Academic literature on the topic 'Topological waves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Topological waves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Topological waves"

1

Hayran, Zeki, Seyyed Ali Hassani Gangaraj, and Francesco Monticone. "Topologically protected broadband rerouting of propagating waves around complex objects." Nanophotonics 8, no. 8 (May 9, 2019): 1371–78. http://dx.doi.org/10.1515/nanoph-2019-0075.

Full text
Abstract:
AbstractAchieving robust propagation and guiding of electromagnetic waves through complex and disordered structures is a major goal of modern photonics research, for both classical and quantum applications. Although the realization of backscattering-free and disorder-immune guided waves has recently become possible through various photonic schemes inspired by topological insulators in condensed matter physics, the interaction between such topologically protected guided waves and free-space propagating waves remains mostly unexplored, especially in the context of scattering systems. Here, we theoretically demonstrate that free-space propagating plane waves can be efficiently coupled into topological one-way surface waves, which can seamlessly flow around sharp corners and electrically large barriers and release their energy back into free space in the form of leaky-wave radiation. We exploit this physical mechanism to realize topologically protected wave-rerouting around an electrically large impenetrable object of complex shape, with transmission efficiency exceeding 90%, over a relatively broad bandwidth. The proposed topological wave-rerouting scheme is based on a stratified structure composed of a topologically nontrivial magnetized plasmonic material coated by a suitable isotropic layer. Our results may open a new avenue in the field of topological photonics and electromagnetics, for applications that require engineered interactions between guided waves and free-space propagating waves, including for complex beam-routing systems and advanced stealth technology. More generally, our work may pave the way for robust defect/damage-immune scattering and radiating systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Ossi, Nicholas, Sathyanarayanan Chandramouli, Ziad H. Musslimani, and Konstantinos G. Makris. "Topological constant-intensity waves." Optics Letters 47, no. 4 (February 15, 2022): 1001. http://dx.doi.org/10.1364/ol.441942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ablowitz, Mark J., and Justin T. Cole. "Solitons and topological waves." Science 368, no. 6493 (May 21, 2020): 821–22. http://dx.doi.org/10.1126/science.abb5162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Van Mechelen, Todd, and Zubin Jacob. "Unidirectional Maxwellian spin waves." Nanophotonics 8, no. 8 (June 19, 2019): 1399–416. http://dx.doi.org/10.1515/nanoph-2019-0092.

Full text
Abstract:
AbstractIn this article, we develop a unified perspective of unidirectional topological edge waves in nonreciprocal media. We focus on the inherent role of photonic spin in nonreciprocal gyroelectric media, i.e. magnetized metals or magnetized insulators. Due to the large body of contradicting literature, we point out at the outset that these Maxwellian spin waves are fundamentally different from well-known topologically trivial surface plasmon polaritons. We first review the concept of a Maxwell Hamiltonian in nonreciprocal media, which immediately reveals that the gyrotropic coefficient behaves as a photon mass in two dimensions. Similar to the Dirac mass, this photonic mass opens bandgaps in the energy dispersion of bulk propagating waves. Within these bulk photonic bandgaps, three distinct classes of Maxwellian edge waves exist – each arising from subtle differences in boundary conditions. On one hand, the edge wave solutions are rigorous photonic analogs of Jackiw-Rebbi electronic edge states. On the other hand, for the exact same system, they can be high frequency photonic counterparts of the integer quantum Hall effect, familiar at zero frequency. Our Hamiltonian approach also predicts the existence of a third distinct class of Maxwellian edge wave exhibiting topological protection. This occurs in an intriguing topological bosonic phase of matter, fundamentally different from any known electronic or photonic medium. The Maxwellian edge state in this unique quantum gyroelectric phase of matter necessarily requires a sign change in gyrotropy arising from nonlocality (spatial dispersion). In a Drude system, this behavior emerges from a spatially dispersive cyclotron frequency that switches sign with momentum. A signature property of these topological electromagnetic edge states is that they are oblivious to the contacting medium, i.e. they occur at the interface of the quantum gyroelectric phase and any medium (even vacuum). This is because the edge state satisfies open boundary conditions – all components of the electromagnetic field vanish at the interface. Furthermore, the Maxwellian spin waves exhibit photonic spin-1 quantization in exact analogy with their supersymmetric spin-1/2 counterparts. The goal of this paper is to discuss these three foundational classes of edge waves in a unified perspective while providing in-depth derivations, taking into account nonlocality and various boundary conditions. Our work sheds light on the important role of photonic spin in condensed matter systems, where this definition of spin is also translatable to topological photonic crystals and metamaterials.
APA, Harvard, Vancouver, ISO, and other styles
5

