K. J., Y. Jia, and C. F. Rogers. "Dispersion of Tracers by Ocean Gyres." Journal of Physical Oceanography 25, no. 5 (May 1995): 873–87. http://dx.doi.org/10.1175/1520-0485(1995)025<0873:dotbog>2.0.co;2.
Full textLee, Mei-Man, A. J. George Nurser, Andrew C. Coward, and Beverly A. de Cuevas. "Effective Eddy Diffusivities Inferred from a Point Release Tracer in an Eddy-Resolving Ocean Model." Journal of Physical Oceanography 39, no. 4 (April 1, 2009): 894–914. http://dx.doi.org/10.1175/2008jpo3902.1.
Full textSmith, Ronald. "Effect of islands upon dispersion in rivers." Journal of Fluid Mechanics 292 (June 10, 1995): 249–70. http://dx.doi.org/10.1017/s0022112095001510.
Full textHASZPRA, TÍMEA, PÉTER KISS, TAMÁS TÉL, and IMRE M. JÁNOSI. "ADVECTION OF PASSIVE TRACERS IN THE ATMOSPHERE: BATCHELOR SCALING." International Journal of Bifurcation and Chaos 22, no. 10 (October 2012): 1250241. http://dx.doi.org/10.1142/s0218127412502410.
Full textYuan (原), Yuxuan (宇轩), Mark R. Krumholz, and Blakesley Burkhart. "Understanding biases in measurements of molecular cloud kinematics using line emission." Monthly Notices of the Royal Astronomical Society 498, no. 2 (August 18, 2020): 2440–55. http://dx.doi.org/10.1093/mnras/staa2432.
Full textGovender, Elaine, Athanasios Kotsiopoulos, and Sue T. L. Harrison. "A Study of Permeability and Diffusion at the Agglomerate-Scale in Heap (Bio)Leaching Systems." Advanced Materials Research 1130 (November 2015): 316–20. http://dx.doi.org/10.4028/www.scientific.net/amr.1130.316.
Full textFast, Jerome D., K. Jerry Allwine, Russell N. Dietz, Kirk L. Clawson, and Joel C. Torcolini. "Dispersion of Perfluorocarbon Tracers within the Salt Lake Valley during VTMX 2000." Journal of Applied Meteorology and Climatology 45, no. 6 (June 1, 2006): 793–812. http://dx.doi.org/10.1175/jam2371.1.
Full textDissertations / Theses on the topic "Tracers dispersion"
Fabbroni, Nicoletta <1979>. "Numerical simulations of passive tracers dispersion in the sea." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1733/1/Fabbroni_Nicoletta_Tesi.pdf.
Full textFabbroni, Nicoletta <1979>. "Numerical simulations of passive tracers dispersion in the sea." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1733/.
Full textFerrari, Raffaele. "Dispersion of passive and active tracers in the upper ocean /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p3035412.
Full textOms, Pierre-Emmanuel. "Transferts multi-échelles des apports continentaux dans le golfe de Gascogne." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0038/document.
Full textDuring chronic or accidental releases of tritium from nuclear facilities to seawater or through river discharges, the dispersion of radionuclides in the marine environment is subject to multiple dispersion processes. These processes depend on the area under consideration and forcings such as tide, wind, heat and freshwater flows.Predicting the dispersion of tritium in the Bay of Biscay requires taking into account all these processes and the various inputs: the North Atlantic surface waters, discharges from nuclear facilities, freshwater inputs and exchanges with the atmosphere. The main objective of this thesis is to improve the knowledge on the hydrodynamics of the Bay of Biscay by coupling in-situ measurements of a water masses tracer: the tritium, with a hydrodynamic dispersion model (MARS 3 D).To achieve this goal, samplings were carried out in the Bay of Biscay and the two main continental contributors of tritium: the Loire and Gironde rivers.The combined use of salinity and tritium as tracers of continental waters makes it possible to differentiate into an innovative way the inputs from these two rivers at the scale of the continental shelf. The measured and simulated stocks of tritium within the shelf provided a first estimate of the residence time of continental water in the Bay of Biscay
Charlaix, Elisabeth. "Dispersion en milieu poreux : mise en evidence de longueurs caracteristiques." Paris 6, 1987. http://www.theses.fr/1987PA066302.
Full textPelosi, Anna. "Numerical modeling of traces in gravel-bed rivers." Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1922.
Full textThe erosion, transport and deposition of pebbles in rivers have often been studied by considering the motion of tracer particles. There are reports of bedload tracing programs in field and laboratory since the late 1930s. The theoretical basis for the study of the dispersal of sediment tracer particles was delineated for the first time in 1950 by Einstein, who formulated the problem in terms of a standard 1D random walk in which each particle moves in a series of steps punctuated by waiting times. Subsequent to Einstein’s original work on tracers, the study of random walks has been extended to the case of continuous time random walks (CTRW). CTRW, accompanied by appropriate probability distribution functions (PDFs) for walker step length and waiting time, yields asymptotically the standard advectiondiffusion equation (ADE) for thin-tailed PDFs, and the fractional advection-diffusion equation (fADE) for heavy-tailed PDFs, the latter allowing the possibilities of subdiffusion or superdiffusion of particles, which is often referred as non-local behavior or anomalous diffusion. In latest years, considerable emphasis has been placed on non-locality associated with heavy-tailed PDFs for particle step length. This appears to be in part motivated by the desire to construct fractional advective-diffusive equations for pebble tracer dispersion corresponding to the now-classical fADE model. Regardless of the thin tail of the PDF, the degree of non-locality nevertheless increases with increasing mean step length. In the thesis, we firstly consider the general case of 1D morphodynamics of an erodible bed subject to bedload transport analysing the effects of non-locality mediated by both heavyand thin-tailed PDFs for particle step length on transient aggradational- degradational bed profiles. Then, we focus on tracers. (i) We show that the CTRW Master Equation is inappropriate for river pebbles moving as bed material load and (ii) by using the Parker-Paola-Leclair (PPL) framework for the Exner equation of sediment conservation, which captures the vertical structure of bed elevation variation as particles erode and deposit, we develop a new ME for tracer transport and dispersion for alluvial morphodynamics. The new ME is derived from the Exner equation of sediment continuity and it yields asymptotic forms for ADE and fADE that differ significantly from CTRW. It allows a) vertical dispersion, as well as streamwise advection-diffusion, and b) mean waiting time to vary in the vertical. We also show that vertical dispersion is nonlocal (subdiffuive), but cannot be expressed with fractional derivatives. Vertical dispersion is the likely reason for the slowdown of streamwise advection of tracer pebbles observed in the field, which is the key result of our modeling when co-evolution of vertical and streamwise dispersion are considered. [edited by author]
XII n.s.
WILSON, JR GERALDO. "Etude du transport et de la dispersion des sediments en tant que processus aleatoires." Paris 6, 1987. http://www.theses.fr/1987PA066670.
Full textLesouëf, Dorothée. "Étude numérique des circulations locales à la Réunion : application à la dispersion de polluants." Phd thesis, Université de la Réunion, 2010. http://tel.archives-ouvertes.fr/tel-00633096.
Full textMachado, da Silva Luis Carlos. "Transport d'un traceur passif dans l'atmosphère : expériences et simulations numériques (relief complexe : le site de Grenoble)." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10008.
Full textRoht, Yanina Lucrecia. "Transport et dispersion d’un traceur dans un écoulement de suspensions oscillant." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS065/document.
Full textWe study the transport and the hydrodynamical dispersion of a passive tracer and/or a suspension of non-Brownian particles in two model fractures with smooth walls or a random distribution of obstacles in the aperture. We use an oscillating flow of a Newtonian fluid in order to study the effects of the reversibility of the displacement on dispersion. We characterize quantitatively the effects of the characteristic parameters of the flow: period T and amplitude A of the oscillations, and characteristic time τ_m of molecular diffusion across the thickness of the cell.In the case of smooth walls, we show that the dispersion regimes are determined by the value of the ratio τ_m/T. For τ_m/T≤2, the Taylor dispersion mechanism is dominant and irreversible at the global scale. For τ_m/T≥20, one has a partly reversible regime in which mixing remains diffusive at the global scale but, locally, the distribution of the particles in the thickness of the cell follows the oscillations v_x (z,t) of the local velocity. In this case, there exists a purely convective and reversible dispersion component.In the case of a cell with rough walls, flow disorder due to the obstacles results in a geometrical dispersion component when τ_m/T≤0,6, for which the dispersivity normalized by the amplitude l_d/A does not depend on the period T. The Taylor dispersion regime is observed in a range 0,8≤τ_m/T≤1 depending on the amplitude of the oscillation. When τ_m/T≥20, one obtains the partly reversible dispersion regime already observed previously for the smooth cell. Comparing these results to those obtained by complementary techniques (echo and transmission) allows us to separate the irreversible component of dispersion from the reversible one associated to macroscopic preferential flow channels due to the fracture geometry.The influence on dispersion of a suspension of 40 µm diameter non Brownian particles in the oscillating flow has then be studied in the cell with smooth walls. The global tracer dispersion measurements have shown the same dispersion regimes than without particles with domains of existence determined, like in this latter case, by the value of the ratio