Academic literature on the topic 'Topological invariants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Topological invariants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Topological invariants"
HATAKENAKA, ERI. "Invariants of 3-manifolds derived from covering presentations." Mathematical Proceedings of the Cambridge Philosophical Society 149, no. 2 (May 10, 2010): 263–95. http://dx.doi.org/10.1017/s0305004110000198.
Full textKaufmann, Ralph M., Dan Li, and Birgit Wehefritz-Kaufmann. "Notes on topological insulators." Reviews in Mathematical Physics 28, no. 10 (November 2016): 1630003. http://dx.doi.org/10.1142/s0129055x1630003x.
Full textOhtsuki, Tomotada. "Invariants of 3-manifolds derived from universal invariants of framed links." Mathematical Proceedings of the Cambridge Philosophical Society 117, no. 2 (March 1995): 259–73. http://dx.doi.org/10.1017/s0305004100073102.
Full textMeilhan, Jean-Baptiste, and Sakie Suzuki. "The universal sl2 invariant and Milnor invariants." International Journal of Mathematics 27, no. 11 (October 2016): 1650090. http://dx.doi.org/10.1142/s0129167x16500907.
Full textTur, A. V., and V. V. Yanovsky. "Invariants in dissipationless hydrodynamic media." Journal of Fluid Mechanics 248 (March 1993): 67–106. http://dx.doi.org/10.1017/s0022112093000692.
Full textKRIEGER, WOLFGANG. "On a syntactically defined invariant of symbolic dynamics." Ergodic Theory and Dynamical Systems 20, no. 2 (April 2000): 501–16. http://dx.doi.org/10.1017/s0143385700000249.
Full textZHANG, R. B. "QUANTUM SUPERGROUPS AND TOPOLOGICAL INVARIANTS OF THREE-MANIFOLDS." Reviews in Mathematical Physics 07, no. 05 (July 1995): 809–31. http://dx.doi.org/10.1142/s0129055x95000311.
Full textWang, Zhong, Xiao-Liang Qi, and Shou-Cheng Zhang. "Equivalent topological invariants of topological insulators." New Journal of Physics 12, no. 6 (June 17, 2010): 065007. http://dx.doi.org/10.1088/1367-2630/12/6/065007.
Full textCHO, YONG SEUNG. "GENERATING SERIES FOR SYMMETRIC PRODUCT SPACES." International Journal of Geometric Methods in Modern Physics 09, no. 05 (July 3, 2012): 1250045. http://dx.doi.org/10.1142/s0219887812500454.
Full textPattabiraman, K., M. Kameswari, and M. Seenivasan. "Generalized Version of <i>ISI</i> Invariant for some Molecular Structures." Materials Science Forum 1048 (January 4, 2022): 221–26. http://dx.doi.org/10.4028/www.scientific.net/msf.1048.221.
Full textDissertations / Theses on the topic "Topological invariants"
Metzler, David S. (David Scott). "Topological invariants of symplectic quotients." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43933.
Full textMayer, Christoph. "Topological link invariants of magnetic fields." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=969161964.
Full textLarsen, Nicholas Guy. "A New Family of Topological Invariants." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6757.
Full textWoolf, Jonathan. "Some topological invariants of singular symplectic quotients." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299436.
Full textRoberts, Justin Deritter. "Quantum invariants via skein theory." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319336.
Full textZach, Matthias [Verfasser]. "Topological invariants of isolated determinantal singularities / Matthias Zach." Hannover : Technische Informationsbibliothek (TIB), 2017. http://d-nb.info/1150664274/34.
Full textBrunnbauer, Michael. "Topological properties of asymptotic invariants and universal volume bounds." Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-87504.
Full textMukherjee, Devarshi [Verfasser]. "Topological Invariants for Non-Archimedean Bornological Algebras / Devarshi Mukherjee." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/121973179X/34.
Full textGuerville, Benoît. "Invariants Topologiques d'Arrangements de droites." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3033/document.