Ori, Ottorino, Franco Cataldo, and Mihai V. Putz. "Topological Anisotropy of Stone-Wales Waves in Graphenic Fragments." International Journal of Molecular Sciences 12, no. 11 (November 15, 2011): 7934–49. http://dx.doi.org/10.3390/ijms12117934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grocholski, Brent. "Fluid waves with topological origins." Science 358, no. 6366 (November 23, 2017): 1015.13–1017. http://dx.doi.org/10.1126/science.358.6366.1015-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Delplace, Pierre, J. B. Marston, and Antoine Venaille. "Topological origin of equatorial waves." Science 358, no. 6366 (October 5, 2017): 1075–77. http://dx.doi.org/10.1126/science.aan8819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Darabi, Amir, Manuel Collet, and Michael J. Leamy. "Experimental realization of a reconfigurable electroacoustic topological insulator." Proceedings of the National Academy of Sciences 117, no. 28 (June 29, 2020): 16138–42. http://dx.doi.org/10.1073/pnas.1920549117.

Full text
Abstract:
A substantial challenge in guiding elastic waves is the presence of reflection and scattering at sharp edges, defects, and disorder. Recently, mechanical topological insulators have sought to overcome this challenge by supporting back-scattering resistant wave transmission. In this paper, we propose and experimentally demonstrate a reconfigurable electroacoustic topological insulator exhibiting an analog to the quantum valley Hall effect (QVHE). Using programmable switches, this phononic structure allows for rapid reconfiguration of domain walls and thus the ability to control back-scattering resistant wave propagation along dynamic interfaces for phonons lying in static and finite-frequency regimes. Accordingly, a graphene-like polyactic acid (PLA) layer serves as the host medium, equipped with periodically arranged and bonded piezoelectric (PZT) patches, resulting in two Dirac cones at theKpoints. The PZT patches are then connected to negative capacitance external circuits to break inversion symmetry and create nontrivial topologically protected bandgaps. As such, topologically protected interface waves are demonstrated numerically and validated experimentally for different predefined trajectories over a broad frequency range.
APA, Harvard, Vancouver, ISO, and other styles
9

Xing, Hongyang, Junxing Fan, Dan Lu, Zhen Gao, Perry Ping Shum, and Longqing Cong. "Terahertz Metamaterials for Free-Space and on-Chip Applications: From Active Metadevices to Topological Photonic Crystals." Advanced Devices & Instrumentation 2022 (August 4, 2022): 1–23. http://dx.doi.org/10.34133/2022/9852503.

Full text
Abstract:
Terahertz (THz) waves have exhibited promising applications in imaging, sensing, and communications, especially for the next-generation wireless communications due to the large bandwidth and abundant spectral resources. Modulators and waveguides to manipulate THz waves are becoming key components to develop the relevant technologies where metamaterials have exhibited extraordinary performance to control free-space and on-chip propagation, respectively. In this review, we will give a brief overview of the current progress in active metadevices and topological photonic crystals, for applications of terahertz free-space modulators and on-chip waveguides. In the first part, the most recent research progress of active terahertz metadevices will be discussed by combining metamaterials with various active media. In the second part, fundamentals of photonic topological insulations will be introduced where the topological photonic crystals are an emerging research area that would boost the development of on-chip terahertz communications. It is envisioned that the combination of them would find great potential in more advanced terahertz applications, such as reconfigurable topological waveguides and topologically-protected metadevices.
APA, Harvard, Vancouver, ISO, and other styles
10

Tang, Zehuan, Jiachao Xu, Bowei Wu, Shuanghuizhi Li, Fei Sun, Tingfeng Ma, Iren Kuznetsova, Ilya Nedospasov, Boyue Su, and Pengfei Kang. "Topological Valley Transport of Elastic Waves Based on Periodic Triangular-Lattices." Crystals 13, no. 1 (December 30, 2022): 67. http://dx.doi.org/10.3390/cryst13010067.

Full text
Abstract:
Topological transports of elastic waves have attracted much attention because of their unique immunity to defects and backscattering-suppression ability. Periodic lattice structures are ideal carriers of elastic-wave transports due to their ability to manipulate elastic waves. Compared with honeycomb-lattice structures, the wave-guide-path designs of triangular-lattice structures have higher flexibility. In this paper, topological transports of elastic waves in the periodic triangular-lattice structure are explored. It is shown that differences between intra-coupling and inter-coupling radii can cause the destruction of the effective spatial inversion symmetry, which gives rise to the valley Hall phase transition and the forming of topological edge states. Utilizing valley Hall effect, topological transports of elastic waves traveling along linear and Z-shaped waveguides are realized with low scattering and immunity to defects. On this basis, the path-selection function of transports of elastic waves in periodic triangular-lattice structures is obtained. Topological valley Hall edge states of elastic waves in periodic triangular-lattice structures have a good application prospects in elastic-wave manipulations and communications.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Topological waves"

1

Krishna, Aditya. "Topological Imaging of Tubular Structures using Ultrasonic guided waves." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0111.

