To see the other types of publications on this topic, follow the link: Torricelli.

Journal articles on the topic 'Torricelli'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Torricelli.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Robinson, Philip J. "Evangelista Torricelli." Mathematical Gazette 78, no. 481 (1994): 37. http://dx.doi.org/10.2307/3619429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ORMAN, BRYAN A. "Torricelli Revisited." Teaching Mathematics and its Applications 12, no. 3 (1993): 124–29. http://dx.doi.org/10.1093/teamat/12.3.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adeeyo, Opeyemi Adewale, Samuel Sunday Adefila, and Augustine Omoniyi Ayeni. "Dynamics of Steady-State Gravity-Driven Inviscid Flow in an Open System." International Journal of Innovative Research and Scientific Studies 6, no. 1 (2022): 80–88. http://dx.doi.org/10.53894/ijirss.v6i1.1101.

Full text
Abstract:
Various factors can be responsible for the flow of incompressible fluid under gravity. Torricelli's theorem gives the relationship between the efflux velocity of an incompressible, gravity-driven flow from an orifice and the height of liquid above it. The concept of the original derivation of Torricelli’s theorem is limited in application because of certain inherent assumptions in the method of derivation. An alternate method of derivation is the use of Bernoulli’s principle. However, its result tends towards Torricelli’s flow only with some assumptions. In this study, an inherent assumption w
APA, Harvard, Vancouver, ISO, and other styles
4

Mazauric, Simone. "De Torricelli à Pascal." Philosophia Scientae, no. 14-2 (October 1, 2010): 1–44. http://dx.doi.org/10.4000/philosophiascientiae.172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rougier, Louis. "De Torricelli à Pascal." Philosophia Scientae, no. 14-2 (October 1, 2010): 45–50. http://dx.doi.org/10.4000/philosophiascientiae.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hager, Willi H. "Diskussionsbeitrag: Torricelli hat Recht." WASSERWIRTSCHAFT 111, no. 7-8 (2021): 74. http://dx.doi.org/10.1007/s35147-021-0869-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clanet, C. "Clepsydrae, from Galilei to Torricelli." Physics of Fluids 12, no. 11 (2000): 2743. http://dx.doi.org/10.1063/1.1310622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Verriest, Erik I. "Variations on Fermat-Steiner-Torricelli." IFAC-PapersOnLine 55, no. 30 (2022): 218–23. http://dx.doi.org/10.1016/j.ifacol.2022.11.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Epple, Philipp, Michael Steppert, Luis Wunder, and Michael Steber. "Verification of Torricelli’s Efflux Equation with the Analytical Momentum Equation and with Numerical CFD Computations." Applied Mechanics and Materials 871 (October 2017): 220–29. http://dx.doi.org/10.4028/www.scientific.net/amm.871.220.

Full text
Abstract:
The efflux velocity equation from Torricelli is well known in fluid mechanics. It can be derived analytically applying Bernoulli’s equation. Bernoulli’s equation is obtained integrating the momentum equation on a stream line. For verification purposes the efflux velocity for a large tank or vessel was also computed analytically applying the momentum equation, delivering, however, a different result as the Torricelli equation. In order to validate these theoretical results the vertical and the horizontal efflux velocity case was simulated with computational fluid dynamics CFD. Furthermore, simp
APA, Harvard, Vancouver, ISO, and other styles
10

BRAICA, PETRU, MIRCEA FARCAS, and DALY MARCIUC. "The locus of generalized Toricelli-Fermat points." Creative Mathematics and Informatics 24, no. 2 (2015): 125–29. http://dx.doi.org/10.37193/cmi.2015.02.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Eriksson, Folke. "The Fermat-Torricelli Problem Once More." Mathematical Gazette 81, no. 490 (1997): 37. http://dx.doi.org/10.2307/3618766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ha, Nguyen Minh. "86.52 Extending the Fermat-Torricelli Problem." Mathematical Gazette 86, no. 506 (2002): 316. http://dx.doi.org/10.2307/3621875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wieland, Jörg, Leon Jänicke, and Jürgen Jensen. "Diskussionsbeitrag: Warum Torricelli doch Recht hat!" WASSERWIRTSCHAFT 111, no. 7-8 (2021): 67–73. http://dx.doi.org/10.1007/s35147-021-0870-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bistafa, Sylvio R. "A lei de Torricelli v=√2gh." Revista Brasileira de História da Ciência 7, no. 1 (2021): 110–19. http://dx.doi.org/10.53727/rbhc.v7i1.234.

