Academic literature on the topic 'Toxoid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Toxoid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Toxoid"
Ruan, Xiaosai, Donald C. Robertson, James P. Nataro, John D. Clements, and Weiping Zhang. "Characterization of Heat-Stable (STa) Toxoids of Enterotoxigenic Escherichia coli Fused to Double Mutant Heat-Labile Toxin Peptide in Inducing Neutralizing Anti-STa Antibodies." Infection and Immunity 82, no. 5 (February 18, 2014): 1823–32. http://dx.doi.org/10.1128/iai.01394-13.
Full textZhang, Weiping, Chengxian Zhang, David H. Francis, Ying Fang, David Knudsen, James P. Nataro, and Donald C. Robertson. "Genetic Fusions of Heat-Labile (LT) and Heat-Stable (ST) Toxoids of Porcine Enterotoxigenic Escherichia coli Elicit Neutralizing Anti-LT and Anti-STa antibodies." Infection and Immunity 78, no. 1 (October 26, 2009): 316–25. http://dx.doi.org/10.1128/iai.00497-09.
Full textRahman M, S., K. Baek B, T. Hong S, and H. Lee J. "Antibody responses in buffalos immunized with Clostridium perfringens beta and epsilon toxoids." Veterinární Medicína 46, No. 9–10 (January 1, 2001): 241–43. http://dx.doi.org/10.17221/7886-vetmed.
Full textKeller, James E. "Characterization of New Formalin-Detoxified Botulinum Neurotoxin Toxoids." Clinical and Vaccine Immunology 15, no. 9 (July 30, 2008): 1374–79. http://dx.doi.org/10.1128/cvi.00117-08.
Full textHeld, Daniel M., Amy C. Shurtleff, Scott Fields, Christopher Green, Julie Fong, Russell G. A. Jones, Dorothea Sesardic, Roland Buelow, and Rae Lyn Burke. "Vaccination of Rabbits with an Alkylated Toxoid Rapidly Elicits Potent Neutralizing Antibodies against Botulinum Neurotoxin Serotype B." Clinical and Vaccine Immunology 17, no. 6 (April 21, 2010): 930–36. http://dx.doi.org/10.1128/cvi.00493-09.
Full textGriffiths, G. D., C. D. Lindsay, A. C. Allenby, S. C. Bailey, J. W. Scawin, P. Rice, and D. G. Upshall. "Protection against inhalation toxicity of ricin and abrin by immunisation." Human & Experimental Toxicology 14, no. 2 (February 1995): 155–64. http://dx.doi.org/10.1177/096032719501400201.
Full text&NA;. "Tetanus toxoid." Reactions Weekly &NA;, no. 1216 (August 2008): 32–33. http://dx.doi.org/10.2165/00128415-200812160-00087.
Full text&NA;. "Tetanus toxoid." Reactions Weekly &NA;, no. 460 (July 1993): 10. http://dx.doi.org/10.2165/00128415-199304600-00049.
Full text&NA;. "Tetanus toxoid." Reactions Weekly &NA;, no. 364 (August 1991): 12. http://dx.doi.org/10.2165/00128415-199103640-00057.
Full text&NA;. "Tetanus toxoid." Reactions Weekly &NA;, no. 518 (September 1994): 11. http://dx.doi.org/10.2165/00128415-199405180-00046.
Full textDissertations / Theses on the topic "Toxoid"
Michaelides, Alecos. "Chemical and enzymatic fragmentation of tetanus toxin and immunological studies on anti-tetanus toxin and toxoid sera." Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/9661.
Full textSheppard, A. J. "Studies on production and characterisation of monoclonal antibodies to tetanus toxin, and their use for developing immunopurified tetanus toxoid and toxin." Thesis, Open University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235280.
Full textNijland, Reindert. "Heterologous expression and secretion of Clostridium perfringens [beta]-toxoid by Bacillus subtilis." [S.l. : Groningen : s.n. ; University Library Groningen] [Host], 2007. http://irs.ub.rug.nl/ppn/301153868.
Full textHarrington, Noel P. "Suppression of murine splenic mononuclear cell response to mitogen by irradiation and tetanus toxoid: A study of possible mechanisms." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6528.