Full text
Abstract:
Les structures tubulaires sont largement utilisées dans diverses industries telles que l’aérospatiale, le pétrole et le gaz, le nucléaire, etc. Le Contrôle Non Destructive (CND) de ces structures joue un rôle crucial au cours de leur cycle de vie. Afin de tester de grandes structures avec une accessibilité limitée, la méthode de CND utilisant des ondes guidées a été développée comme une solution viable. En raison de la nature de ces ondes, elles sont capables de se propager sur de grandes distances sans perdre une grande partie de leur énergie. Cependant, elles sont complexes puisque leur vitesse dépend de la fréquence, c'est-à-dire qu'elles sont dispersives. Classiquement, l’étude de ce type d’ondes nécessite des simulations par éléments finis coûteuses. Cette thèse propose une alternative à de telles simulations avec une méthode rapide et robuste pour simuler la propagation d'ondes guidées dans des structures tubulaires.Partant de ces calculs, pour localiser des défauts, l'objectif de ce travail est d'obtenir des images topologiques 3D de structures tubulaires isotropes multicouches par propagation de ces ondes guidées ultrasonores. Un modèle mathématique est proposé où l'équation d'onde est convertie en une équation différentielle ordinaire par rapport au rayon «r» en utilisant les transformées de Fourier et de Laplace pour les variables spatiales et temporelles respectivement. La solution en ondes partielles, exprimée comme une combinaison des fonctions de Bessel, permet la création d'un algorithme semi-analytique rapide et robuste pour calculer la fonction de Green de structures tubulaires. Un modèle approché en présence de défauts numériques est ensuite développé. La réponse des défauts est considérée comme la réponse cumulative des sources secondaires, visant à annuler le champ de contraintes incident et diffracté présent en son sein. Ensuite, le modèle numérique est validé par des mesures expérimentales.Enfin, la technique de l'imagerie topologique est introduite. Cette méthode d'imagerie est basée sur la corrélation entre les champs ultrasonores sans et avec défaut. La polyvalence et la flexibilité de l'outil numérique en conjonction avec cette méthode d'imagerie sont ensuite démontrées avec succès en localisant et imageant une multitude de défauts numériques et expérimentaux avec des dimensions aussi faibles que 1/40e de la longueur d'onde
Tubular structures are widely used in a variety of industries such as Aerospace, Oil and Gas, Nuclear, etc. Non Destructive Evaluation (NDE) of these structures plays a crucial role during it’s life cycle. In order to test large structures with limited accessibility, guided wave testing was developed as a viable solution. Due to the nature of these waves, they are able to propagate over large distances without losing much of their energy. However, they are also complex in that their velocity is frequency dependent i.e. they are dispersive. Conventionally, guided wave testing require costly finite element simulations. This thesis offers an alternative to such simulations with a quick and robust method to simulate guided wave propagation in tubular structures.Based on these calculations, the aim of this work is to obtain the 3d topological image of multilayered isotropic tubular structures using ultrasonic guided waves to locate defects. A mathematical model has been proposed where the wave equation is converted to an ordinary differential equation with respect to radius 'r' using the Fourier and Laplace transforms for the spatial and temporal variables respectively. The partial wave solution, expressed as a combination of Bessel’s functions, allows for the creation of a fast robust semi-analytical algorithm to compute the Green function in tubular structures. A model to approximate numerical defects is then developed. The defect response is considered as the cumulative response of secondary sources, aiming to negate the incident and diffracted stress field present within it. Next, the numerical model is validated with experimental measurements.Finally, the technique of Topological Imaging is introduced. This method of imaging is based on the idea of performing a correlation between two wave fields for defect localization. The versatility and flexibility of the numerical tool in conjunction with the method of imaging is then successfully demonstrated by localising and imaging a multitude of numerical and experimental defects with dimensions as low as 1=40th of the wavelength
APA, Harvard, Vancouver, ISO, and other styles
2

Zheng, Li-Yang. "Granular monolayers : wave dynamics and topological properties." Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1035/document.