Full text
Abstract:
Apresenta-se uma tradução comentada para o português do De Motu Aquarum (1644), em que Evangelista Torricelli apresenta os desenvolvimentos que ficaram consolidados na sua famosa lei v=√2gh que permite determinar a velocidade de efluxo v de um jato de líquido submetido à gravidade g, jorrando de um pequeno orifício do recipiente, para o qual a distância vertical até a superfície livre da água no recipiente é h.
APA, Harvard, Vancouver, ISO, and other styles
15

Mukundan, T. R. "Generalized Fermat–Torricelli Problem: An Algorithm." Mathematics Magazine 91, no. 4 (2018): 288–93. http://dx.doi.org/10.1080/0025570x.2018.1488504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Zhi-guo. "The Fermat-Torricelli problem on surfaces." Applied Mathematics-A Journal of Chinese Universities 31, no. 3 (2016): 362–66. http://dx.doi.org/10.1007/s11766-016-2715-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

De Villiers, Michael. "From the Fermat points to the De Villiers3 points of a triangle." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 29, no. 3 (2010): 119–29. http://dx.doi.org/10.4102/satnt.v29i3.16.

Full text
Abstract:
The article starts with a problem of finding a point that minimizes the sum of the distances to the vertices of an acute-angled triangle, a problem originally posed by Fermat in the 1600’s, and apparently first solved by the Italian mathematician and scientist Evangelista Torricelli. This point of optimization is therefore usually called the inner Fermat or Fermat-Torricelli point of a triangle. The transformation proof presented in the article was more recently invented in 1929 by the German mathematician J. Hoffman. After reviewing the centroid and medians of a triangle, these are generalized
APA, Harvard, Vancouver, ISO, and other styles
18

Zachos, Anastasios N. "An evolutionary design of weighted minimum networks for four points in the three-dimensional Euclidean space." Analysis 41, no. 2 (2021): 79–112. http://dx.doi.org/10.1515/anly-2020-0042.

Full text
Abstract:
Abstract We find the equations of the two interior nodes (weighted Fermat–Torricelli points) with respect to the weighted Steiner problem for four points determining a tetrahedron in R 3 \mathbb{R}^{3} . Furthermore, by applying the solution with respect to the weighted Steiner problem for a boundary tetrahedron, we calculate the twist angle between the two weighted Steiner planes formed by one edge and the line defined by the two weighted Fermat–Torricelli points and a non-neighboring edge and the line defined by the two weighted Fermat–Torricelli points. By applying the plasticity principle
APA, Harvard, Vancouver, ISO, and other styles
19

BARONCELLI, GIOVANNA. "INTORNO ALL'INVENZIONE DELLA SPIRALE GEOMETRICA. UNA LETTERA INEDITA DI TORRICELLI A MICHELANGELO RICCI." Nuncius 8, no. 2 (1993): 14–606. http://dx.doi.org/10.1163/182539183x00721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rougier, Louis. "– Chapitre II – L’hypothèse de Torricelli et l’Expérience." Philosophia Scientae, no. 14-2 (October 1, 2010): 63–68. http://dx.doi.org/10.4000/philosophiascientiae.178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rougier, Louis. "– Chapitre III – Précurseurs et émules de Torricelli." Philosophia Scientae, no. 14-2 (October 1, 2010): 69–79. http://dx.doi.org/10.4000/philosophiascientiae.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Barbara, Roy. "The Fermat-Torricelli Points of n Lines." Mathematical Gazette 84, no. 499 (2000): 24. http://dx.doi.org/10.2307/3621470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sureka, Binit, Kalpana Bansal, and Ankur Arora. "Torricelli-Bernoulli Sign in Gastrointestinal Stromal Tumor." American Journal of Roentgenology 205, no. 4 (2015): W468. http://dx.doi.org/10.2214/ajr.15.14926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tan, T. V. "An Extension of the Fermat-Torricelli Problem." Journal of Optimization Theory and Applications 146, no. 3 (2010): 735–44. http://dx.doi.org/10.1007/s10957-010-9686-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kupitz, Yaakov S., and Horst Martini. "The Fermat-Torricelli point and isosceles tetrahedra." Journal of Geometry 49, no. 1-2 (1994): 150–62. http://dx.doi.org/10.1007/bf01228057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Osinuga, I. A., S. A. Ayinde, J. A. Oguntuase, and G. A. Adebayo. "On Fermat-Torricelli Problem in Frechet Spaces." Journal of Nepal Mathematical Society 3, no. 2 (2020): 16–26. http://dx.doi.org/10.3126/jnms.v3i2.33956.

Full text
Abstract:
We study the Fermat-Torricelli problem (FTP) for Frechet space X, where X is considered as an inverse limit of projective system of Banach spaces. The FTP is defined by using fixed countable collection of continuous seminorms that defines the topology of X as gauges. For a finite set A in X consisting of n distinct and fixed points, the set of minimizers for the sum of distances from the points in A to a variable point is considered. In particular, for the case of collinear points in X, we prove the existence of the set of minimizers for FTP in X and for the case of non collinear points, exist
APA, Harvard, Vancouver, ISO, and other styles
27

Abi-Khuzam, Faruk. "Geometry of the weighted Fermat–Torricelli problem." Journal of Geometry 106, no. 3 (2014): 443–53. http://dx.doi.org/10.1007/s00022-014-0256-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

West, John B. "Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure." Physiology 28, no. 2 (2013): 66–73. http://dx.doi.org/10.1152/physiol.00053.2012.

Full text
Abstract:
The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a v
APA, Harvard, Vancouver, ISO, and other styles
29

Rešić, Sead, Alma Šehanović, and Amila Osmić. "ISOSCELES TRIANGLES ON THE SIDES OF A TRIANGLE." Journal Human Research in Rehabilitation 9, no. 1 (2019): 123–30. http://dx.doi.org/10.21554/hrr.041915.

Full text
Abstract:
Famous construction of Fermat-Toricelly point of a triangle leads to the question is there a similar way to construct other isogonic centers of a triangle in a similar way. For a purpose we remember that Fermat-Torricelli point of a triangle ΔABC is obtained by constructing equilateral triangles outwardly on the sides AB,BC and CA. If we denote thirth vertices of those triangles by C1 ,A1 and B1 respectively, then the lines AA1 ,BB1 and CC1 concurr at the Fermat-Torricelli point of a triangle ΔABC (Van Lamoen, 2003). In this work we present the condition for the concurrence, of the lines AA1 ,
APA, Harvard, Vancouver, ISO, and other styles
30

Rougier, Louis. "– Chapitre I – L’Expérience de Torricelli et la Scolastique." Philosophia Scientae, no. 14-2 (October 1, 2010): 52–62. http://dx.doi.org/10.4000/philosophiascientiae.177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

de Villiers, Michael D. "79.37 A Generalisation of the Fermat-Torricelli Point." Mathematical Gazette 79, no. 485 (1995): 374. http://dx.doi.org/10.2307/3618319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fortman, B. J. "Torricelli-Bernoulli sign in an ulcerating gastric leiomyosarcoma." American Journal of Roentgenology 173, no. 1 (1999): 199–200. http://dx.doi.org/10.2214/ajr.173.1.10397126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Benko, David, and Dan Coroian. "A New Angle on the Fermat–Torricelli Point." College Mathematics Journal 49, no. 3 (2018): 195–99. http://dx.doi.org/10.1080/07468342.2018.1440865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Alexei Yu. Uteshev. "Analytical Solution for the Generalized Fermat–Torricelli Problem." American Mathematical Monthly 121, no. 4 (2014): 318. http://dx.doi.org/10.4169/amer.math.monthly.121.04.318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

SOULIER-PERKINS, ADELINE, and MAXIME LE CESNE. "Revision of the New Guinean genus Zophiuma (Hemiptera, Lophopidae)." Zootaxa 4926, no. 4 (2021): 559–72. http://dx.doi.org/10.11646/zootaxa.4926.4.6.

Full text
Abstract:
The lophopid genus Zophiuma Fennah, 1955 is revised with two new species described, Z. gitauae sp. nov. and Z. torricelli sp. nov. and Z. doreyensis (Distant, 1906) is placed in synonymy with Z. pupillata (Stål, 1863). A key to the species for the genus, distribution map and the male genitalia illustrations are provided.
APA, Harvard, Vancouver, ISO, and other styles
36

