Academic literature on the topic 'Topology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Topology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Topology"

1

Widodo, Charles, Marchellius Yana, and Halim Agung. "IMPLEMENTASI TOPOLOGI HYBRID UNTUK PENGOPTIMALAN APLIKASI EDMS PADA PROJECT OFFICE PT PHE ONWJ." JURNAL TEKNIK INFORMATIKA 11, no. 1 (May 4, 2018): 19–30. http://dx.doi.org/10.15408/jti.v11i1.6472.

Full text
Abstract:
ABSTRAK Penggunaan aplikasi EDMS di project office PT PHE ONWJ dinilai masih belum optimal karena masih lambat dalam pengunaan aplikasi EDMS. Oleh karena itu dilakukanlah penelitian ini dengan tujuan untuk mengoptimalkan jaringan yang digunakan untuk mengakses aplikasi EDMS pada project office PT PHE ONWJ. Pengoptimalan jaringan yang dimaksud adalah dengan membangun topologi di project office PT PHE ONWJ dan menerapkan metro sebagai perantara topologi star di project office dan topologi star dikantor pusat sehingga menciptakan topologi hybrid. Topologi hybrid yang dimaksud adalah penggabungan antara topologi star yang ada di jaringan pusat, metro sebagai perantara kantor pusat dengan project office PT PHE ONWJ dan topologi star yang akan dibangun di project office PT ONWJ. Diharapkan setelah menerapkan topologi yang telah dirancang dapat mengoptimalkan penggunaan aplikasi EDMS. Topologi star di project office PT ONWJ dan metro sebagai perantara 2 topologi kantor pusat dan project office menghasilkan topologi hybrid. Kesimpulan dari penelitian ini adalah penerapan topologi dalam jaringan dapat memberikan optimalisasi dibandingkan dengan tanpa menerapkan topologi. Hasil rata-rata ping saat pengaksesan aplikasi EDMS sebelum menerapkan topologi hybrid mendapatkan hasil sebesar 392,98 ms dan setelah menerapkan topologi hybrid mendapatkan hasil sebesar 143,50 ms, sehingga disimpulkan bahwa penerapan topologi hybrid lebih baik dalam menjalankan aplikasi EDMS. ABSTRACT The use of EDMS application in PT PHE ONWJ project office is considered not optimal because it is still slow in the use of EDMS applications. Therefore this study was conducted with the aim to optimize the network used to access the EDMS application on the PT PHE ONWJ project office. Network optimization in question is to build a topology in the project office of PT PHE ONWJ and apply the metro as an intermediate star topology in the project office and star topology at the headquarters so as to create a hybrid topology. Hybrid topology in question is a merger between the star topology in the central network, metro as an intermediary head office with PT PHE ONWJ project office and star topology to be built at PT ONWJ project office. It is expected that after applying the topology that has been designed to optimize the use of EDMS applications. Star topology in PT ONWJ project office and metro as intermediary 2 topology headquarters and project office produce hybrid topology. The conclusion of this research is application of topology in network can give optimization compared with without applying topology. The average result of ping when accessing EDMS application before applying hybrid topology got 392.98 ms result and after applying hybrid topology get result of 143,50 ms, so it is concluded that application of hybrid topology is better in running EDMS application. How To Cite : Widodo, C. Yana, M. Agung, H. (2018). IMPLEMENTASI TOPOLOGI HYBRID UNTUK PENGOPTIMALAN APLIKASI EDMS PADA PROJECT OFFICE PT PHE ONWJ. Jurnal Teknik Informatika, 11(1), 19-30. doi 10.15408/jti.v11i1.6472 Permalink/DOI: http://dx.doi.org/10.15408/jti.v11i1.6472
APA, Harvard, Vancouver, ISO, and other styles
2

Sukriyah, Dewi. "MATRIKS KETERHUBUNGAN LANGSUNG TOPOLOGI HINGGA." JEDMA Jurnal Edukasi Matematika 1, no. 1 (July 30, 2020): 37–43. http://dx.doi.org/10.51836/jedma.v1i1.125.