Full text
Abstract:
Les cristaux granulaires sont des structures périodiques de particules disposées en réseau cristallin. Les interactions entre ces billes peuvent être modélisées par leurs contacts, qui ont des dimensions et des masses effectives beaucoup plus petites que celles des billes. Ceci induit une propagation d'ondes élastiques dans les structures granulaires avec des vitesses significativement plus lentes que dans le matériau des grains individuels. En outre, en raison de forces de cisaillement non centrales, les rotations de particules peuvent être initiées, conduisant à des modes de phononiques supplémentaires dans ces cristaux. Dans ce manuscrit, on étudie la propagation d’ondes dans les cristaux granulaires monocouche bidimensionnels avec un mouvement des particules hors-plan ou dans le plan. Les propriétés phononiques sont étudiées, y compris les points de Dirac, les modes de fréquence nulle, les modes à vitesse de groupe nulle et leur transformation en modes de propagation lente. En outre, en présence de bords, on peut prévoir également des ondes de bord élastiques à fréquence nulle et extrêmement lentes dans des cristaux granulaires en « nid d'abeille » (graphène granulaire). En outre, les propriétés topologiques des ondes de bord rotationelles-transverses dans un graphène granulaire sont théoriquement démontrées. En induisant une transition topologique, qui transforme l'ordre topologique du graphène granulaire de trivial en non trivial, on peut observer le transport de bord topologique dans le graphène granulaire. Les théories développées pourraient mener potentiellement à des applications sur le contrôle des ondes élastiques par des structures granulaires
Granular crystals are spatially periodic structures of elastic particles arranged in crystal lattices. The interactions between particles take place via their elastic interconnections, which are of much smaller dimensions and weights than the beads. This induces propagation of elastic waves in granular structures at significantly slower velocities than in the individual grains. In addition, due to the existence of non-central shear forces, rotations of particles can be initiated, leading to extra phononic modes in the crystals. In the manuscript, wave dynamics in two-dimensional monolayer granular crystals with either out-of-plane or in-plane particle motion is studied. The phononic properties are investigated, including Dirac points, zero-frequency modes, zero-group-velocity modes and their transformation into slow propagating phononic modes. Furthermore, in the presence of edges/boundaries, zero-frequency and extremely slow elastic edge waves can be also predicted in mechanical granular honeycomb crystals (granular graphene). In addition, topological properties of rotational edge waves in a granular graphene are theoretically demonstrated. By inducing topological transition, which turns the topological order of granular graphene from trivial to nontrivial, topological edge transport in the granular graphene can be observed. The developed theories could promote the potential applications of designed granular structures with novel elastic wave propagation properties
APA, Harvard, Vancouver, ISO, and other styles
3

Deymier, Pierre, and Keith Runge. "One-Dimensional Mass-Spring Chains Supporting Elastic Waves with Non-Conventional Topology." MDPI AG, 2016. http://hdl.handle.net/10150/615109.

Full text
Abstract:
There are two classes of phononic structures that can support elastic waves with non-conventional topology, namely intrinsic and extrinsic systems. The non-conventional topology of elastic wave results from breaking time reversal symmetry (T-symmetry) of wave propagation. In extrinsic systems, energy is injected into the phononic structure to break T-symmetry. In intrinsic systems symmetry is broken through the medium microstructure that may lead to internal resonances. Mass-spring composite structures are introduced as metaphors for more complex phononic crystals with non-conventional topology. The elastic wave equation of motion of an intrinsic phononic structure composed of two coupled one-dimensional (1D) harmonic chains can be factored into a Dirac-like equation, leading to antisymmetric modes that have spinor character and therefore non-conventional topology in wave number space. The topology of the elastic waves can be further modified by subjecting phononic structures to externally-induced spatio-temporal modulation of their elastic properties. Such modulations can be actuated through photo-elastic effects, magneto-elastic effects, piezo-electric effects or external mechanical effects. We also uncover an analogy between a combined intrinsic-extrinsic systems composed of a simple one-dimensional harmonic chain coupled to a rigid substrate subjected to a spatio-temporal modulation of the side spring stiffness and the Dirac equation in the presence of an electromagnetic field. The modulation is shown to be able to tune the spinor part of the elastic wave function and therefore its topology. This analogy between classical mechanics and quantum phenomena offers new modalities for developing more complex functions of phononic crystals and acoustic metamaterials.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Wei. "Manipulation of Lamb waves with elastic metamaterials." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS414.