Full textThis thesis is the intersection point between the two facets of the study of line arrangements: combinatorics and topology. In the first part, we study the inclusion of the boundary manifold in the complement of an arrangement. We generalize the results of E. Hironaka to the case of any complex line arrangement. To get around the problems due to the case of non complexified real arrangement, we study the braided wiring diagram. We develop a Sage program to compute it from the equation of the complex line arrangement. This diagram allows to give two explicit descriptions of the map induced by the inclusion on the fundamental groups. From theses descriptions, we obtain two new presentations of the fundamental group of the complement. One of them is a generalization of the R. Randell Theorem to any complex line arrangement. In the next step of this work, we study the map induced by the inclusion on the first homology group. Then we obtain two simple descriptions of this map. Inspired by ideas of J.I. Cogolludo, we give a canonical description of the homology of the boundary manifold as the product of the 1-homology with the 2-cohomology of the complement. Finally, we obtain an isomorphism between the 2-cohomology of the complement with the 1-homology of the incidence graph of the arrangement. In the second part, we are interested by the study of character on the group of the complement. We start from the results of E. Artal on the computation of the depth of a character. This depth can be decomposed into a projective term and a quasi-projective term, vanishing for characters that ramify along all the lines. An algorithm to compute the projective part is given by A. Libgober. E. Artal focuses on the quasi-projective part and gives a method to compute it from the image by the character of certain cycles of the complement. We use our results on the inclusion map of the boundary manifold to determine these cycles explicitly. Combined with the work of E. Artal we obtain an algorithm to compute the quasi-projective depth of any character. From the study of this algorithm, we obtain a strong combinatorial condition on characters to admit a quasi-projective depth potentially not determined by the combinatorics. With this property, we define the inner-cyclic characters. From their study, we observe a strong condition on the combinatorics of an arrangement to have only characters with null quasi-projective depth. Related to this, in order to reduce the number of computations, we introduce the notion of prime combinatorics. If a combinatorics is not prime, then the characteristics varieties of its realizations are completely determined by realization of a prime combinatorics with less line. In parallel, we observe that the composition of the map induced by the inclusion with specific characters provide topological invariants of the blow-up of arrangements. We show that the invariant captures more than combinatorial information. Thereby, we detect two new examples of nc-Zariski pairs
Sweeney, Andrew. "A Study of Topological Invariants in the Braid Group B2." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3407.
Full textBooks on the topic "Topological invariants"
Lipman, Joseph. Topological invariants of quasi-ordinary singularities. Providence, R.I., USA: American Mathematical Society, 1988.
Find full textFredholm Structures, topological invariants and applications. Springfield, MO: American Institute of Mathematical Sciences, 2009.
Find full textSzafraniec, Zbigniew. Topological invariants of real analytic sets. Gdańsk: Uniwersytet Gdański, 1993.
Find full textKaminker, Jerome, ed. Geometric and Topological Invariants of Elliptic Operators. Providence, Rhode Island: American Mathematical Society, 1990. http://dx.doi.org/10.1090/conm/105.
Full textI, Arnolʹd V. Topological invariants of plane curves and caustics. Providence, R.I: American Mathematical Society, 1994.
Find full textProdan, Emil, and Hermann Schulz-Baldes. Bulk and Boundary Invariants for Complex Topological Insulators. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29351-6.
Full textTopological methods in Galois representation theory. New York: Wiley, 1989.
Find full textAn introduction to invariants and moduli. Cambridge, U.K: Cambridge University Press, 2003.
Find full textGabriel, Patrick. Ensemble d'invariants pour les produits croisés de Anzai. Montrouge, France: Société mathématique de France, 1991.
Find full textFunctorial knot theory: Categories of tangles, coherence, categorical deformations, and topological invariants. Singapore: World Scientific, 2001.
Find full textBook chapters on the topic "Topological invariants"
Bracci, Filippo, Manuel D. Contreras, and Santiago Díaz-Madrigal. "Topological Invariants." In Springer Monographs in Mathematics, 541–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36782-4_18.
Full textWebb, Gary. "Topological Invariants." In Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws, 69–113. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72511-6_6.
Full textCarter, Scott, Seiichi Kamada, and Masahico Saito. "Topological Invariants." In Surfaces in 4-Space, 77–121. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10162-9_3.
Full textShen, Shun-Qing. "Topological Invariants." In Springer Series in Solid-State Sciences, 47–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32858-9_4.
Full textShen, Shun-Qing. "Topological Invariants." In Springer Series in Solid-State Sciences, 51–79. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4606-3_4.
Full textMonk, J. Donald. "Topological density." In Cardinal Invariants on Boolean Algebras, 107–15. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0346-0334-8_6.
Full textMonk, J. Donald. "Topological Density." In Cardinal Invariants on Boolean Algebras, 219–35. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0730-2_6.
Full textGresch, Dominik, and Alexey Soluyanov. "Calculating Topological Invariants with Z2Pack." In Topological Matter, 63–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76388-0_3.
Full textNémethi, András. "Topological Invariants. The Seiberg–Witten Invariant." In Normal Surface Singularities, 433–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06753-2_9.
Full textProdan, Emil. "Applications II: Topological Invariants." In SpringerBriefs in Mathematical Physics, 109–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55023-7_9.
Full textConference papers on the topic "Topological invariants"
Segoufin, Luc, and Victor Vianu. "Querying spatial databases via topological invariants." In the seventeenth ACM SIGACT-SIGMOD-SIGART symposium. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/275487.275498.
Full textSt-Jean, P., A. Dauphin, P. Massignan, B. Real, O. Jamadi, M. Milicevic, A. Lemaitre, et al. "Measuring topological invariants in polaritonic lattices." In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542737.
Full textREYES, ANDRES. "QUANTUM HALL CONDUCTIVITY AND TOPOLOGICAL INVARIANTS." In Proceedings of the Summer School. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810571_0012.
Full textHafezi, Mohammad. "Measuring Topological Invariants in Photonic Systems." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/iprsn.2015.is3a.1.
Full textHenselman, Gregory, and Pawel Dlotko. "Combinatorial invariants of multidimensional topological network data." In 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2014. http://dx.doi.org/10.1109/globalsip.2014.7032235.
Full textParto, Midya, Christian Leefmans, James Williams, Franco Nori, and Alireza Marandi. "Measuring Topological Invariants within Dissipatively-Coupled Lattices." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu4j.1.
Full textIdrees, Muhammad, Hongbin Ma, Numan Amin, Abdul Rauf Nizami, Zaffar Iqbal, and Saiid Ali. "Several Topological Invariants of Generalized Möbius Ladder." In 2018 37th Chinese Control Conference (CCC). IEEE, 2018. http://dx.doi.org/10.23919/chicc.2018.8484170.
Full textSato, Nobuya, and Michihisa Wakui. "(2+1)–dimensional topological quantum field theory with a Verlinde basis and Turaev–Viro–Ocneanu invariants of 3–manifolds." In Invariants of Knots and 3--manifolds. Mathematical Sciences Publishers, 2002. http://dx.doi.org/10.2140/gtm.2002.4.281.
Full textTang, Xinming, Wolfgang Kainz, and Hui Zhang. "Some Topological Invariants and a Qualitative Topological Relation Model between Fuzzy Regions." In Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007). IEEE, 2007. http://dx.doi.org/10.1109/fskd.2007.522.
Full textPark, Tae Gwan, Junho Park, Eon Taek Oh, Hong Ryeol Na, Seung-Hyun Chun, Sunghun Lee, and Fabian Rotermund. "Ultrafast switching of topological invariants by light-driven interlayer vibrations." In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.ff2g.2.
Full textReports on the topic "Topological invariants"
Makaruk, Hanna, and Robert Owczarek. Topological Invariant of Manifolds in Sławianowski’s Field Theory. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1876771.
Full text