Full text
Abstract:
Abtrak: Topologi merupakan cabang ilmu matematika yang mempelajari suatu struktur yang terdapat pada himpunan. Seperti halnya himpunan hingga yang memiliki kardinalitas, maka topologi hingga juga memiliki kardinalitas. Jika himpunan memiliki kardinalitas dan topologi pada S, maka kardinalitas dari yang dinotasikan dengan menyetakan banyaknya elemen dari . Jika topologi pada S, maka matriks keterhubungan langsung topologi adalah matriks berukuran yang dinotasikan dengan . Matriks merupakan matriks yang elemennya 0 atau 1. Kata Kunci: Himpunan, Kardinalitas, Matriks Keterhubungan Langsung, Topologi. Abstract: Topology is a branch of mathematics which study structures on a set. As a finite set, a finite topology have a cardinality. Let be a finite set with cardinality and let be a topology on S, then the cardinality of which denotes is the number of elements . If topology on S, then the corresponding matrix to a topology is a matrix which denoted by . is the matrix have element 0 or 1. Keywords: Cardinality, Set, The Corresponding Matrix, Topology,
APA, Harvard, Vancouver, ISO, and other styles
3

Parinyataramas, Jamreonta, Sakuntam Sanorpim, Chanchana Thanachayanont, Hiroyaki Yaguchi, and Misao Orihara. "TEM Analysis of Structural Phase Transition in MBE Grown Cubic InN on MgO (001) by MBE: Effect of Hexagonal Phase Inclusion in an C-Gan Nucleation Layer." Applied Mechanics and Materials 229-231 (November 2012): 219–22. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.219.

Full text
Abstract:
In this paper, we introduced dbcube topology for Network-on Chips(NoC). We predicted the dbcube topology has high power and low latency comparing to other topologies, and in particular mesh topology. By using xmulator simulator,we compared power and latency of this topologyto mesh topology. Finally, it is demonstrated that the network has higher power and lower latency than the mesh topology.
APA, Harvard, Vancouver, ISO, and other styles
4

Mosafaie, Razieh, and Reza Sabbaghi-Nadooshan. "Using Dbcupe Topology for NoCs." Applied Mechanics and Materials 229-231 (November 2012): 2741–44. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2741.

Full text
Abstract:
In this paper, we introduced dbcube topology for Network-on Chips(NoC). We predicted the dbcube topology has high power and low latency comparing to other topologies, and in particular mesh topology. By using xmulator simulator,we compared power and latency of this topologyto mesh topology. Finally, it is demonstrated that the network has higher power and lower latency than the mesh topology.
APA, Harvard, Vancouver, ISO, and other styles
5

Ali, Iman Abbas, and Asmhan Flieh Hassan. "The Independent Incompatible Edges Topology on Di-graphs." Journal of Physics: Conference Series 2322, no. 1 (August 1, 2022): 012010. http://dx.doi.org/10.1088/1742-6596/2322/1/012010.

Full text
Abstract:
Abstract This sheet offers a novel topology for di-graphs termed independent incompatible edges topology, which creates the topology from the edges set 𝕶 for whatever di-graph. On edges 𝕶, a family of sub-basis is used for build the independent incompatible edges topology. After that, we look at assorted properties; explore the Independent Incompatible Edge Topology on some types of di-graphs. In addition, this topology’s some initial results were studied. Our objective is to understand several aspects of any di-graph using it is corresponding independent incompatible edges topology, the topology that is discussed in this paper.
APA, Harvard, Vancouver, ISO, and other styles
6

EL-MONSEF, M. E. ABD, A. M. KOZAE, and A. A. ABO KHADRA. "CO-RS-COMPACT TOPOLOGIES." Tamkang Journal of Mathematics 24, no. 3 (September 1, 1993): 323–32. http://dx.doi.org/10.5556/j.tkjm.24.1993.4504.

Full text
Abstract:
A topology $R(\tau)$ is contructed from a given topolgy $\tau$ on a set $X$ . $R(\tau)$ is coarser than $\tau$, and the following are some results based on this topology: 1. Continuity and RS-continuity are equivalent if the codomain is re­ topologized by $R(\tau)$. 2. The class of semi-open sets with respect to $R(\tau)$ is a topology. 3. $T_2$ and semi-$T_2$ properties are equivalent on a space whose topology is $R(\tau)$. 4. Minimal $R_0$-spaces are RS-compact:
APA, Harvard, Vancouver, ISO, and other styles
7

Bendsoe, Martin P. "Multidisciplinary Topology Optimization." Proceedings of The Computational Mechanics Conference 2006.19 (2006): 1. http://dx.doi.org/10.1299/jsmecmd.2006.19.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SUSANA, RATNA, FEBRIAN HADIATNA, and APRIANTI GUSMANTINI. "Sistem Multihop Jaringan Sensor Nirkabel pada Media Transmisi Wi-Fi." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 9, no. 1 (January 22, 2021): 232. http://dx.doi.org/10.26760/elkomika.v9i1.232.