Full text
Abstract:
Nous développons des métamatériaux élastiques à piliers pour manipuler les ondes de Lamb. Dans un premier temps, les propriétés négatives associées aux résonances de flexion, de compression et de torsion dans deux structures constituées de piliers sur un seul côté d’une membrane sont examinées. Nous décrivons deux mécanismes différents des propriétés de double négativité. Le potentiel de ces structures pour la réfraction négative et le cloaking acoustique est démontré. Deuxièmement, nous présentons le transport protégé topologiquement des ondes de Lamb par analogie avec les effets Hall quantiques de spin et de vallée. En réorganisant les structures précédentes en un réseau en nid d'abeille, un cône de Dirac simple et un cône de Dirac double sont introduits. Nous discutons de l’apparition d’états de bord protégés topologiquement par une vallée dans une structure à piliers double face asymétrique. La propagation unidirectionnelle des états de bord est étudiée. De plus, nous considérons un système double face symétrique. Les états de bord protégés topologiquement sur le pseudospin et sur le pseudospin-vallée sont démontrés. Troisièmement, nous proposons une approche pour contrôler activement la transmission de l’onde de Lamb antisymétrique se propageant à travers une ligne infinie de piliers. Deux situations différentes avec les résonances de flexion et de compression respectivement séparées ou superposées sont étudiées. Une force de traction externe et une pression sont appliquées sur les piliers, ce qui permet de les coupler avec les vibrations de flexion et de compression. La transmission est étudiée en fonction de l’amplitude et de la phase relative des sources externes
We develop elastic pillared metamaterials to manipulate Lamb waves. Firstly, the negative properties associated with bending, compression and torsion resonances in two structures consisting of pillars on one side of a thin plate are examined. We describe in details two different mechanisms at the origin of doubly negative property. The potential of these structures for negative refraction of Lamb waves and acoustic cloaking is demonstrated numerically. Secondly, we present the topologically protected transport of Lamb waves by analogy with quantum spin and valley quantum Hall effects. By rearranging the previous structures into a honeycomb network, a single Dirac cone and a double Dirac cone are introduced. We discuss the appearance of topologically valley-protected edge states in an asymmetrical double-sided pillar structure. The unidirectional propagation of edge states on different domain walls is studied. In addition, we consider a symmetrical double-sided system allowing the separation of the symmetric and antisymmetric modes. Combined edge states protected topologically by pseudospin and pseudospin-valley degree of freedom are demonstrated. Third, we propose an approach to actively control the transmission of the antisymmetric Lamb wave propagating through an infinite line of pillars. Two different situations with bending and compression resonances respectively separated or superimposed are studied. External tensile force and pressure are applied to the pillars, which allows them to couple with the bending and compressive vibrations. The transmission is studied as a function of the amplitude and the relative phase of the external sources
APA, Harvard, Vancouver, ISO, and other styles
5

Dennis, Mark Richard. "Topological singularities in wave fields." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hafidi, Alaoui Hamza. "Imagerie topologique ultrasonore des milieux périodiques." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0388/document.

Full text
Abstract:
La détection, la localisation et le suivi de l’évolution de défauts dans les milieux périodiques et les guides d’ondes est un enjeu majeur dans le domaine du Contrôle Non Destructif (CND). La propagation d’ondes dans ce genre de milieux est complexe, par exemple lorsque la vitesse dépend de la fréquence (dispersion) ou de la direction de propagation (anisotropie). La signature du défaut peut également être « noyée » dans le champ acoustique renvoyé par la structure (réverbération ou diffusion multiple). C’est pour répondre à ces enjeux de taille que l’Optimisation Topologique (OT) a été adaptée aux problèmes de diffraction des ondes acoustiques par des défauts infinitésimaux afin d’obtenir des images de réflectivité des milieux inspectés. La méthode peut être appliquée à toutes sortes de milieux, quelle que soit leur complexité, à condition d’être capable de simuler correctement (sur un milieu de référence) la propagation des ondes de l’expérience physique. En s’inspirant de l’OT, les travaux de cette thèse proposent de mettre en oeuvre des méthodes d’imagerie qualitatives adaptées aux spécificités des Cristaux Phononiques (CP) et des guides d’ondes. Dans un premier temps, nous nous attachons à la description du formalisme mathématique de l’Optimisation Topologique et de la Full Waveform Inversion (FWI). Bien que ces méthodes ne cherchent pas à résoudre les mêmes problèmes inverses, nous mettons en évidence leurs points communs. Dans un deuxième temps, nous appliquons l’Imagerie Topologique (IT) à l’inspection en réflexion des milieux faiblement hétérogènes. Dans un troisième temps, nous nous inspirons de l’IT pour définir une nouvelle variante de celle-ci nommée Imagerie Topologique Hybride (ITH). Nous appliquons ces méthodes pour l’inspection en réflexion des CP crées par des tiges d’acier immergées dans l’eau. Nous comparons les performances de ces méthodes en fonction du type de défaut dans le CP. Les simulations numériques correspondantes à certains cas d’étude sont appuyées par des essais expérimentaux concluants. Dans un quatrième temps, nous adaptons l’IT à une configuration d’inspection en transmission afin de mette en oeuvre une méthode de Structural Health Monitoring (SHM) des guides d’ondes. A ce propos, nous avons mis au point une nouvelle méthode d’imagerie mieux adaptée que l’IT aux configurations d’inspection en transmission
The detection, localization and monitoring of the evolution of defects in periodic media and waveguides is a major issue in the field of Non-Destructive Testing (NDT). Wave propagation in such media is complex, for example when the velocity depends on the frequency (dispersion) or direction of propagation (anisotropy). The signature of the defect can also be "embedded" in the acoustic field reflected by the structure (reverberation or multiple diffusion). It is to answer these stakes of the size that the Topological Optimization (TO) has been adapted to the problems of diffraction of the acoustic waves by infinitesimal defects in order to obtain reflectivity images of the inspected media. The method can be applied to all kinds of media, regardless of their complexity, provided an exact simulation of the wave propagation in a reference medium (without defects) is performed. Inspired by the TO, the work of this thesis proposes to implement qualitative imaging methods adapted to the specificities of Phononic Crystals (PC) and waveguides. First, we focus on the description of the mathematical formalism of Topological Optimization and Full-Waveform Inversion (FWI). Although these methods do not try to solve the same inverse problems, we highlight their similarities. In a second step, we apply Topological Imaging (TI) to the inspection in pulse-echo configuration of weakly heterogeneous media. Thirdly, we draw inspiration from TI to define a new variant of this method called Hybrid Topological Imaging (HTI).We apply these methods for the pulse-echo configuration inspection of PCs created by steel rods immersed in water.We compare the performance of these methods according to the kind of defects in the PC. Numerical simulations for some case studies are supported by conclusive experimental trials. In a fourth step, we adapt the TI to a pitch-catch configuration in order to implement a new method of Structural Health Monitoring (SHM) of waveguides. In this regard, we have developed a new imaging method that is better suited than TI to pitch-catch configurations
APA, Harvard, Vancouver, ISO, and other styles
7