τ_m/T.In order to understand better the origin of these results at the microscopic scale, we tracked the individual trajectories of the particles in an oscillating flow. Their motion and the distribution of their velocities have been measured in several layers at different distances from the walls in the cell thickness. The particles are observed to follow the flow liens; the profile of their velocities in the thickness displays the parabolic shape of a Posieuille profile. Moreover, we compared the distribution of the particles after a certain number of oscillations to those at the initial time and observed, for long periods T, a migration of the particles towards the vicinity of the cell walls. Moreover, the motion of some particles display a kinematic reversibility and follow the same trajectory for both directions of the flow, even when there are interactions with the others.Finally, when the concentration of the particles is increased, one observes a structuration of the suspension into bands perpendicular to the flow. The wavelength λ of this instability has been studied as a function of geometrical (thickness H and width of the cell, particle diameter) and physical parameters (viscosity and density of the fluid, particle density) and of the characteristics of the flow (sine or square wave variation of the flow, amplitude A et period T). The normalized wavelength λ/H increases linearly with the normalized amplitude A/H but is constant with T and H and with the particle diameter. At the local level, the instability corresponds to periodic variations of the particle concentration along the length of the cell which extend across its whole thickness H
Se estudió el transporte y dispersión hidrodinámica de un trazador pasivo y/o de una suspensión de partículas en una fractura de paredes lisas y en otra, con una distribución aleatoria de obstáculos en su espesor. Se utiliza un flujo oscilante de un fluido newtoniano, permitiéndonos observar los efectos de la reversibilidad del desplazamiento sobre el fenómeno. En todos los casos se buscó cuantificar la influencia de los parámetros característicos del flujo: el período T y la amplitud A de las oscilaciones, el tiempo característico de difusión molecular sobre el espesor τ_m, la concentración y el tamaño de las partículas. En el caso de paredes lisas, se puso en evidencia que los regímenes de dispersión están gobernados por la relación τ_m /T. Se encontró que, a bajos τ_m /T ≤ 2, el régimen de dispersión de Taylor es dominante y, a escala global, es irreversible. Para τ_m /T ≥ 20 encontramos un régimen parcialmente reversible donde la mezcla continúa siendo difusiva a escala global; sin embargo, localmente, las simulaciones numéricas de tipo Monte Carlo mostraron que la distribución de partículas de trazador en el espesor sigue las oscilaciones de la velocidad local v_x (z, t). En este caso, el coeficiente de dispersión tiene una componente puramente convectiva, que es reversible. En el caso de una celda rugosa, el desorden introducido por los obstáculos hizo aparecer la dispersión geométrica a τ_m /T ≤ 0,6, donde la dispersividad ldg varía con la amplitud y no depende del período de la oscilación del flujo. El régimen de dispersión de Taylor se detectó en un intervalo de la relación entre los tiempos característicos más estrecho que en el caso de celda lisa, 〖0,8≤τ〗_m/T≤1, este rango depende de la amplitud de la oscilación. También se encontró el régimen de dispersión parcialmente reversible, para τ_m /T ≥ 20, correspondiendo con lo visto previamente en la celda de paredes lisas. Con técnicas complementarias (eco y transmisión), se aisló la componente de la dispersión irreversible de la reversible indicando la existencia de canales de flujo macroscópicos generados por la geometría de la fractura. Luego, se estudió el efecto sobre la dispersión por la presencia de una suspensión de partículas de poliestireno de 40 μm de diámetro, en la celda de Hele-Shaw lisa, con un flujo oscilante. En la medida global de la dispersión, se encontraron básicamente los mismos regímenes que en la celda lisa. Luego, en una escala microscópica, para terminar de comprender lo que sucede en el fenómeno de dispersión, se realizó el seguimiento de las trayectorias individuales de las partículas dentro de la celda sometidas a un flujo oscilante. Se analizó el movimiento en diferentes capas del espesor y se obtuvieron las distribuciones de velocidades. Se pudo observar que, las partículas se mueven siguiendo las diferentes líneas de corriente y su perfil de velocidades mantiene la forma parabólica característica de Poiseuille. Por otro lado, se aislaron las trayectorias que presentan reversibilidad cinemática, comprobando que hay partículas que van y vienen por el mismo camino, aún en presencia de interacciones débiles entre ellas. Por último, se aumentó la concentración de partículas presentes en la suspensión y se observó que, con un flujo oscilante, la suspensión dentro de la celda se estructura formando bandas periódicas transversales al flujo. Se caracterizó la dependencia de la longitud de onda λ de esta inestabilidad en función de parámetros geométricos (apertura y ancho de la celda, diámetro de partículas); físicos (viscosidad del fluido, densidad de las partículas) y geometría de flujo (sinusoidal, onda cuadrada, T y A). Se encontró que: para cada espesor de la celda, diferente diámetro y densidad de las partículas, viscosidades del fluido, λ resulta constante con T y aumenta linealmente con A. Localmente, se observó que la inestabilidad corresponde a variaciones de la concentración de las partículas en el espesor de la celda
Books on the topic "Tracers dispersion"
Iller, Edward. Dyspersyjny model transportu mediów w radioznacznikowych badaniach pracy wybranych instalacji przemysłowych. Warszawa: Instytut Chemii i Techniki Ja̜drowej, 1999.
Find full textSundermeyer, Miles Aaron. Studies of lateral dispersion in the ocean. Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1998.
Find full textDraxler, Roland R. Metropolitan Tracer Experiment (METREX). Silver Spring, Md: National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1985.
Find full textCowperthwaite, N. A. Scale model wind tunnel measurements on the Leyland T45 and DAF 3300 vehicles used for the T.R.R.L. spray dispersion programme. Cranfield, U.K: College of Aeronautics, Cranfield Institute of Technology, 1986.
Find full textCowperthwaite, N. A. Full scale and wind tunnel surface pressure measurements on the T.R.R.L. spray dispersion programme vehicles. Cranfield, U.K: College of Aeronautics, Cranfield Institute of Technology, 1987.
Find full textAlberta. Energy Resources Conservation Board. and Concord Environmental Corporation, eds. Field measurement program: Atmospheric dispersion tracer study under stable conditions and meteorological study. Calgary, Alta: Energy Resources Conservation Board, 1990.
Find full textNATO, Advanced Research Workshop on Chaotic Advection Tracer Dynamics and Turbulent Dispersion (1993 Sereno di Gavi Italy). Chaoticadvection, tracer dynamics and turbulent dispersion: Proceedings of the NATO Advanced Research Workshop and EGS Topical Workshop on Chaotic Advection, Tracer Dynamics and Turbulent Dispersion, conference centre Sereno di Gavi, Italy, 24-29May 1993. Amsterdam: North-Holland, 1994.
Find full textLee, Karl K. Stream velocity and dispersion characteristics determined by dye-tracer studies on selected stream reaches in the Willamette River Basin, Oregon. Portland, Ore: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textLee, Karl K. Stream velocity and dispersion characteristics determined by dye-tracer studies on selected stream reaches in the Willamette River Basin, Oregon. Portland, Ore: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textLee, Karl K. Stream velocity and dispersion characteristics determined by dye-tracer studies on selected stream reaches in the Willamette River Basin, Oregon. Portland, Ore: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textBook chapters on the topic "Tracers dispersion"
Bedmar, A. Plata. "Use of Artificial Tracers for Pollution Dispersion Studies in Surface Water." In Water Pollution: Modelling, Measuring and Prediction, 329–51. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3694-5_24.
Full textMoroni, Monica, and John H. Cushman. "Anomalous Dispersion of Conservative Tracers: Theory and Three-Dimensional Particle Tracking Velocimetry Experiments." In Stochastic Methods in Subsurface Contaminant Hydrology, 365–93. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/9780784405321.ch10.
Full textKoplik, Joel. "The Tracer Transit-Time Tail in Multipole Reservoir Flows." In Dispersion in Heterogeneous Geological Formations, 199–209. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1278-1_10.
Full textBenson, David A., Rina Schumer, Mark M. Meerschaert, and Stephen W. Wheatcraft. "Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests." In Dispersion in Heterogeneous Geological Formations, 211–40. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1278-1_11.
Full textBuhmann, Stefan Yoshi. "Introduction: Dispersion Forces." In Springer Tracts in Modern Physics, 1–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32484-0_1.
Full textBuhmann, Stefan Yoshi. "Common Properties of Dispersion Forces." In Springer Tracts in Modern Physics, 75–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32466-6_3.
Full textSilliman, S. E., and L. Zheng. "Comparison of Observations from a Laboratory Model with Stochastic Theory: Initial Analysis of Hydraulic and Tracer Experiments." In Dispersion in Heterogeneous Geological Formations, 85–107. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1278-1_5.
Full textPannone, Marilena, and Peter K. Kitanidis. "Large-Time Spatial Covariance of Concentration of Conservative Solute and Application to the Cape Cod Tracer Test." In Dispersion in Heterogeneous Geological Formations, 109–32. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1278-1_6.
Full textKuznetsov, Alexander, and Nickolay Mikheev. "Particle Dispersion in External Active Media." In Springer Tracts in Modern Physics, 45–126. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36226-2_4.
Full textGraziani, Giovanni, Franco Girardi, Gianni Grippa, and Christine Vernetti. "Simulation of Transport and Dispersion of Tracer Releases." In Air Pollution Modeling and Its Application IX, 285–93. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3052-7_28.
Full textConference papers on the topic "Tracers dispersion"
Assemat, P., A. Bergeon, and F. Plouraboue´. "Inertia Driven Dispersion Between Patterned Surfaces." In ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75243.
Full textEckstein, Eugene C., Vinay Bhal, JoDe M. Lavine, Baoshun Ma, Mark Leggas, and Jerome A. Goldstein. "Nested First-Passages of Tracer Particles in Flows of Blood and Control Suspensions: Symmetry and Lorentzian Transformations." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69549.
Full textVelasco-Lozano, Moises, and Matthew Thomas Balhoff. "Modeling of Chemical Tracers to Estimate Oil Volume Contacted and Sweep Efficiency in Porous Media Under Countercurrent Spontaneous Imbibition." In SPE Improved Oil Recovery Conference. SPE, 2022. http://dx.doi.org/10.2118/209382-ms.
Full textUthe, Edward E., William Viezee, and Jason K. S. Ching. "Airborne Lidar Tracking of Fluorescent Tracers for Atmospheric Transport and Diffusion Studies." In Optical Remote Sensing. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/ors.1985.wc26.
Full textNiu, Haibo, and Shihan Li. "Modeling the dispersion of tracers in the marine environment: A model sensitivity study." In OCEANS 2016 - Shanghai. IEEE, 2016. http://dx.doi.org/10.1109/oceansap.2016.7485528.
Full textCevheri, Necmettin, and Minami Yoda. "Evanescent-Wave Particle Velocimetry Studies of Electrokinetically Driven Flows: Divalent Counterion Effects." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75274.
Full textPirrone, Marco, Satria Andrianata, Sara Moriggi, Giuseppe Galli, and Simone Riva. "Full Analytical Modeling Of Intrawell Chemical Tracer Concentration For Robust Production Allocation In Challenging Environments." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206245-ms.
Full textKabelka, V., A. V. Masalov, S. Nikitin, and H. Milchberg. "Tracing the phase distortion of a single femtosecond light pulse." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cma6.
Full textYaralidarani, Muhammad, Shokoufeh Aghabozorgi, Seyed Amir Farzaneh, and Mehran Sohrabi. "Evaluation of Different Numerical Techniques for Accurate Modelling of Tracer Flow in Porous Media." In SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212598-ms.
Full textGalani, A. N., M. E. Kainourgiakis, E. S. Kikkinides, A. K. Stubos, C. Chatzichristos, J. Muller, and A. Papaioannou. "Tracer Dispersion in Stochastically Reconstructed Porous Media." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24156.
Full textReports on the topic "Tracers dispersion"
Feddersen, Falk. Dispersion in the Surfzone: Tracer Dispersion Studies. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557187.
Full textAbernathy, R. N., I. A. Min, B. L. Lundblad, and W. S. Kempf. Tracer Puff Dispersion at Launch Sites. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada368855.
Full textJunker, D. Tracer studies for determining dispersion coefficients in isotope exchange columns. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/7070309.
Full textGuza, R. T., and Falk Feddersen. Lagrangian Tracer Transport and Dispersion in Tidal Inlets and River Mouths. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada580343.
Full textAllwine, K. Jerry, and Julia E. Flaherty. Urban Dispersion Program MSG05 Field Study: Summary of Tracer and Meteorological Measurements. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/890733.
Full textGuza, R. T., and Falk Feddersen. Transport and Dispersion of Dye-tracer and Drifters at a Tidal Inlet. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada614273.
Full textGuza, R. T., and Falk Feddersen. Lagrangian Tracer Transport and Dispersion in Shallow Tidal Inlets & River Mouths. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada540572.
Full textGuza, R. T., and Falk Feddersen. Lagrangian Tracer Transport and Dispersion in Shallow Tidal Inlets & River Mouths. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598302.
Full textGuza, R. T., and Falk Feddersen. Lagrangian Tracer Transport and Dispersion in Shallow Tidal Inlets & River Mouths. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557205.
Full textSenum, G., R. Dietz, T. D'Ottavio, R. Goodrich, E. Cote, and D. Spandau. A perfluorocarbon tracer transport and dispersion experiment in the North Sea Ekofisk oil field. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/7270738.
Full text