Full text
Abstract:
ABSTRAKDengan menerapkan sistem multihop pada jaringan sensor nirkabel, pembacaan kondisi lingkungan dapat dilakukan pada lingkungan yang lebih luas. Pada penelitian ini, sistem multihop jaringan sensor nirkabel menggunakan platform IoT NodeMCU V3 yang memiliki modul Wi-Fi ESP8266. Jumlah sensor node yang digunakan merupakan batas maksimal client yang dapat terhubung kepada Wi-Fi ESP8266, yaitu 1 sink node dan 4 sensor node. Sensor node akan mengirimkan datanya kepada sink node, kemudian data tersebut akan dikirimkan kepada website untuk ditampilkan pada dashboard Adafruit.io. Pengiriman data diuji menggunakan 2 topologi yaitu bus dan tree. Berdasarkan hasil pengujian, jarak maksimal pengiriman data pada topologi bus tanpa penghalang adalah 72 meter dengan delay pengiriman 64 detik dan topologi tree adalah 108 meter dengan delay pengiriman 14 detik. Sistem multihop pada topologi bus dan tree dapat mengirim data dengan 2 penghalang yang memiliki ketebalan 15 cm dengan delay pengiriman 29 detik pada topologi bus dan 14 detik pada topologi tree.Kata kunci: jaringan sensor nirkabel, multihop, Wi-Fi, NodeMCU V3 ABSTRACTBy applying a multihop system on wireless sensor network, reading environment condition can be done in wider environment. In this study, multihop system in wireless sensor network uses IoT NodeMCU V3 platform which has a Wi-Fi ESP8266 module. The amount of node sensor is the maximum limit of client which can be linked to Wi-Fi access point in Wi-Fi ESP8266 module, i.e 1 sink node and 4 sink node. The node sensor will transfer the data to the sink node, then the data will be transfered to the website to be shown on Adafruit.io dashboard. The transmission data is tested using 2 topologies, i.e bus and tree. Based on the test, the maximum distance of data transmission in bus topology without barrier is 72 meters with delivery delay which takes 64 seconds and in tree topology is 108 seconds with delivery delay which takes 14 seconds. The multihop system in the bus topology and the tree topology can send the data with 2 barriers which has 15 cm width and delivery delay among the nodes which takes 29 seconds in bus topology and 14 seconds in tree topology.Keywords: wireless sensor network, multihop, Wi-Fi, NodeMCU V3
APA, Harvard, Vancouver, ISO, and other styles
9

ARYANTA, DWI, ARSYAD RAMADHAN DARLIS, and DIMAS PRIYAMBODHO. "Analisis Kinerja EIGRP dan OSPF pada Topologi Ring dan Mesh." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 2, no. 1 (January 1, 2014): 53. http://dx.doi.org/10.26760/elkomika.v2i1.53.