Larocque, Hugo. "Generation and Characterization of Topologically Structured Waves." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37857.

Full text
Abstract:
This thesis covers a set of works pertaining to the generation and the characterization of structured waves defined by exotic topologies. It first presents a method to fabricate devices that can be used to arbitrarily shape the wavefronts of optical waves by means of a geometric phase. These devices can be used to shape the transverse polarization pattern of a light beam as well. Two new extensions to characterization schemes known as orbital angular momentum (OAM) sorters are then introduced and demonstrated. The first extension consists of a sorting scheme able to characterize both the OAM and the polarization content of an optical wave. As demonstrated, this feature could be of use in high-dimensional quantum cryptography. The other extension consists of an OAM sorter for electron waves whose use in materials science is also demonstrated by employing it to characterize a magnetic structure. A proposal on how to measure the OAM carried by an electron by minimally perturbing it is also discussed. The thesis then moves on towards works describing more exotic types of structured waves. On one hand, it explores the stability of space-varying polarized light beams upon propagation through a nonlinear medium. Namely, their propagation is found to be more stable than what is experienced by beams with phase singularities. On the other hand, the effect of twisting a neutron’s wavefunction is also explored and is suggested to affect some of its electromagnetic properties. Finally, a method used to knot the transverse polarization profile of optical beams is presented. The structure of these optical polarization knots is then accurately characterized to reconstruct some of its topological features.
APA, Harvard, Vancouver, ISO, and other styles
8

Bungey, Timothy N. "Topological configurations of coronal magnetic fields and current sheets." Thesis, University of St Andrews, 1996. http://hdl.handle.net/10023/14021.

Full text
Abstract:
The question of topology in the coronal magnetic field is addressed in this thesis. Magnetic reconnection, which plays a major role in many of the fascinating phenomena seen in the solar atmosphere, is likely to occur at the boundaries between different topological regions of the magnetic field. By modelling the coronal field using discrete sources of flux, to represent the concentrations seen at the photospheric surface, we study the varying topological structures present in the field. We generate a criterion for determining the presence of null points above the photospheric surface and establish that any separatrix surfaces present in the field are due to the presence of either null points, or regions where the field tangentially grazes the surface. We follow the evolution of these separatrix surfaces and, in particular, determine the existence of a well-defined separator field line in the absence of coronal null points. Finally, we look locally at the configuration of the magnetic field in the region surrounding a straight current sheet. We derive an analytical expression to describe the topology of both potential and constant-current force-free fields in the neighbourhood of a sheet, and in so doing generalise the previously known expressions.
APA, Harvard, Vancouver, ISO, and other styles
9

Rieder, Maria-Theresa [Verfasser]. "On Topological Phases in Disordered P-wave Superconducting Wires / Maria-Theresa Rieder." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1076038816/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saputo, Roberto. "Two dimensional P-wave superconductors with long range interactions." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16315/.

Full text
Abstract:
L' interesse crescente che circonda lo studio delle proprietà topologiche della materia è profondamente collegato all' effettiva possibilità di verifica in laboratorio. Negli ultimi decenni infatti la fisica sperimentale degli atomi ultrafreddi ha raggiunto livelli di precisione prima inimmaginabili. Attraverso reticoli ottici si possono riprodurre sistemi multicorpo fortemente interagenti di cui si possono controllare in maniera quasi esatta i parametri fisici, come i potenziali. In questo contesto si inserisce il modello bidimensionale P-wave con interazioni a lungo raggio. Le interazioni in questo modello avvengono tra tutte le componenti, quindi in tutte le direzioni. Questo sistema fisico topologico inoltre è caratterizzato da una Hamiltoniana con potenziale di interazione che decade con la distanza secondo una legge di potenza per cui, per quanto detto, la sua realizzazione sperimentale è possibile. In questo lavoro abbiamo iniziato studiando lo spettro di questo sistema partendo da un approccio analitico. Dopo aver compreso il comportamento dei vari termini energetici abbiamo selezionato dei casi di studio per diversi range di interazione. In questi casi successivamente abbiamo analizzato le varie fasi e transizioni di fase tramite simulazioni numeriche. All' aumentare del range di interazione abbiamo visto l' emergere di nuovi fenomeni assenti nei modelli con interazione a corto raggio.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Topological waves"

1

Paolo, Soriani, ed. The N=2 wonderland: From Calabi-Yau manifolds to topological field-theories. Singapore: World Scientific Pub., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), SpringerLink (Online, ed. Nonlinear Waves and Solitons on Contours and Closed Surfaces. 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

M, Gusein-Zade S., Varchenko A. N, and SpringerLink (Online service), eds. Singularities of Differentiable Maps, Volume 1: Classification of Critical Points, Caustics and Wave Fronts. Boston: Birkhäuser Boston, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fre, Pietro, and Paolo Soriani. The N=2 Wonderland: From Calabi-Yau Manifolds to Topological Field Theories. World Scientific Publishing Company, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ludu, Andrei. Nonlinear Waves and Solitons on Contours and Closed Surfaces. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ludu, Andrei. Nonlinear Waves and Solitons on Contours and Closed Surfaces. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ludu, Andrei. Nonlinear Waves and Solitons on Contours and Closed Surfaces. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ludu, Andrei. Nonlinear Waves and Solitons on Contours and Closed Surfaces. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ludu, Andrei. Nonlinear Waves and Solitons on Contours and Closed Surfaces. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ludu, Andrei. Nonlinear Waves and Solitons on Contours and Closed Surfaces. Springer London, Limited, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Topological waves"

1

Zheleznyak, A. L. "An Approach to the Computation of the Topological Entropy." In Nonlinear Waves 3, 301–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75308-4_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gan, Woon Siong. "Topology in Acoustics and Topological Sound Waves." In Time Reversal Acoustics, 77–82. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3235-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turner, R. E. L. "Traveling Waves in Natural Systems." In Variational and Topological Methods in the Study of Nonlinear Phenomena, 115–31. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0081-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bonnet, Marc, Bojan B. Guzina, and Sylvain Nintcheu Fata. "Underground Cavity Detection Based on Elastodynamic Boundary Element and Topological Derivative Approaches." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 582–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Belishev, M., and A. Glasman. "Boundary Control of the Maxwell Dynamical System: Lack of Controllability by Topological Reasons." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 177–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beyn, Wolf-Jürgen, and Denny Otten. "Computation and stability of waves in equivariant evolution equations." In Spectral Structures and Topological Methods in Mathematics, 129–58. Zuerich, Switzerland: European Mathematical Society Publishing House, 2019. http://dx.doi.org/10.4171/197-1/6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ezersky, A. B., S. V. Kiyashko, and A. V. Nazarovsky. "Chaotic Dynamics of Topological Defects in Parametrically Excited Waves." In Nonlinearity and Disorder: Theory and Applications, 239–53. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0542-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hussain, Fazle, and Mogens V. Melander. "New Aspects of Vortex Dynamics: Helical Waves, Core Dynamics, Viscous Helicity Generation, and Interaction with Turbulence." In Topological Aspects of the Dynamics of Fluids and Plasmas, 377–99. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-017-3550-6_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elphick, Christian. "Solitary Waves, Topological Defects, and their Interactions in Systems with Translational and Galilean Invariance." In Instabilities and Nonequilibrium Structures III, 321–29. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3442-2_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brison, Jean-Pascal. "p-Wave Superconductivity and d-Vector Representation." In Springer Proceedings in Physics, 165–204. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64623-3_6.

Full text
Abstract:
AbstractSince the mid-80s, new classes of superconductors have been discovered in which the origin of superconductivity cannot be attributed to the electron–ion interactions at the heart of conventional superconductivity. Most of these unconventional superconductors are strongly correlated electron systems, and identifying (or even more difficult, predicting) the precise superconducting state has been, and sometimes remains, an actual challenge. However, in most cases, it has been demonstrated that in these materials the spin state of the Cooper pairs is a singlet state, often associated with a ‘d-wave’ or ‘$$s +/-$$ s + / - ’ orbital state. For a few systems, a spin-triplet state is strongly suspected, like in superfluid $$^3$$ 3 He; this leads to a much more complex superconducting order parameter. This was long supposed to be the case for the d-electron system Sr$$_2$$ 2 RuO$$_4$$ 4 , and is very likely realized in some uranium-based (f-electron) ‘heavy fermions’ like UPt$$_3$$ 3 (with multiple superconducting phases) or UGe$$_2$$ 2 (with coexisting ferromagnetic order). Beyond the interest for these materials, p-wave superconductivity is presently quite fashionable for its topological properties and the prediction that it could host Majorana-like low energy excitations, seen as a route towards robust (topologically protected) qubits. The aim of these notes is to make students and experimentalists more familiar with the d-vector representation used to describe p-wave (spin triplet) superconductivity. The interest of this formalism will be illustrated on some systems where p-wave superconductivity is the prime suspect.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Topological waves"

1

Dorin, Patrick, Xiang Liu, and K. W. Wang. "Tunable Topological Wave Control in a Three-Dimensional Metastable Elastic Metamaterial." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69410.

Full text
Abstract:
Abstract The concepts of topological insulators in condensed matter physics have been harnessed in elastic metamaterials to obtain quasi-lossless and omnidirectional guiding of elastic waves. Initial studies concerning topological wave propagation in elastic metamaterials focused on localizing waves in 1D or 2D mechanical structures. More recent investigations involving topological metamaterials have uncovered methodologies to achieve unprecedented control of elastic waves in 3D structures. However, a 3D topological metamaterial that can be tuned online to expand functionalities and respond to external conditions has yet to be developed. To advance the state of the art, this research proposes a tunable 3D elastic metamaterial that enables the reconfiguration of a topological waveguide through the switching of metastable states. Through careful design of internal bistable elements in the metastable unit cell, a switching methodology is developed to obtain topologically distinct lattices and a full topological bandgap. Analysis of the dispersion relation for a supercell reveals the presence of a topological surface state at the interface of topologically distinct lattices. Full-scale finite element simulations illustrate topological wave propagation in a 3D structure with a path that can be tailored on-demand. The research outcomes presented in this paper could be beneficial to potential applications requiring programmable and robust energy transport in 3D mechanical structures and serve as an inspiration for further work in adaptive 3D topological metamaterials.
APA, Harvard, Vancouver, ISO, and other styles
2

Marcucci, Giulia, Davide Pierangeli, Aharon J. Agranat, Eugenio DelRe, and Claudio Conti. "Topological Control of Optical Nonlinear Waves." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marcucci, Giulia, Davide Pierangeli, Aharon J. Agranat, Ray-Kuang Lee, Eugenio DelRe, and Claudio Conti. "Topological Control of Optical Extreme Waves." In Nonlinear Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/nlo.2019.ntu2a.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sounas, D. L., and A. Alu. "Piezoelectric Topological Insulators for Acoustic Waves." In 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2018. http://dx.doi.org/10.1109/metamaterials.2018.8534134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bisharat, D., S. Kandil, X. Kong, S. Singh, Z. Xu, and D. Sievenpiper. "Chiral and Topological Surface Waves and Line Waves on Metasurfaces." In 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2019. http://dx.doi.org/10.1109/metamaterials.2019.8900837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MATSUURA, T., K. INAGAKI, S. TANDA, T. TSUNETA, and Y. OKAJIMA. "TRANSPORT MEASUREMENT FOR TOPOLOGICAL CHARGE DENSITY WAVES." In Proceedings of the 1st International Symposium on TOP2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772879_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bisharat, Dia'aadlin J., and Daniel F. Sievenpiper. "Topological Metasurfaces for Robust One-dimensional Waves." In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019. http://dx.doi.org/10.1109/apusncursinrsm.2019.8888514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Chao, Shou-guo Yan, Bi-xing Zhang, and Wen-han Lv. "Topological imaging in layered plate by guided waves." In 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2016. http://dx.doi.org/10.1109/spawda.2016.7829952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Hui, Hussein Nassar, and Guoliang Huang. "Elastic waves in Floquet topological insulators (Conference Presentation)." In Health Monitoring of Structural and Biological Systems XIII, edited by Paul Fromme. SPIE, 2019. http://dx.doi.org/10.1117/12.2514367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bisharat, Dia'aaldin J., and Daniel F. Sievenpiper. "Topological metasurfaces for symmetry-protected electromagnetic line waves." In Metamaterials, Metadevices, and Metasystems 2019, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2019. http://dx.doi.org/10.1117/12.2529727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography