Academic literature on the topic 'Torricelli'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Torricelli.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Torricelli"
Robinson, Philip J. "Evangelista Torricelli." Mathematical Gazette 78, no. 481 (March 1994): 37. http://dx.doi.org/10.2307/3619429.
Full textORMAN, BRYAN A. "Torricelli Revisited." Teaching Mathematics and its Applications 12, no. 3 (1993): 124–29. http://dx.doi.org/10.1093/teamat/12.3.124.
Full textAdeeyo, Opeyemi Adewale, Samuel Sunday Adefila, and Augustine Omoniyi Ayeni. "Dynamics of Steady-State Gravity-Driven Inviscid Flow in an Open System." International Journal of Innovative Research and Scientific Studies 6, no. 1 (December 22, 2022): 80–88. http://dx.doi.org/10.53894/ijirss.v6i1.1101.
Full textMazauric, Simone. "De Torricelli à Pascal." Philosophia Scientae, no. 14-2 (October 1, 2010): 1–44. http://dx.doi.org/10.4000/philosophiascientiae.172.
Full textRougier, Louis. "De Torricelli à Pascal." Philosophia Scientae, no. 14-2 (October 1, 2010): 45–50. http://dx.doi.org/10.4000/philosophiascientiae.174.
Full textHager, Willi H. "Diskussionsbeitrag: Torricelli hat Recht." WASSERWIRTSCHAFT 111, no. 7-8 (August 2021): 74. http://dx.doi.org/10.1007/s35147-021-0869-5.
Full textClanet, C. "Clepsydrae, from Galilei to Torricelli." Physics of Fluids 12, no. 11 (2000): 2743. http://dx.doi.org/10.1063/1.1310622.
Full textVerriest, Erik I. "Variations on Fermat-Steiner-Torricelli." IFAC-PapersOnLine 55, no. 30 (2022): 218–23. http://dx.doi.org/10.1016/j.ifacol.2022.11.055.
Full textEpple, Philipp, Michael Steppert, Luis Wunder, and Michael Steber. "Verification of Torricelli’s Efflux Equation with the Analytical Momentum Equation and with Numerical CFD Computations." Applied Mechanics and Materials 871 (October 2017): 220–29. http://dx.doi.org/10.4028/www.scientific.net/amm.871.220.
Full textBRAICA, PETRU, MIRCEA FARCAS, and DALY MARCIUC. "The locus of generalized Toricelli-Fermat points." Creative Mathematics and Informatics 24, no. 2 (2015): 125–29. http://dx.doi.org/10.37193/cmi.2015.02.16.
Full textDissertations / Theses on the topic "Torricelli"
Bigucci, Giovanni. "Il punto di Torricelli-Fermat." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amslaurea.unibo.it/1231/.
Full textWilson, Jennifer. "A Grammar of Yeri a Torricelli language of Papua New Guinea." Thesis, State University of New York at Buffalo, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10255769.
Full textThis dissertation is a grammar of Yeri, an endangered Torricelli language spoken in Sandaun Province, Papua New Guinea. The language is still spoken, to at least some degree, by approximately 100–150 speakers, most of whom live in Yapunda village. This grammar is based on primary data collected from Yeri speakers during the author’s eleven months of fieldwork, which was spread out over the course of three field trips. The primary data on which this grammar is founded can be accessed at The Language Archive. This grammar constitutes the first description of the Yeri language.
Pinheiro, Maciel. "Argumentos a favor do peso do ar: o experimento barométrico de Evangelista Torricelli (1608-1647)." Pontifícia Universidade Católica de São Paulo, 2014. https://tede2.pucsp.br/handle/handle/13290.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The aim of this dissertation is to approach several arguments by Evangelista Torricelli (1608-1647) for the weight of air being the cause that explains the effects observed in his barometric experiment. To this end, we analyse a letter by Torricelli to Michelangelo Ricci (1619-1682) dated the 11th of June of 1644, which reports the experiment. The analysis revealed that, in order to understand Torricelli s interpretation of the experiment, we must take into account the intellectual context of that time. At first sight the experiment seems only to point to the evidence that vacuum can be generated in nature, since the phenomenon can be attributed to the weight of air. However, it reveals other aspects that were very important to the origins of modern science
Esta dissertação tem por finalidade abordar alguns argumentos apresentados por Evangelista Torricelli (1608-1647) a favor do peso do ar como causa para explicar os efeitos observados em seu experimento barométrico. Para tanto, analisamos uma carta encaminhada por Torricelli a Michelangelo Riccci (1619-1682) em 11 de junho de 1644 em que o experimento é relatado. A análise nos revelou que para compreender a interpretação dada por Torricelli ao experimento é preciso considerar o contexto intelectual daquela época. O experimento que, à primeira vista parece apenas apontar para a evidência de que era possível produzir vácuo na natureza, visto que o fenômeno poderia ser atribuído ao peso do ar, revela outros aspectos que foram importantes na origem da ciência moderna
Bascelli, Tiziana. "I fondamenti della nuova scienza del moto: la cinematica di Galileo e la geometria di Torricelli." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427358.
Full textQuesto lavoro di ricerca intende dare una diversa lettura alla Nuova scienza del moto elaborata da Galileo Galilei nei Discorsi (1638) e da Evangelista Torricelli nell’Opera geometrica (1644). L'attenzione è rivolta al processo di matematizzazione che subisce il moto locale nel momento in cui nasce la meccanica moderna, per analizzarne le condizioni di realizzazione e le caratteristiche principali. Il moto locale, una questione dibattuta all’interno della filosofia naturale, diventa cinematica, cioè scienza. Si mostrerà che la strutturazione di un nuovo concetto di velocità è l’evento decisivo che porta l’accezione ingenua e intuitiva della tradizione, ad assumere l’accezione tecnico-operativa di grandezza continua. La natura della continuità è inscindibile dalla nozione di infinito e l’analisi di questo legame è la chiave di lettura proposta.
Delgado, Héctor Manuel. "Indivisibles, correspondances et controverses : Cavalieri, Galilée, Toricelli, Guldin." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAP002.
Full textSalvi, Marco. "Analisi della vulnerabilità di un aggregato edilizio nel centro storico di Torricella Sicura (TE) e confronto con il suo danneggiamento post sisma 2016." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18677/.
Full textΖάχος, Αναστάσιος. "Το πρόβλημα Fermat-Torricelli και ένα αντίστροφο πρόβλημα στο Κ-επίπεδο και σε κλειστά πολύεδρα του R^3." Thesis, 2014. http://hdl.handle.net/10889/8001.
Full textThe weighted Fermat-Torricelli for n non-collinear points in R^3 states the following: Given n non-collinear points in R^3 find a point (b.FT point) which minimizes the sum of the distances multiplied by a positive number which corresponds to a given point (weight). The inverse Fermat-Torricelli problem for n non-collinear points with weights in R^3 (inv.FT) states the following: Given a point that belongs to the interior of a closed polyhedron which is formed between n given non-collinear points in R^3, does there exist a unique set of weights which corresponds to each one of the n points such that this point solves the weighted Fermat-Torricelli problem for this particular set of weights? In the present thesis, we prove a generalization of the isogonal property of the b.FT point for a geodesic triangle on the K-plane (Sphere, Hyperbolic plane, Euclidean plane). We proceed by giving a sufficient condition to locate the b.FT point at the interior of tetrahedra and pentahedra (pyramids) in R^3. The second group of results contains a positive answer on the inv.FT problem for three points that do not belong to a geodesic arc on the K-plane and on the inv.FT problem for four non collinear points and non coplanar in R^3. The negative answer with respect to the inv.FT problem for four non-collinear points in R^2 lead us to the relations of the dependence between the weights that we call the equations of dynamic plasticity for quadrilaterals. Similarly, by giving a negative answer with respect to the inv.FT problem for five points which do not belong in the same plane in R^3, we derive the equations of dynamic plasticity of closed hexahedra and we prove a plasticity principle of closed hexahedra in R^3, which states that: Considering five prescribed rays which meet at the weighted Fermat-Torricelli point, such that their endpoints form a closed hexahedron, a decrease on the weights that correspond to the first, third and fourth ray, causes an increase to the weights that correspond to the second and fifth ray, where the fourth endpoint is upper from the plane which is formed from the first ray and second ray and the third and fifth endpoint is under the plane which is formed from the first ray and second ray. Finally, a significant result of this thesis deals with the solution of the generalized Gauss problem for convex quadrilaterals on the K-plane in which by setting two points at the interior of the convex quadrilateral with equal weights we prove that these points are weighted Fermat-Torricelli points with specific weights, that generalizes the b.FT problem for quadrilaterals on the K-plane.
Books on the topic "Torricelli"
Crusca, Accademia della, and De Martino Domenico, eds. Lezioni accademiche d'Evangelista Torricelli. Milano: Biblion, 2009.
Find full textBattistini, Matilde. Capolavori della mente: Manuzio, Leonardo, Torricelli, Ferraris, Marconi. Milano: Electa, 2002.
Find full text1947-, Gandt François de, and Beaulieu Armand, eds. L' Œuvre de Torricelli: Science galiléenne et nouvelle géométrie. Paris: Diffusion, Les Belles Lettres, 1989.
Find full textL'erede di Galileo: Vita breve e mirabile di Evangelista Torricelli. Milano (Italy): Sironi, 2008.
Find full textBlay, Michel. La science du mouvement des eaux: De Torricelli à Lagrange. Paris: Belin, 2007.
Find full textTorricelli, Giuseppe Antonio. De lapidibus: Il trattato delle pietre di Giuseppe Antonio Torricelli. Livorno: Sillabe, 2019.
Find full textToscano, Fabio. L'erede di Galileo: Vita breve e mirabile di Evangelista Torricelli. Milano (Italy): Sironi, 2008.
Find full textAngelo Torricelli: Architettura in Capitanata : opere e progetti = works and projects 1997-2012. Padova: Il Poligrafo, 2014.
Find full textCristina, Zamora María, and Editora Política, eds. Ni mil leyes como esta nos pondrán de rodillas: Rechazo popular a la Ley Torricelli. La Habana: Editora Política, 1992.
Find full textMantese, Eleonora, ed. House and Site. Florence: Firenze University Press, 2014. http://dx.doi.org/10.36253/978-88-6655-581-0.
Full textBook chapters on the topic "Torricelli"
Vesel, Živa, Leonardo Gariboldi, Steven L. Renshaw, Saori Ihara, İhsan Fazlıoğlu, Voula Saridakis, Michael Fosmire, et al. "Torricelli, Evangelista." In The Biographical Encyclopedia of Astronomers, 1146–47. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30400-7_1390.
Full textHack, Margherita. "Torricelli, Evangelista." In Biographical Encyclopedia of Astronomers, 2168–69. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-9917-7_1390.
Full textZeng, Zhenbing, Yu Chen, Xiang Sun, and Yuzheng Wang. "On Geometric Property of Fermat–Torricelli Points on Sphere." In Computer Algebra in Scientific Computing, 442–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85165-1_25.
Full textUteshev, Alexei Yu, and Marina V. Yashina. "Stationary Points for the Family of Fermat–Torricelli–Coulomb-Like Potential Functions." In Computer Algebra in Scientific Computing, 412–26. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02297-0_34.
Full textHui, Yan, Jie Zhan, Libin Jiao, and Xiu Liang. "Design and Development of Simulation Software Based on AR-Based Torricelli Experiment." In Lecture Notes in Computer Science, 481–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97774-0_44.
Full textB. West, John. "Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure." In Essays on the History of Respiratory Physiology, 25–35. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2362-5_3.
Full textAllen, Bryant J. "Infection, Innovation and Residence: Illness and Misfortune in the Torricelli Foothills from 1800." In A Continuing Trial of Treatment, 35–68. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2731-5_2.
Full textDuhem, Pierre. "The Mechanical Properties of the Center of Gravity from Albert of Saxony to Evangelista Torricelli." In The Origins of Statics, 261–356. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3730-0_15.
Full textHavil, Julian. "Torricellis Trompete." In Verblüfft?!, 79–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-78236-0_9.
Full textGuo, Xiaofeng, Tuo Leng, and Zhenbing Zeng. "The Fermat-Torricelli Problem of Triangles on the Sphere with Euclidean Metric: A Symbolic Solution with Maple." In Communications in Computer and Information Science, 263–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41258-6_20.
Full textConference papers on the topic "Torricelli"
Aggarwal, Ved Ratna, Suresh Kumar, Boonchoat Paosawatyanyong, and Pornrat Wattanakasiwich. "Safe Torricelli Experiment for Educational use in a Science Resource Center." In INTERNATIONAL CONFERENCE ON PHYSICS EDUCATION: ICPE-2009. AIP, 2010. http://dx.doi.org/10.1063/1.3479901.
Full textFajar, Dinar Maftukh, Neny Kurniasih, and Khairurrijal Khairurrijal. "Simulation of Torricelli Effluent Flow by Using Visual Basic for Application (VBA) on Microsoft Excel." In 2014 International Conference on Advances in Education Technology. Paris, France: Atlantis Press, 2014. http://dx.doi.org/10.2991/icaet-14.2014.39.
Full textSudarmanto, Agus, Muhammad Izzatul Faqih, and Nur Salim. "Development of a dynamic fluid practicum tool (torricelli theory) based on Arduino uno with flow sensor and vibration sensor for high schools in grade 11." In INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0073119.
Full textPanich, Charunya, Chokchai Puttharugsa, and Supitch Khemmani. "Predict-share-observe-explain learning activity for the Torricelli’s tank experiment." In INTERNATIONAL CONFERENCE FOR SCIENCE EDUCATORS AND TEACHERS (ISET) 2017: Proceedings of the 5th International Conference for Science Educators and Teachers (ISET) 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5019523.
Full textApiwan, Suttinee, Chokchai Puttharugsa, and Supitch Khemmani. "Development of instructional manual encouraging student active learning for high school teaching on fluid mechanics through Torricelli’s tank experiment." In INTERNATIONAL CONFERENCE FOR SCIENCE EDUCATORS AND TEACHERS (ISET) 2017: Proceedings of the 5th International Conference for Science Educators and Teachers (ISET) 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5019493.
Full textReports on the topic "Torricelli"
Lawrence, Nathan. Convex and Nonconvex Optimization Techniques for the Constrained Fermat-Torricelli Problem. Portland State University Library, January 2016. http://dx.doi.org/10.15760/honors.319.
Full text