de Villiers, Michael. "83.06 A Further Generalisation of the Fermat-Torricelli Point." Mathematical Gazette 83, no. 496 (1999): 106. http://dx.doi.org/10.2307/3618694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Palacios-Vélez, Óscar Luis, Felipe J. A. Pedraza-Oropeza, and Bernardo Samuel Escobar-Villagran. "An algebraic approach to finding the Fermat–Torricelli point." International Journal of Mathematical Education in Science and Technology 46, no. 8 (2015): 1252–59. http://dx.doi.org/10.1080/0020739x.2015.1036947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Martini, H., K. J. Swanepoel, and G. Weiss. "The Fermat–Torricelli Problem in Normed Planes and Spaces." Journal of Optimization Theory and Applications 115, no. 2 (2002): 283–314. http://dx.doi.org/10.1023/a:1020884004689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Benítez, Carlos, Manuel Fernández, and María L. Soriano. "Location of the Fermat-Torricelli medians of three points." Transactions of the American Mathematical Society 354, no. 12 (2002): 5027–38. http://dx.doi.org/10.1090/s0002-9947-02-03113-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Miniati, Mara, Albert Van Helden, Vincenzo Greco, and Giuseppe Molesini. "Seventeenth-century telescope optics of Torricelli, Divini, and Campani." Applied Optics 41, no. 4 (2002): 644. http://dx.doi.org/10.1364/ao.41.000644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kurokawa, Shinsuke, Ai Morikawa, Taro Kubo, and Tatsuo Morita. "Torricelli-Bernoulli Sign in a Large Intestine Gastrointestinal Stromal Tumor." Internal Medicine 53, no. 21 (2014): 2547. http://dx.doi.org/10.2169/internalmedicine.53.2909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Malcherek, Andreas. "History of the Torricelli Principle and a New Outflow Theory." Journal of Hydraulic Engineering 142, no. 11 (2016): 02516004. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0001232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Edvaldo de Oliveira Nunes, José, and Maurício Costa Goldfarb. "APLICAÇÕES DA INTEGRAL: UMA ABORDAGEM SOBRE A TROMBETA DE TORRICELLI." Revista Diálogos 2, no. 20 (2018): 91–109. http://dx.doi.org/10.13115/2236-1499v2n20p91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mordukhovich, Boris, and Nguyen Mau Nam. "Applications of Variational Analysis to a Generalized Fermat-Torricelli Problem." Journal of Optimization Theory and Applications 148, no. 3 (2010): 431–54. http://dx.doi.org/10.1007/s10957-010-9761-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Spirova, M. "On the Napoleon-Torricelli configuration in Affine Cayley-Klein planes." Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 76, no. 1 (2006): 131–42. http://dx.doi.org/10.1007/bf02960861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Malcherek, Andreas. "Die irrtümliche Herleitung der Torricelli-Formel aus der Bernoulli-Gleichung." WASSERWIRTSCHAFT 106, no. 2-3 (2016): 75–80. http://dx.doi.org/10.1007/s35147-016-0005-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rahmawati, Dewi Rahmawati, and Desi Wulandari. "Pembelajaran dengan Media Berbasis Problem Base Learning pada Materi Tekanan dalam Mengembangkan Sikap Peserta Didik." VEKTOR: Jurnal Pendidikan IPA 2, no. 1 (2021): 1–15. http://dx.doi.org/10.35719/vektor.v2i1.14.

Full text
Abstract:
Dalam pembelajaran IPA untuk memenuhi ketentuan dalam kurikulum 2013 bahwasanya pembelajaran dilakukan dengan mengajarkan materi pada peserta didik untuk mengembangkan kompetensi yaitu kompetensi sikap spiritual, sosial, pengetahuan dan keterampilan. Untuk melaksanakan pembelajaran tersebut pembelajaran yang diterapkan yaitu mengajarkan materi tekanan hidrostatis. Pembelajaran IPA pada materi Tekanan dengan submateri Tekanan Hidrostatis serta dalam penerapan sehari-harinya dilakukan dengan model Problem Base Learning. Model tersebut disajikan sebuah demonstrasi produk dari guru untuk mengamati
APA, Harvard, Vancouver, ISO, and other styles
48

Gomez-Rojas, J., L. Camargo, E. Martinez, and M. Gasca. "Electronic rain meter for mobile sensor node using law of Torricelli." Journal of Physics: Conference Series 2139, no. 1 (2021): 012004. http://dx.doi.org/10.1088/1742-6596/2139/1/012004.

Full text
Abstract:
Abstract Rain in a city can cause material damage and risk for the population, hence the importance of implementing prevention and mitigation measures. These measures must be taken based on the analysis of the data collected by networks of environmental sensors. The rainfall-meter is one of the instruments used to measure rain, these are designed to operate at a fixed point. Coverage of the entire area of a city requires the installation of several of these elements. This paper shows the development of an electronic rain gauge that can operate in motion applying the principles of fluid dynamic
APA, Harvard, Vancouver, ISO, and other styles
49

Suprinyak, Carlos Eduardo. "Torricelli, energia a vapor e o sentido tecnológico da Revolução Científica." Revista de Economia Política 29, no. 2 (2009): 302–18. http://dx.doi.org/10.1590/s0101-31572009000200008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nam, Nguyen Mau, Nguyen Thai An, R. Blake Rector, and Jie Sun. "Nonsmooth Algorithms and Nesterov's Smoothing Technique for Generalized Fermat--Torricelli Problems." SIAM Journal on Optimization 24, no. 4 (2014): 1815–39. http://dx.doi.org/10.1137/130945442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!