Journal articles on the topic 'Topological horseshoes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Topological horseshoes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kennedy, Judy, and James A. Yorke. "Topological horseshoes." Transactions of the American Mathematical Society 353, no. 6 (February 15, 2001): 2513–30. http://dx.doi.org/10.1090/s0002-9947-01-02586-7.
Full textLI, QINGDU, and XIAO-SONG YANG. "A SIMPLE METHOD FOR FINDING TOPOLOGICAL HORSESHOES." International Journal of Bifurcation and Chaos 20, no. 02 (February 2010): 467–78. http://dx.doi.org/10.1142/s0218127410025545.
Full textHUAN, SONGMEI, QINGDU LI, and XIAO-SONG YANG. "HORSESHOES IN A CHAOTIC SYSTEM WITH ONLY ONE STABLE EQUILIBRIUM." International Journal of Bifurcation and Chaos 23, no. 01 (January 2013): 1350002. http://dx.doi.org/10.1142/s0218127413500028.
Full textYUAN, QUAN, and XIAO-SONG YANG. "COMPUTER ASSISTED VERIFICATION OF CHAOS IN THE SMOOTH CHUA'S EQUATION." International Journal of Bifurcation and Chaos 18, no. 08 (August 2008): 2391–96. http://dx.doi.org/10.1142/s0218127408021762.
Full textLI, QINGDU, and XIAO-SONG YANG. "TWO KINDS OF HORSESHOES IN A HYPERCHAOTIC NEURAL NETWORK." International Journal of Bifurcation and Chaos 22, no. 08 (August 2012): 1250200. http://dx.doi.org/10.1142/s0218127412502008.
Full textYang, Xiao-Song. "Topological horseshoes in continuous maps." Chaos, Solitons & Fractals 33, no. 1 (July 2007): 225–33. http://dx.doi.org/10.1016/j.chaos.2005.12.030.
Full textYANG, XIAO-SONG. "TOPOLOGICAL HORSESHOES AND COMPUTER ASSISTED VERIFICATION OF CHAOTIC DYNAMICS." International Journal of Bifurcation and Chaos 19, no. 04 (April 2009): 1127–45. http://dx.doi.org/10.1142/s0218127409023548.
Full textWójcik, Klaudiusz, and Piotr Zgliczyński. "Topological horseshoes and delay differential equations." Discrete & Continuous Dynamical Systems - A 12, no. 5 (2005): 827–52. http://dx.doi.org/10.3934/dcds.2005.12.827.
Full textGONCHENKO, SERGEY, MING-CHIA LI, and MIKHAIL MALKIN. "GENERALIZED HÉNON MAPS AND SMALE HORSESHOES OF NEW TYPES." International Journal of Bifurcation and Chaos 18, no. 10 (October 2008): 3029–52. http://dx.doi.org/10.1142/s0218127408022238.
Full textYuan, Quan, Fang-Yan Yang, and Lei Wang. "A Note on Hidden Transient Chaos in the Lorenz System." International Journal of Nonlinear Sciences and Numerical Simulation 18, no. 5 (July 26, 2017): 427–34. http://dx.doi.org/10.1515/ijnsns-2016-0168.
Full textKočan, Zdeněk, Veronika Kurková, and Michal Málek. "Horseshoes, Entropy, Homoclinic Trajectories, and Lyapunov Stability." International Journal of Bifurcation and Chaos 24, no. 02 (February 2014): 1450016. http://dx.doi.org/10.1142/s0218127414500163.
Full textZhou, Ping, and Meihua Ke. "A New 3D Autonomous Continuous System with Two Isolated Chaotic Attractors and Its Topological Horseshoes." Complexity 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/4037682.
Full textCian, Giuseppe. "Some remarks on topological horseshoes and applications." Nonlinear Analysis: Real World Applications 16 (April 2014): 74–89. http://dx.doi.org/10.1016/j.nonrwa.2013.09.007.
Full textNunes, Pollyanna Vicente, and Fábio Armando Tal. "Transitivity and the existence of horseshoes on the 2-torus." Nonlinearity 36, no. 1 (December 8, 2022): 199–230. http://dx.doi.org/10.1088/1361-6544/aca252.
Full textLi, Ming-Chia, and Mikhail Malkin. "Topological horseshoes for perturbations of singular difference equations." Nonlinearity 19, no. 4 (February 14, 2006): 795–811. http://dx.doi.org/10.1088/0951-7715/19/4/002.
Full textZhang, Xu. "Chaotic Polynomial Maps." International Journal of Bifurcation and Chaos 26, no. 08 (July 2016): 1650131. http://dx.doi.org/10.1142/s0218127416501315.
Full textKOČAN, ZDENĚK, VERONIKA KORNECKÁ-KURKOVÁ, and MICHAL MÁLEK. "Entropy, horseshoes and homoclinic trajectories on trees, graphs and dendrites." Ergodic Theory and Dynamical Systems 31, no. 1 (February 2, 2010): 165–75. http://dx.doi.org/10.1017/s0143385709001011.
Full textLi, Jian, Piotr Oprocha, and Guohua Zhang. "Quasi-graphs, zero entropy and measures with discrete spectrum." Nonlinearity 35, no. 3 (February 11, 2022): 1360–79. http://dx.doi.org/10.1088/1361-6544/ac4b3a.
Full textSovrano, Elisa. "How to Construct Complex Dynamics? A Note on a Topological Approach." International Journal of Bifurcation and Chaos 30, no. 02 (February 2020): 2050034. http://dx.doi.org/10.1142/s0218127420500340.
Full textPEDERSON, STEVEN M. "ESSENTIAL ENTROPY-CARRYING HORSESHOES AS SET LIMITS." International Journal of Bifurcation and Chaos 22, no. 08 (August 2012): 1250195. http://dx.doi.org/10.1142/s0218127412501957.
Full textChen, Yi-Chiuan, Shyan-Shiou Chen, and Juan-Ming Yuan. "Topological horseshoes in travelling waves of discretized nonlinear wave equations." Journal of Mathematical Physics 55, no. 4 (April 2014): 042701. http://dx.doi.org/10.1063/1.4870618.
Full textPascoletti, Anna, and Fabio Zanolin. "A Crossing Lemma for Annular Regions and Invariant Sets with an Application to Planar Dynamical Systems." Journal of Mathematics 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/267393.
Full textBARTOŠ, ADAM, JOZEF BOBOK, PAVEL PYRIH, SAMUEL ROTH, and BENJAMIN VEJNAR. "Constant slope, entropy, and horseshoes for a map on a tame graph." Ergodic Theory and Dynamical Systems 40, no. 11 (April 22, 2019): 2970–94. http://dx.doi.org/10.1017/etds.2019.29.
Full textYANG, XIAO-SONG, and QINGDU LI. "HORSESHOES IN A NEW SWITCHING CIRCUIT VIA WIEN-BRIDGE OSCILLATOR." International Journal of Bifurcation and Chaos 15, no. 07 (July 2005): 2271–75. http://dx.doi.org/10.1142/s0218127405011631.
Full textYang, Dawei, and Jinhua Zhang. "NON-HYPERBOLIC ERGODIC MEASURES AND HORSESHOES IN PARTIALLY HYPERBOLIC HOMOCLINIC CLASSES." Journal of the Institute of Mathematics of Jussieu 19, no. 5 (January 7, 2019): 1765–92. http://dx.doi.org/10.1017/s1474748018000579.
Full textKiriki, Shin, and Masaki Nakajima. "Blenders for a non-normally Henon-like family." Tamkang Journal of Mathematics 41, no. 2 (June 30, 2010): 149–66. http://dx.doi.org/10.5556/j.tkjm.41.2010.666.
Full textGameiro, Marcio, Tomáš Gedeon, William Kalies, Hiroshi Kokubu, Konstantin Mischaikow, and Hiroe Oka. "Topological Horseshoes of Traveling Waves for a Fast–Slow Predator–Prey System." Journal of Dynamics and Differential Equations 19, no. 3 (May 18, 2006): 623–54. http://dx.doi.org/10.1007/s10884-006-9013-6.
Full textPham, Viet-Thanh, Christos Volos, Sundarapandian Vaidyanathan, and Xiong Wang. "A Chaotic System with an Infinite Number of Equilibrium Points: Dynamics, Horseshoe, and Synchronization." Advances in Mathematical Physics 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4024836.
Full textMargheri, Alessandro, Carlota Rebelo, and Fabio Zanolin. "Fixed points for planar maps with multiple twists, with application to nonlinear equations with indefinite weight." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2191 (January 4, 2021): 20190385. http://dx.doi.org/10.1098/rsta.2019.0385.
Full textSLIJEPČEVIĆ, SINIŠA. "Variational construction of positive entropy invariant measures of Lagrangian systems and Arnold diffusion." Ergodic Theory and Dynamical Systems 40, no. 3 (September 25, 2018): 799–864. http://dx.doi.org/10.1017/etds.2018.59.
Full textZanini, Chiara, and Fabio Zanolin. "Complex Dynamics in One-Dimensional Nonlinear Schrödinger Equations with Stepwise Potential." Complexity 2018 (December 2, 2018): 1–17. http://dx.doi.org/10.1155/2018/2101482.
Full textMitchener, W. Garrett. "Symmetric replicator dynamics with depletable resources." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 4 (April 2022): 043121. http://dx.doi.org/10.1063/5.0081182.
Full textMa, You Jie, Shuang Song, and Xue Song Zhou. "Introduction of Topological Horseshoe Theory in Chaotic Research." Advanced Materials Research 811 (September 2013): 716–19. http://dx.doi.org/10.4028/www.scientific.net/amr.811.716.
Full textWang, Chunmei, Chunhua Hu, Jingwei Han, and Shijian Cang. "A New No-Equilibrium Chaotic System and Its Topological Horseshoe Chaos." Advances in Mathematical Physics 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/3142068.
Full textYUAN, QUAN, and XIAO-SONG YANG. "COMPUTER ASSISTED VERIFICATION OF CHAOS IN THREE-NEURON CELLULAR NEURAL NETWORKS." International Journal of Bifurcation and Chaos 17, no. 12 (December 2007): 4381–86. http://dx.doi.org/10.1142/s0218127407020026.
Full textLi, Qingdu, and Xiao-Song Yang. "A 3D Smale Horseshoe in a Hyperchaotic Discrete-Time System." Discrete Dynamics in Nature and Society 2007 (2007): 1–9. http://dx.doi.org/10.1155/2007/16239.
Full textWang, Lei, XiaoSong Yang, WenJie Hu, and Quan Yuan. "Horseshoe Chaos in a Simple Memristive Circuit." Journal of Applied Mathematics 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/546091.
Full textLi, Chunlai, Lei Wu, Hongmin Li, and Yaonan Tong. "A novel chaotic system and its topological horseshoe." Nonlinear Analysis: Modelling and Control 18, no. 1 (January 25, 2013): 66–77. http://dx.doi.org/10.15388/na.18.1.14032.
Full textFan, Qing-Ju. "Topological horseshoe in nonlinear Bloch system." Chinese Physics B 19, no. 12 (December 2010): 120508. http://dx.doi.org/10.1088/1674-1056/19/12/120508.
Full textZhang, Xu, and Guanrong Chen. "A simple topological model for two coupled neurons." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 7 (July 2022): 073124. http://dx.doi.org/10.1063/5.0097385.
Full textYANG, FANGYAN, QINGDU LI, and PING ZHOU. "HORSESHOE IN THE HYPERCHAOTIC MCK CIRCUIT." International Journal of Bifurcation and Chaos 17, no. 11 (November 2007): 4205–11. http://dx.doi.org/10.1142/s0218127407019743.
Full textLEFRANC, MARC, and PIERRE GLORIEUX. "TOPOLOGICAL ANALYSIS OF CHAOTIC SIGNALS FROM A CO2 LASER WITH MODULATED LOSSES." International Journal of Bifurcation and Chaos 03, no. 03 (June 1993): 643–50. http://dx.doi.org/10.1142/s0218127493000544.
Full textLi, Qingdu. "A topological horseshoe in the hyperchaotic Rössler attractor." Physics Letters A 372, no. 17 (April 2008): 2989–94. http://dx.doi.org/10.1016/j.physleta.2007.11.071.
Full textTakeuchi, Noriaki, Tachiki Nagai, and Takashi Matsumoto. "Topological horseshoe in the R-L-diode circuit." Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 84, no. 3 (2000): 91–100. http://dx.doi.org/10.1002/1520-6440(200103)84:3<91::aid-ecjc10>3.0.co;2-y.
Full textCHEN, FENG-JUAN, JI-BIN LI, and FANG-YUE CHEN. "HORSESHOE IN RTD-BASED CELLULAR NEURAL NETWORKS." International Journal of Bifurcation and Chaos 18, no. 03 (March 2008): 689–94. http://dx.doi.org/10.1142/s0218127408020586.
Full textBoulant, G., M. Lefranc, S. Bielawski, and D. Derozier. "A Nonhorseshoe Template in a Chaotic Laser Model." International Journal of Bifurcation and Chaos 08, no. 05 (May 1998): 965–75. http://dx.doi.org/10.1142/s0218127498000772.
Full textBEDFORD, ERIC, and JOHN SMILLIE. "A symbolic characterization of the horseshoe locus in the Hénon family." Ergodic Theory and Dynamical Systems 37, no. 5 (March 8, 2016): 1389–412. http://dx.doi.org/10.1017/etds.2015.113.
Full textLI, QINGDU, XIAO-SONG YANG, and SHU CHEN. "HYPERCHAOS IN A SPACECRAFT POWER SYSTEM." International Journal of Bifurcation and Chaos 21, no. 06 (June 2011): 1719–26. http://dx.doi.org/10.1142/s0218127411029380.
Full textYANG, XIAO-SONG, and QINGDU LI. "CHAOS IN SIMPLE CELLULAR NEURAL NETWORKS WITH CONNECTION MATRICES SATISFYING DALE'S RULE." International Journal of Bifurcation and Chaos 17, no. 02 (February 2007): 583–87. http://dx.doi.org/10.1142/s0218127407017446.
Full textXi, Lifeng. "Horseshoe effect and topological entropy of one-dimensional maps." Applied Mathematics 11, no. 2 (June 1996): 209–16. http://dx.doi.org/10.1007/bf02662014.
Full text