Full textStefanovic, Helen. "Suppression of human peripheral blood mononuclear cell response to mitogen by tetanus toxoid. A study of the possible mechanisms." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7603.
Full textBartels, Britta Marlen [Verfasser], and Carsten [Akademischer Betreuer] Bokemeyer. "Erfassung von Tetanus-Toxoid- und Influenza-Nukleoprotein-spezifischen Antikörpern bei Patienten mit multiplem Myelom / Britta Marlen Bartels. Betreuer: Carsten Bokemeyer." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2012. http://d-nb.info/1021499935/34.
Full textGatsos, Xenia, and xgatsos@optusnet com au. "The development of live vectored vaccines targeting the alpha-toxin of Clostridium perfringens for the prevention of necrotic enteritis in poultry." RMIT University. Applied Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080212.142403.
Full textRescia, Vanessa Cristina [UNIFESP]. "REVs-Chi: um novo sistema particulado para encapsulação de macromoléculas terapêuticas." Universidade Federal de São Paulo (UNIFESP), 2009. http://repositorio.unifesp.br/handle/11600/10065.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A quitosana (Chi), a (1-4)-amino-2-desoxi-ƒÒ-glicana, e a forma desacetilada da quitina, um polissacarideo das conchas de crustaceos. As suas caracteristicas unicas como a carga positiva, biodegradabilidade, biocompatibilidade, atoxicidade e estrutura rigida fazem com que esta macromolecula seja ideal para uso como sistema oral de entrega de vacinas. Foram preparadas vesiculas unilamelares grandes (REVs) envoltas por dentro e por fora (como um sanduiche) com quitosana (Chi) e poli-vinil alcool (PVA). Entretanto, existem alguns problemas as serem superados com relacao a estabilizacao da proteina durante este processo. Durante a fase de formacao de micelas reversas, no processo de nanoencapsulacao da proteina, expandem-se as interfaces hidrofobicas que entao levam as adsorcoes interfaciais seguidas por desenovelamento e agregacao das proteinas. Aqui, observaram-se atraves de tecnicas espectroscopicas e imunologicas, o uso dos sais da serie de Hoffmeister durante a fase de formacao de micela reversa para estudar a conformacao estavel do toxoide difterico (Dtxd). Foi estabelecida uma correlacao entre os sais usados na fase aquosa e as variacoes na solubilidade e conformacao de Dtxd. Como o conteudo em helice-ƒÑ foi praticamente estavel concluiu-se que a encapsulacao de Dtxd ocorreu sem agregacao ou sem exposicao de residuo hidrofobico na proteina. A agregacao de Dtxd foi evitada em 98 % quando se usou o cosmotropico PO2-4. Este ion foi usado para se preparar uma formulacao de Dtxd em REVs-Chi-PVA estavel e com identidade imunologica reconhecida na presenca de PO2-4. Entao, obteve-se uma solubilidade e estabilidade maxima de Dtxd depois de seu contacto com CH3CO2C2H5 para comecar a sua nanoencapsulacao em condicoes ideais. Este foi um avanco tecnologico importante porque uma solucao simples, como e a adicao de sais, evitou o uso de proteinas heterologas (Rescia et alii, 2009a). A proteina estabilizada foi entao encapsulada dentro de REVs como o descrito. Os lipossomas tem sido descritos como adjuvantes desde 1974 (Allison e Gregoriadis, 1974). A maior limitacao de seu uso em vacinas orais e a sua instabilidade estrutural causada pelas atividades enzimaticas do meio. O objetivo aqui foi combinar lipossomas, que podem encapsular antigenos (Dtxd, Diphtheria toxoid) com quitosana que protege estas particulas e promove a mucoadesibilidade. Empregaram-se tecnicas fisicas para se entender o processo pelo qual lipossomas (SPC: Cho, 3: 1) podem ser recobertos (interna e externamente) com quitosana (Chi) e PVA (poly-vinilic-alcohol) que sao polimeros biodegradaveis e biocompativeis. Obtiveram-se particulas de REVs-Chi (vesiculas preparadas por evaporacao de fase reversa recobertas interna e externamente com Chi) redondas e com as superficies rugosas e estabilizadas ou nao com PVA. As eficiencias de encapsulacao (Dtxd foi usada como antigeno) foram diretamente dependentes da presenca de Chi e PVA na formulacao. A adsorcao de Chi a superficie de REVs foi acompanhada por um aumento no potencial ƒê. Em contraste, a adsorcao de PVA a surperficie de REVs-Chi foi acompanhada por uma diminuicao do potencial . A presenca de Dtxd aumentou a eficiencia de adsorcao de Chi as superficies. A afinidade de PVA pela mucina foi 2000 vezes maior do que a observada somente com Chi e nao depende se a molecula esta em solucao ou se esta adsorvida a superficie lipossomal. A liberação do Dtxd foi retardada por sua encapsulação dentro de REVs-Chi-PVA. Concluiu-se que estas novas vesículas estabilizadas foram hábeis em se adsorverem às superfícies intestinais, resistiram às degradações e controlaram a liberação do antígeno. Assim, as partículas de REVs-Chi-PVA podem ser usadas como um veículo oral com capacidade adjuvante (Rescia et alii, 2009b). Os lipossomas revstidos por quitosana (REVs-Chi) como veículos orais para transporte de vacinas foram bem caraterizados neste laboratório. Estas partículas foram desenhadas para serem capturadas pelo muco, para interagirem com surperfícies orais e para resistirem às enzimas do trânsito gástrico. Foram usadas três formulações diferentes contendo o Dtxd (toxoide diftérico) para imunizar camundongos: REVs [Vesículas unilamelares obtidas por evaporação de fase reversa produzidas com SPC: Cho (3:1)]; REVs-Chi (REVs recobertas por Chi) e REVs-Chi-PVA (REVs recobertas por Chi e estabilizadas por PVA). Através do teste de adesibilidade e dos experimentos com anti-toxoide diftérico observou-se que houve uma correlação direta entre a complexidade da partícula (antígeno livre < REVs < REVs-Chi < REVs-Chi-PVA) e a produção de anticorpos (IgA, IgG1 and IgG2a) em todos os ensaios (R= 0,91766- 0,99718). O resultado mais interessante foi a total ausência da produção de IgA nos camundongos imunizados com o antígeno livre, provando então a excelência das partículas engenheiradas. Além do aumento da produção dos anticorpos de mucosa, ambas formulações com Chi ou com Chi-PVA estimularam tanto a produção de anticorpos humorais quanto a seletividade. Demonstrou-se que é possível de se estabelecer uma correlação entre REVs-Chi/Dtxd and REVs-Chi-PVA/Dtxd e o aumento da imunidade de mucosa. Estas partículas podem ser usadas como veículo geral tanto para transporte de drogas quanto de vacinas (Rescia et alli, 2009c).
Chitosan, - (1-4)-amino-2-deoxy-D-glucan) is a deacetylated form of chitin, a polysaccharide from crustacean shells. Its unique characteristics such as positive charge, biodegradability, biocompatibility, non-toxicity, and rigid structure make this macromolecule ideal for oral vaccine delivery system. We prepared reverse phase evaporation vesicles (REVs) sandwiched by chitosan (Chi) and polyvinylic alcohol (PVA). However, in this method there are still some problems to be circumvented related to protein stabilization. During the inverted micelle phase of protein nanoencapsulation, hydrophobic interfaces are expanded leading to interfacial adsorption followed by protein unfolding and aggregation. Here, spectroscopic and immunological techniques were used to ascertain the effects of the Hoffmeister series ions on Diphtheria toxoid (Dtxd) stability during the inverted micelle phase. A correlation was established between the salts used in aqueous solutions and the changes in Dtxd solubility and conformation. Dtxd α-helical content was quite stable what led us to conclude that encapsulation occurred without protein aggregation or without exposition of hydrophobic residues. Dtxd aggregation was 98 % avoided by the kosmotropic PO2-4. This ion was used to prepare a stable Dtxd and immunologically recognized REVs-Chi-PVA formulation in the presence of 50 mM PO42-. Under these conditions the Dtxd retained its immunological identity. Therefore, we could obtain the maximum Dtxd solubility and stability after contact with CH3CO2C2H5 to begin its nanoencapsulation within ideal conditions. This was a technological breakthrough because a simple solution like salt addition avoided heterologous proteins usage (Rescia et al., 2009a). The stabilized protein was as encapsulated within REVs as described. Liposomes have been used as adjuvants since 1974 (Allison and Gregoriadis, 1974). One major limitation for the use of liposomes in oral vaccines is the lipid structure instability caused by enzyme activities. Our goal was to combine liposomes which can encapsulate antigens (Dtxd, diphtheria toxoid) with chitosan which protects the particles and promotes mucoadhesibility. We employed physical techniques to understand the process by which liposomes (SPC: Cho, 3:1) can be sandwiched with chitosan (Chi) and stabilized by PVA (Poly-vinylic alcohol) which are biodegradable and biocompatible polymers. Round and smooth surfaced particles of REVs-Chi (Reversed phase vesicles sandwiched by Chi) stabilized by PVA were obtained. The REVs encapsulation efficiencies (Dtxd was used as the antigen) were directly dependent on the Chi and PVA present in the formulation. Chi adsorption on REVs surface was accompanied by an increase of otential. In contrast, PVA adsorption on REVs-Chi surface was accompanied by a decrease of potential. The presence of Dtxd increased the Chi surface adsorption efficiency. The PVA affinity by mucine was 2000 higher than that observed with Chi alone and did not depend on the molecule being in solution or adsorbed on the liposomal surface. The liberation of encapsulated Dtxd was retarded by encapsulation within REVs-Chi-PVA. These results lead us to conclude that these new and stabilized particles were to able to adsorb to intestinal surfaces, resisted degradation and controlled the antigen release. Therefore, REVs-Chi-PVA particles can be used as an oral delivery adjuvant (Rescia et al., 2009b). Liposomes sandwiched by chitosan (REVs-Chi) as vehicles for oral vaccines have been well characterized in our laboratory. These particles were designed to be captured by mucus, to interact with oral surfaces and to withstand the enzymes of the gastric transit. Three different formulations containing Dtxd (diphtheria toxoid): REVs [reverse phase evaporation vesicles of SPC: Cho (3: 1)]; REVs-Chi (REVs sandwiched by chitosan) and REVs-Chi-PVA were used to immunize mice. Through adhesibility assays and antibody anti-diphtheria experiments we observed a direct correlation between particle complexity (free antigen < REVs < REVs-Chi < REVs-Chi-PVA) and antibody production (IgA, IgG1 and IgG2a) in all the assays (R= 0,91766- 0,99718). The most striking result was the absence of IgA production in those mice immunized with the free antigen, proving the excellence of the engineered particles. In addition to enhancement of mucosal antibodies production, the formulations with Chi and PVA stimulated both, humoral antibody production and selectivity. We have shown that it was possible to establish a correlation between REVs-Chi/Dtxd and REVs-Chi-PVA/Dtxd and the enhancement of mucosal immunity. These particles can be used as a general vehicle for oral drug or vaccine delivery systems (Rescia et al., 2009c).
TEDE
BV UNIFESP: Teses e dissertações
Nass, Shafique Sani. "Evaluation of Active and Passive Neonatal Tetanus Surveillance Systems in Katsina State, Nigeria." ScholarWorks, 2016. https://scholarworks.waldenu.edu/dissertations/2095.
Full textCunha, Tulio Nakazato da. "Estudo da imunogenicidade de antígenos de Neisseria meningitidis: utilização de toxóide como adjuvante, vetorizado em lipossomas, no modelo camundongo." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/87/87131/tde-17042009-180710/.
Full textN.meningitidis is diplococcus gram-negative strict human patogen that similarly to other bacteria are surrounded by external membrane with lipids, proteins (OMP) and LPS. It has been one of the main causes of the meningitidis and other invading infections in the world. This work searched to use STX2 toxoid of E.coli as adjuvant for a possible and future vaccine model and as antigenic stimulant proteins of the external membrane of meningococci (OMP) carried in liposomes. Differences in the production of IgG antibodies gotten between the mice each one of the 3 bleedings had been observed after but not how much to the avidity index. The new antigenic preparation unchained one high heading exactly after one year of 1st immunization stimulated the production of antibodies for other sites of linking and served as protection to the residual LPS of the processes with deoxicolate of the OMP diminishing toxicity of IM preparation reducing the aged risks for and very small children e also, in immunizations of long term with great advantage to the traditional systems.
Books on the topic "Toxoid"
Unbekannte Klägerfälle im amerikanischen Umwelthaftungsrecht: Das anonyme Opfer : Aufgabe und Chance für ein neues Haftungsmodell. Frankfurt am Main: P. Lang, 1993.
Find full textBergdoll, Merlin S. Toxic shock syndrome. Boca Raton: CRC Press, 1991.
Find full textToxic. London: Constable, 2015.
Find full textToxin. London: Collins Crime, 1995.
Find full textToxic. Fort Collins, CO: Entangled Teen, 2012.
Find full textLynch, Maryanne. Toxic. Brisbane: Playlab Press, 2001.
Find full textRobin, Cook. Toxin. London: BCA, 1998.
Find full textMaggi, Marcos. Toxon. Buenos Aires: Botella al Mar, 2001.
Find full textRobin, Cook. Toxin. New York: Berkley Books, 1999.
Find full textRobin, Cook. Toxin. New York: Putnam, 1998.
Find full textBook chapters on the topic "Toxoid"
Gooch, Jan W. "Toxoid." In Encyclopedic Dictionary of Polymers, 928. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14985.
Full textGrabenstein, John D. "Toxoid Vaccines." In Vaccines: A Biography, 105–24. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1108-7_7.
Full textRenz, H., and B. Gierten. "Impfantikörper gegen Tetanus-Toxoid." In Springer Reference Medizin, 1237–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_1560.
Full textRenz, H., and B. Gierten. "Impfantikörper gegen Tetanus-Toxoid." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_1560-1.
Full textCorradin, G., and C. Watts. "Cellular Immunology of Tetanus Toxoid." In Current Topics in Microbiology and Immunology, 77–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-85173-5_4.
Full textBurnette, W. Neal. "Parameters for the Rational Design of Genetic Toxoid Vaccines." In Advances in Experimental Medicine and Biology, 61–67. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1382-1_9.
Full textGürser, Mayda, and Gregory Gregoriadis. "Interleukin-2 as a Co-Adjuvant for Liposomal Tetanus Toxoid." In Vaccines, 45–50. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4613-0357-2_5.
Full textCutiño-Avila, B., E. Cunill-Semanat, D. F. Gil, M. A. Chávez, J. Díaz, and A. del Monte-Martínez. "Synthesis of Tetanus Toxoid-Sepharose CL 4B derivatives by Rational Design." In V Latin American Congress on Biomedical Engineering CLAIB 2011 May 16-21, 2011, Habana, Cuba, 160–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-21198-0_41.
Full textPonsuksili, S., E. Murani, and K. Wimmers. "Porcine Genome-wide Gene Expression in Response to Tetanus Toxoid Vaccine." In Animal Genomics for Animal Health, 185–95. Basel: KARGER, 2008. http://dx.doi.org/10.1159/000317159.
Full textSpranz, E., B. Siegemund, J. Frevert, and H. E. Knoell. "Study on the Penetration of Tetanus Toxoid Through the Nasal Mucosa." In Archives of Toxicology, 276–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-74936-0_59.
Full textConference papers on the topic "Toxoid"
Ferreira, Camila G., Ta^nia M. Avalloni, Yoko Oshima-Franco, Sara de J. Oliveira, José M. de Oliveira, José C. Cogo, and Vito R. Vanin. "Irradiation of the Crude Venom of Bothrops jararacussu to Obtain Toxoid." In XXXIII BRAZILIAN WORKSHOP ON NUCLEAR PHYSICS. AIP, 2011. http://dx.doi.org/10.1063/1.3608972.
Full textYumafita, Tiara, Setyo Sri Rahardjo, and Rita Benya Adriani. "Path Analysis on Factors Associated with Tetanus Toxoid Immunization Utilization among Pregnant Women." In The 5th International Conference on Public Health 2019. Masters Program in Public Health, Universitas Sebelas Maret, 2019. http://dx.doi.org/10.26911/theicph.2019.03.17.
Full textCorrêa, Izabella, Rayane Marques, Renata Bastos, Patrícia Jurgilas, and Hilton Nascimento. "Molecular characterization of tetanus toxoid used in conjugate vaccines produced by Bio-Manguinhos - FIOCRUZ." In VI Seminário Anual Científico e Tecnológico. Instituto de Tecnologia em Imunobiológicos, 2018. http://dx.doi.org/10.35259/isi.sact.2018_26969.
Full textCorrêa, Marilza, Hilton Nascimento, Patrícia Jurgilas, Renata Bastos, José Silva Junior, Maria Leal, Ellen Jessouroun, and Ivna Silveira. "LC-MS/MS as a tool for analysis of underivatized glutamic and aspartic amino acids residues from tetanus toxoid." In III Seminário Anual Científico e Tecnológico de Bio-Manguinhos. Instituto de Tecnologia em Imunobiológicos, 2015. http://dx.doi.org/10.35259/isi.sact.2015_28601.
Full textBansal, Vivek, Manu Dalela, Manoj Kumar, H. G. Brahmne, and Harpal Singh. "Evaluation of effectiveness of polymeric nanoparticles based vaccine delivery system over varying time intervals using tetanus toxoid as model antigen." In 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609259.
Full textFletcher, E., W. van Maren, R. Cordfunke, J. Dinkelaar, R. Castelli, Jdc Codee, G. van der Marel, et al. "Abstract PR01: T cell responses to peptide-epitopes of choice can be boosted by immune complexes of circulating anti-tetanus toxoid antibodies." In Abstracts: Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 25-28, 2016; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6066.imm2016-pr01.
Full textGOMPERTS, E. D., and K. WEINBERG. "LOSS OF IMMUNE TO RECALL ANTIGENS IN THERE HIV+ HEMOPHILIC CHILDREN." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644140.
Full textDichtelmuller, H., and W. Stephan. "IN VIVO AND IN VITRO NEUTRALIZATION OF BACTERIAL TOXINES BY IGM ENRICHED AND CONVENTIONAL I. V. IMMUNOGLOBULINS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644255.
Full textTawfik, P. N. F. "Streptococcal Toxic Shock." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a1676.
Full textKelly, Dan, Xuedong Song, Daniel K. Frayer, Sergio B. Mendes, Nasser Peyghambarian, Basil I. Swanson, and Karen M. Grace. "Integrated optical toxin sensor." In Photonics East '99, edited by Mahmoud Fallahi and Basil I. Swanson. SPIE, 1999. http://dx.doi.org/10.1117/12.372899.
Full textReports on the topic "Toxoid"
Snell, Madison Michelle, Courtney Jean Pruitt, and Kelsey Leigh Forde Curran. Toxic Endpoint Analysis. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1494357.
Full textSnell, Madison M., Courtney Jean Pruitt, and Kelsey Leigh Forde Curran. Toxic endpoint analysis. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1222535.
Full textAna Palcic, Ana Palcic. Are zeolites toxic? Experiment, May 2018. http://dx.doi.org/10.18258/11299.
Full textWilson, Amy, and Brian Fuchs. Toxic Cloud Defeat. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada471701.
Full textKolker, A., A. F. Sarofim, C. A. Palmer, F. E. Huggins, G. P. Huffman, J. Lighty, J. Veranth, et al. TOXIC SUBSTANCES FROM COAL COMBUSTION. Office of Scientific and Technical Information (OSTI), May 1999. http://dx.doi.org/10.2172/8985.
Full textSmith, P., M. Barr, and R. Barrans. Separations chemistry of toxic metals. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/212496.
Full textBalzli, Charles, April Lumley, Brian Duval, Bob Nichols, Rashelle McDonald, Brian Heimbuch, Delbert Harnish, and Michael McDonald. Toxic Aerosols and Pathogenic Bioaerosols. Fort Belvoir, VA: Defense Technical Information Center, April 2016. http://dx.doi.org/10.21236/ad1014070.
Full textSnell, Madison Michelle, Courtney Jean Pruitt, and Kelsey Leigh Forde Curran. Toxic Endpoint Analysis PowerPoint Presentation. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1561810.
Full textClay, Karen, Margarita Portnykh, and Edson Severnini. Toxic Truth: Lead and Fertility. Cambridge, MA: National Bureau of Economic Research, May 2018. http://dx.doi.org/10.3386/w24607.
Full textHouse, Christopher, and Yusufcan Masatlioglu. Managing Markets for Toxic Assets. Cambridge, MA: National Bureau of Economic Research, July 2010. http://dx.doi.org/10.3386/w16145.
Full text