Full text
Abstract:
ABSTRAKEIGRP (Enhanced Interior Gateway Routing Protocol) dan OSPF (Open Shortest Path Fisrt) adalah routing protokol yang banyak digunakan pada suatu jaringan komputer. EIGRP hanya dapat digunakan pada perangkat Merk CISCO, sedangkan OSPF dapat digunakan pada semua merk jaringan. Pada penelitian ini dibandingkan delay dan rute dari kedua routing protokol yang diimplementasikan pada topologi Ring dan Mesh. Cisco Packet Tracer 5.3 digunakan untuk mensimulasikan kedua routing protokol ini. Skenario pertama adalah perancangan jaringan kemudian dilakukan pengujian waktu delay 100 kali dalam 5 kasus. Skenario kedua dilakukan pengujian trace route untuk mengetahui jalur yang dilewati paket data lalu memutus link utama. Pada skenario kedua juga dilakukan perbandingan nilai metric dan cost hasil simulasi dengan perhitungan rumus. Skenario ketiga dilakukan pengujian waktu konvergensi untuk setiap routing protokol pada setiap topologi. Hasilnya EIGRP lebih cepat 386 µs daripada OSPF untuk topologi Ring sedangkan OSPF lebih cepat 453 µs daripada EIGRP untuk topologi Mesh. Hasil trace route menunjukan rute yang dipilih oleh routing protokol yaitu nilai metric dan cost yang terkecil. Waktu konvergensi rata-rata topologi Ring pada EIGRP sebesar 12,75 detik dan 34,5 detik pada OSPF sedangkan topologi Mesh di EIGRP sebesar 13 detik dan 35,25 detik di OSPF.Kata Kunci: EIGRP, OSPF, Packet Tracer 5.3, Ring, Mesh, KonvergensiABSTRACTEIGRP (Enhanced Interior Gateway Routing Protocol) and OSPF (Open Shortest Path Fisrt) is the routing protocol that is widely used in a computer network. EIGRP can only be used on devices Brand CISCO, while OSPF can be used on all brands of network. In this study comparison of both the delay and the routing protocol implemented on Ring and Mesh topology. Cisco Packet Tracer 5.3 is used to simulate both the routing protocol. The first scenario is the design of the network and then do the test of time delay 100 times in 5 cases. The second scenario tested trace route to determine the path of the data packet and then disconnect the main link. In the second scenario also conducted a cost comparison of metrics and the simulation results with the calculation formula. The third scenario testing time for each routing protocol convergence on any topology. The result EIGRP faster than 386 microseconds for a ring topology while OSPF OSPF 453 microseconds faster than EIGRP for Mesh topology. The results showed trace route chosen by the routing protocol metric value and cost is the smallest. Average convergence time in the EIGRP topology Ring of 12.75 seconds and 34.5 seconds, while the Mesh topology in an OSPF EIGRP for 13 seconds and 35.25 seconds in OSPF.Keywords: EIGRP,OSPF, Packet Tracer 5.3, Ring, Mesh, Convergence
APA, Harvard, Vancouver, ISO, and other styles
10

ROY, MARIO, HIROKI SUMI, and MARIUSZ URBAŃSKI. "Lambda-topology versus pointwise topology." Ergodic Theory and Dynamical Systems 29, no. 2 (April 2009): 685–713. http://dx.doi.org/10.1017/s0143385708080292.

Full text
Abstract:
AbstractThis paper deals with families of conformal iterated function systems (CIFSs). The space CIFS(X,I) of all CIFSs, with common seed space X and alphabet I, is successively endowed with the topology of pointwise convergence and the so-calledλ-topology. We show just how bad the topology of pointwise convergence is: although the Hausdorff dimension function is continuous on a dense Gδ-set, it is also discontinuous on a dense subset of CIFS(X,I). Moreover, all of the different types of systems (irregular, critically regular, etc.), have empty interior, have the whole space as boundary, and thus are dense in CIFS(X,I), which goes against intuition and conception of a natural topology on CIFS(X,I). We then prove how good the λ-topology is: Roy and Urbański [Regularity properties of Hausdorff dimension in infinite conformal IFSs. Ergod. Th. & Dynam. Sys.25(6) (2005), 1961–1983] have previously pointed out that the Hausdorff dimension function is then continuous everywhere on CIFS(X,I). We go further in this paper. We show that (almost) all of the different types of systems have natural topological properties. We also show that, despite not being metrizable (as it does not satisfy the first axiom of countability), the λ-topology makes the space CIFS(X,I) normal. Moreover, this space has no isolated points. We further prove that the conformal Gibbs measures and invariant Gibbs measures depend continuously on Φ∈CIFS(X,I) and on the parameter t of the potential and pressure functions. However, we demonstrate that the coding map and the closure of the limit set are discontinuous on an important subset of CIFS(X,I).
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Topology"

1

Melin, Erik. "Digitization in Khalimsky spaces /." Uppsala, 2004. http://www.math.uu.se/research/pub/Melin6.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dutra, Aline Cristina Bertoncelo [UNESP]. "Grupo topológico." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94331.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-11-10Bitstream added on 2014-06-13T18:30:56Z : No. of bitstreams: 1 dutra_acb_me_rcla.pdf: 707752 bytes, checksum: 003487414f094d392a97a22a4efb885b (MD5)
Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
APA, Harvard, Vancouver, ISO, and other styles
3

Paul, Emmanuel. "Formes logarithmiques fermées à pôles sur un diviseur a croisements normaux et classification topologique des germes de formes logarithmiques génériques de C [exposant] n." Toulouse 3, 1987. http://www.theses.fr/1987TOU30107.

Full text
Abstract:
Dans ce travail, on donne une description du feuilletage défini par une 1-forme logarithmique fermée, à poles sur un diviseur à croisements normaux. Le long de chaque strate du diviseur, il est localement trivial, ce qui nous permet de définir une notion de voisinage tubulaire adapté à cette forme. En exigeant de plus des conditions d'incidences entre ces différents voisinages tubulaires, nous obtenons une construction analogue à celle introduite par C. H. Clemens dans le cas des fonctions. Nous prouvons l'existence d'une telle "structure de Clemens adaptée" à la forme considérée, puis nous l'utilisons pour décrire la classification topologique des germes de formes logarithmiques génériques de c**(n). Nous nous ramenons à la situation considérée ci-dessus à l'aide d'une désingularisation des séparatrices de la forme.
APA, Harvard, Vancouver, ISO, and other styles
4

Dutra, Aline Cristina Bertoncelo. "Grupo topológico /." Rio Claro : [s.n.], 2011. http://hdl.handle.net/11449/94331.

Full text
Abstract:
Orientador: Elíris Cristina Rizziolli
Banca: Edivaldo Lopes da Silva
Banca: João Peres Vieira
Resumo: Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
Abstract: In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
Mestre
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Zhiyong Michael. "Mapping physical topology with logical topology using genetic algorithm." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ62245.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jin, Xing. "Topology inference and tree construction for topology-aware overlay streaming /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20JIN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rajendra, Prasad Gunda, Kumar Thenmatam Ajay, and Rao Kurapati Srinivasa. "Reconfigurable Backplane Topology." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-289.

Full text
Abstract:

In the field of embedded computer and communication systems, the demands for the

interconnection networks are increasing rapidly. To satisfy these demands much advancement has

been made at the chip level as well as at the system level and still the research works are going

on, to make the interconnection networks more flexible to satisfy the demands of the real-time

applications.

This thesis mainly focuses on the interconnection between the nodes in an embedded system via a

reconfigurable backplane. To satisfy the project goals, an algorithm is written for the

reconfigurable topology that changes according to the given traffic specification like throughput.

Initially the connections are established between pairs of nodes according to the given throughput

demands. By establishing all the connections, a topology is formed. Then a possible path is

chosen for traversing the data from source to destination nodes. Later the algorithm is

implemented by simulation and the results are shown in a tabular form. Through some application

examples, we both identify problems with the algorithm and propose an improvement to deal

with such problems.

APA, Harvard, Vancouver, ISO, and other styles
8

Brekke, Birger. "Topology and Data." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10030.

Full text
Abstract:

In the last years, there has been done research in using topology as a new tool for studying data sets, typically high dimensional data. These studies have brought new methods for qualitative analysis, simplification, and visualization of high dimensional data sets. One good example, where these methods are useful, is in the study of microarray data (DNA data). To be able to use these methods, one needs to acquire knowledge of different topics in topology. In this paper we introduce simplicial homology, persistent homology, Mapper, and some simplicial complex constructions.

APA, Harvard, Vancouver, ISO, and other styles
9

Brekke, Øyvind. "Topology and Data." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10037.

Full text
Abstract:

Today there is an immense production of data, and the need for better methods to analyze data is ever increasing. Topology has many features and good ideas which seem favourable in analyzing certain datasets where statistics is starting to have problems. For example, we see this in datasets originating from microarray experiments. However, topological methods cannot be directly applied on finite point sets coming from such data, or atleast it will not say anything interesting. So, we have to modify the data sets in some way such that we can work on them with the topological machinery. This way of applying topology may be viewed as a kind of discrete version of topology. In this thesis we present some ways to construct simplicial complexes from a finite point cloud, in an attempt to model the underlying space. Together with simplicial homology and persistent homology and barcodes, we obtain a tool to uncover topological features in finite point clouds. This theory is tested with a Java software package called JPlex, which is an implementation of these ideas. Lastly, a method called Mapper is covered. This is also a method for creating simplicial complexes from a finite point cloud. However, Mapper is mostly used to create low dimensional simplicial complexes that can be easily visualized, and structures are then detected this way. An implementation of the Mapper method is also tested on a self made data set.

APA, Harvard, Vancouver, ISO, and other styles
10

Chalcraft, David Adam. "Low-dimensional topology." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386938.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Topology"

1

Hocking, John G. Topology. New York: Dover Publications, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kulpa, Władysław. Topologia a ekonomia: Topology and economics. Warszawa: Wydawnictwo Uniwersytetu Kardynała Stefana Wyszyńskiego, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parthasarathy, K. Topology. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9484-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Waldmann, Stefan. Topology. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09680-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shick, Paul L. Topology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9781118031582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manetti, Marco. Topology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16958-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Munkres, James R. Topology. 2nd ed. Upper Saddle River, NJ: Prentice Hall/Pearson, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Munkres, James R. Topology. 2nd ed. New Delhi: Prentice-Hall of India, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Munkres, James R. Topology. 2nd ed. Upper Saddle River, NJ: Prentice Hall, Inc., 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Davis, Sheldon W. Topology. Boston: McGraw-Hill Higher Education, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Topology"

1

Berberian, Sterling K. "Topology." In Fundamentals of Real Analysis, 115–47. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0549-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Browder, Andrew. "Topology." In Mathematical Analysis, 123–54. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0715-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Łojasiewicz, Stanisław. "Topology." In Introduction to Complex Analytic Geometry, 72–97. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-7617-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pedersen, Steen. "Topology." In From Calculus to Analysis, 281–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13641-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stillwell, John. "Topology." In Undergraduate Texts in Mathematics, 283–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55193-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bongaarts, Peter. "Topology." In Quantum Theory, 279–87. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09561-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harte, Robin. "Topology." In SpringerBriefs in Mathematics, 27–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05648-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Janßen, Martin. "Topology." In Generated Dynamics of Markov and Quantum Processes, 127–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49696-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, S. P. "Topology." In Mathematical Tools for Physicists, 587–617. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607773.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marathe, Kishore. "Topology." In Topics in Physical Mathematics, 33–71. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-939-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Topology"

1

Misra, P. R., and M. Rajagopalan. "Tennessee Topology Conference." In Tennessee Topology Conference. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dovermann, Karl Heinz. "Topology Hawaii." In Proceedings of the Topology Conference. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814538831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Firmo, S., D. L. Gonçalves, and O. Saeki. "XI Brazilian Topology Meeting." In XI Brazilian Topology Meeting. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789814527255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Tsau Young, Guilong Liu, Mihir K. Chakraborty, and Dominik Slezak. "From topology to anti-reflexive topology." In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dagci, Fikriye Ince, and Huseyin Cakalli. "A new topology via a topology." In 10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0115543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morita, Shigeyuki. "Structure of the mapping class groups of surfaces: a survey and a prospect." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cantwell, John, and Lawrence Conlon. "Foliation cones." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quinn, Frank. "Group categories and their field theories." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rourke, Colin, and Brian Sanderson. "Homology stratifications and intersection homology." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ruberman, Daniel. "A polynomial invariant of diffeomorphisms of 4–manifolds." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.473.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Topology"

1

Bierman, A., and K. Jones. Physical Topology MIB. RFC Editor, September 2000. http://dx.doi.org/10.17487/rfc2922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kalb, Jeffrey L., and David S. Lee. Network topology analysis. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/1028919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guillen, Donna Post, and Lisa E. Mitchell. Cold Cap Bubble Topology. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1490045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, H., R. Li, A. Retana, Y. Yang, and Z. Liu. OSPF Topology-Transparent Zone. RFC Editor, February 2017. http://dx.doi.org/10.17487/rfc8099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Manning, William. Topology Based Domain Search (TBDS). Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada407598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wallin, M., and D. A. Tortorelli. Topology optimization beyond linear elasticity. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1581880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, Q., K. Raza, C. Zhou, L. Fang, L. Li, and D. King. LDP Extensions for Multi-Topology. RFC Editor, July 2014. http://dx.doi.org/10.17487/rfc7307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Varadarajan, Uday. Geometry, topology, and string theory. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/813395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Delan, Mehson. Summer Internship Project: Set Topology. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1818087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Robbins, Joshua, Ryan Alberdi, and Brett Clark. Concurrent Shape and Topology Optimization. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1822279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography