Academic literature on the topic 'Tomography and anisotropy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tomography and anisotropy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tomography and anisotropy"

1

Carrion, Philip, Jesse Costa, Jose E. Ferrer Pinheiro, and Michael Schoenberg. "Cross‐borehole tomography in anisotropic media." GEOPHYSICS 57, no. 9 (September 1992): 1194–98. http://dx.doi.org/10.1190/1.1443333.

Full text
Abstract:
Anisotropy has significant effect on traveltime cross‐borehole tomography. Even relatively weak anisotropy cannot be ignored if accurate velocity estimates are desired, since isotropic traveltime tomography treats anisotropy as inhomogeneity. Traveltime data in our examples were synthetically generated by a ray‐tracing code for anisotropic media, and the computed quasi‐P‐wave traveltimes were subsequently inverted using the “dual tomography” technique (Carrion, 1991). The results of the tomographic inversion show typical artifacts due to the anisotropy, and that accurate imaging is impossible without taking the anisotropy into account.
APA, Harvard, Vancouver, ISO, and other styles
2

Koren, Zvi, Igor Ravve, Gladys Gonzalez, and Dan Kosloff. "Anisotropic local tomography." GEOPHYSICS 73, no. 5 (September 2008): VE75—VE92. http://dx.doi.org/10.1190/1.2953979.

Full text
Abstract:
Local tomography is interactive, ray-based, residual-interval-parameter analysis for updating background anisotropic velocity parameters. The method operates directly on image gathers generated by anisotropic curved-ray Kirchhoff time migration. A locally 1D, spatially varying, vertical transversely isotropic model is assumed. The background anisotropy parameters are the instantaneous (interval) vertical compression velocity [Formula: see text] and the two Thomsen anisotropy parameters, [Formula: see text] and [Formula: see text]. The interval velocity [Formula: see text] is updated from short-offset reflection events, and [Formula: see text] is updated from available long-offset data. The medium parameters are updated from the top down both vertically and by layers, one parameter at a time. The picked residual-anisotropy parameters correspond to the residual-moveout (RMO) curves that best fit the migrated reflection events. The method is based on splitting the contribution to the computed RMO at a given point into two parts: from overburden residual parameters and from the actual picked residual parameter. This approach allows for direct residual-interval-parameter analysis to be applied in the same way we perform the commonly used residual-effective-parameter analysis. The local tomography enables a controlled interactive estimation of the long-wavelength anisotropy parameters. The reliable anisotropy parameters estimated by the local approach are used as a background (guiding) model for a global tomography. This makes it possible to successfully apply a global constrained inversion that is performed simultaneously for all parameters of all output intervals using detailed RMO information.
APA, Harvard, Vancouver, ISO, and other styles
3

Pratt, R. G., W. J. McGaughey, and C. H. Chapman. "Anisotropic velocity tomography: A case study in a near‐surface rock mass." GEOPHYSICS 58, no. 12 (December 1993): 1748–63. http://dx.doi.org/10.1190/1.1443389.

Full text
Abstract:
Cross‐borehole data were acquired in the surface crown pillar of a massive sulfide ore mine. The data consist of five, two‐dimensional (2-D), cross‐borehole panels, each with approximately 900 source‐receiver pairs. The panels were located within the crown pillar at either side of and within a major subvertical fault zone that intersects the orebody. An initial analysis of the data indicates that the bedrock containing the orebody is seismically anisotropic. A rigorous analysis of the traveltimes using anisotropic velocity tomography confirms the initial assessment that anisotropy exists within the crown pillar rock mass. Anisotropic velocity tomography is the generalization of tomographic methods to anisotropic media. As in any geophysical problem, the data are insufficient to completely resolve the distributions of the rock properties at all scale lengths; we use external constraints on the roughness of the final solution to ensure an algebraically well‐posed problem. Plots of the data residuals (the “traveltime surfaces”) are an essential tool in determining an optimal level of constraint. Of equal importance are plots of the relationship between the solution roughness and the rms level of the residuals. The final results of anisotropic velocity tomography are a set of images (tomograms) of the velocity and selected anisotropy parameters for the five panels. Our images do not contain the distortions typically exhibited when using isotropic tomography in anisotropic media. The velocity tomograms clearly show the geometry of the overburden contact at the top of the bedrock. The anisotropy tomograms show a decrease in anisotropy with depth on two of the panels. They also show a decrease in anisotropy with proximity to the fault zone. These features of the seismic velocity anisotropy are consistent with observations of fracture orientation and distribution. The results of the crosshole data interpretation contribute to the overall site investigation and provide a reliable interrogation of the bulk properties of the rock mass.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Chaoguang, Junru Jiao, Sonny Lin, John Sherwood, and Sverre Brandsberg-Dahl. "Multiparameter joint tomography for TTI model building." GEOPHYSICS 76, no. 5 (September 2011): WB183—WB190. http://dx.doi.org/10.1190/geo2010-0395.1.

Full text
Abstract:
Model building for tilted transversely isotropic media has commonly been performed by a single parameter tomography that updates the velocity in the symmetry direction, while the orientation of the symmetry axis and Thomsen parameters [Formula: see text] and [Formula: see text] are typically estimated from the migration stack and well data. Unfortunately, well data are often not available. In addition, when they are available, their lateral sampling is typically very sparse and their vertical sampling usually spans only a limited range of depths. In order to obtain spatially varying anisotropic models, with or without well data, we developed a multiparameter joint tomographic approach that simultaneously inverts for the velocity in the symmetry axis direction, [Formula: see text] and [Formula: see text]. We derived a set of reflection tomography equations for slowness in the symmetry axis direction and Thomsen parameters [Formula: see text] and [Formula: see text]. In order to address the nonuniqueness of the tomography, we developed a regularization strategy that uses an independent regularization operator and regularization factor for each individual anisotropy parameter. Synthetic tests found that ambiguity exists between the anisotropy parameters and that velocity has a better resolution than [Formula: see text] and [Formula: see text]. They also confirmed that joint tomography provides a better data fit than single parameter tomography. The field example was used to test a way to incorporate the sonic data in the model building process and limit the tomographic updates on certain anisotropy parameters by adjusting the regularization.
APA, Harvard, Vancouver, ISO, and other styles
5

Hadden, Shaun, R. Gerhard Pratt, and Brendan Smithyman. "Anisotropic full-waveform inversion of crosshole seismic data: A vertical symmetry axis field data application." GEOPHYSICS 84, no. 1 (January 1, 2019): B15—B32. http://dx.doi.org/10.1190/geo2017-0790.1.

Full text
Abstract:
Anisotropic waveform tomography (AWT) uses anisotropic traveltime tomography followed by anisotropic full-waveform inversion (FWI). Such an approach is required for FWI in cases in which the geology is likely to exhibit anisotropy. An important anisotropy class is that of transverse isotropy (TI), and the special case of TI media with a vertical symmetry axis (VTI) media is often used to represent elasticity in undeformed sedimentary layering. We have developed an approach for AWT that uses an acoustic approximation to simulate waves in VTI media, and we apply this approach to crosshole data. In our approach, the best-fitting models of seismic velocity and Thomsen VTI anisotropy parameters are initially obtained using anisotropic traveltime tomography, and they are then used as the starting models for VTI FWI within the acoustic approximation. One common problem with the acoustic approach to TI media is the generation of late-arriving (spurious) S-waves as a by-product of the equation system. We used a Laplace-Fourier approach that effectively damps the spurious S-waves to suppress artifacts that might otherwise corrupt the final inversion results. The results of applying AWT to synthetic data illustrate the trade-offs in resolution between the two parameter classes of velocity and anisotropy, and they also verify anisotropic traveltime tomography as a valid method for generating starting models for FWI. The synthetic study further indicates the importance of smoothing the anisotropy parameters before proceeding to FWI inversions of the velocity parameter. The AWT technique is applied to real crosshole field gathers from a sedimentary environment in Western Canada, and the results are compared with the results from a simpler (elliptical) anisotropy model. The transversely isotropic approach yields an FWI image of the vertical velocity that (1) exhibits a superior resolution and (2) better predicts the field data than does the elliptical approach.
APA, Harvard, Vancouver, ISO, and other styles
6

Michelena, Reinaldo J. "Singular value decomposition for cross‐well tomography." GEOPHYSICS 58, no. 11 (November 1993): 1655–61. http://dx.doi.org/10.1190/1.1443381.

Full text
Abstract:
I perform singular value decomposition (SVD) on the matrices that result in tomographic velocity estimation from cross‐well traveltimes in isotropic and anisotropic media. The slowness model is parameterized in four ways: One‐dimensional (1-D) isotropic, 1-D anisotropic, two‐dimensional (2-D) isotropic, and 2-D anisotropic. The singular value distribution is different for the different parameterizations. One‐dimensional isotropic models can be resolved well but the resolution of the data is poor. One‐dimensional anisotropic models can also be resolved well except for some variations in the vertical component of the slowness that are not sensitive to the data. In 2-D isotropic models, “pure” lateral variations are not sensitive to the data, and when anisotropy is introduced, the result is that the horizontal and vertical component of the slowness cannot be estimated with the same spatial resolution because the null space is mostly related to horizontal and high frequency variations in the vertical component of the slowness. Since the distribution of singular values varies depending on the parametrization used, the effect of conventional regularization procedures in the final solution may also vary. When the model is isotropic, regularization translates into smoothness, and when the model is anisotropic regularization not only smooths but may also alter the anisotropy in the solution.
APA, Harvard, Vancouver, ISO, and other styles
7

Gao, Zirui, Manuel Guizar-Sicairos, Viviane Lutz-Bueno, Aileen Schröter, Marianne Liebi, Markus Rudin, and Marios Georgiadis. "High-speed tensor tomography: iterative reconstruction tensor tomography (IRTT) algorithm." Acta Crystallographica Section A Foundations and Advances 75, no. 2 (February 6, 2019): 223–38. http://dx.doi.org/10.1107/s2053273318017394.

Full text
Abstract:
The recent advent of tensor tomography techniques has enabled tomographic investigations of the 3D nanostructure organization of biological and material science samples. These techniques extended the concept of conventional X-ray tomography by reconstructing not only a scalar value such as the attenuation coefficient per voxel, but also a set of parameters that capture the local anisotropy of nanostructures within every voxel of the sample. Tensor tomography data sets are intrinsically large as each pixel of a conventional X-ray projection is substituted by a scattering pattern, and projections have to be recorded at different sample angular orientations with several tilts of the rotation axis with respect to the X-ray propagation direction. Currently available reconstruction approaches for such large data sets are computationally expensive. Here, a novel, fast reconstruction algorithm, named iterative reconstruction tensor tomography (IRTT), is presented to simplify and accelerate tensor tomography reconstructions. IRTT is based on a second-rank tensor model to describe the anisotropy of the nanostructure in every voxel and on an iterative error backpropagation reconstruction algorithm to achieve high convergence speed. The feasibility and accuracy of IRTT are demonstrated by reconstructing the nanostructure anisotropy of three samples: a carbon fiber knot, a human bone trabecula specimen and a fixed mouse brain. Results and reconstruction speed were compared with those obtained by the small-angle scattering tensor tomography (SASTT) reconstruction method introduced by Liebiet al.[Nature(2015),527, 349–352]. The principal orientation of the nanostructure within each voxel revealed a high level of agreement between the two methods. Yet, for identical data sets and computer hardware used, IRTT was shown to be more than an order of magnitude faster. IRTT was found to yield robust results, it does not require prior knowledge of the sample for initializing parameters, and can be used in cases where simple anisotropy metrics are sufficient,i.e.the tensor approximation adequately captures the level of anisotropy and the dominant orientation within a voxel. In addition, by greatly accelerating the reconstruction, IRTT is particularly suitable for handling large tomographic data sets of samples with internal structure or as a real-time analysis tool during the experiment for online feedback during data acquisition. Alternatively, the IRTT results might be used as an initial guess for models capturing a higher complexity of structural anisotropy such as spherical harmonics based SASTT in Liebiet al.(2015), improving both overall convergence speed and robustness of the reconstruction.
APA, Harvard, Vancouver, ISO, and other styles
8

Leinss, S., H. Löwe, M. Proksch, J. Lemmetyinen, A. Wiesmann, and I. Hajnsek. "Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series." Cryosphere Discussions 9, no. 6 (November 5, 2015): 6061–123. http://dx.doi.org/10.5194/tcd-9-6061-2015.

Full text
Abstract:
Abstract. Snow settles under the force of gravity and recrystallizes by vertical temperature gradients. Both effects are assumed to form oriented ice crystals which induce an anisotropy in mechanical, thermal, and dielectric properties of the snow pack. On microscopic scales, the anisotropy could be hitherto determined only from stereology or computer tomography of samples taken from snow pits. In this paper we present an alternative method and show how the anisotropy of a natural snow pack can be observed contact- and destruction-free with polarimetric radar measurements. The copolar phase differences (CPD) of polarized microwaves transmitted through dry snow were analyzed for four winter seasons (2009–2013) from the SnowScat Instrument, installed at a test site near the town of Sodankylä, Finnland. An electrodynamic model was established based on anisotropic optics and on Maxwell–Garnett-type mixing formulas to provide a link between the structural anisotropy and the measured CPD. The anisotropy values derived from the CPD were compared with in-situ anisotropy measurements obtained by computer tomography. In addition, we show that the CPD measurements obtained from SnowScat show the same temporal evolution as space-borne CPD measurements from the satellite TerraSAR-X. The presented dataset provides a valuable basis for the future development of snow models capable of including the anisotropic structure of snow.
APA, Harvard, Vancouver, ISO, and other styles
9

Pratt, R. Gerhard, and Mark S. Sams. "Reconciliation of crosshole seismic velocities with well information in a layered sedimentary environment." GEOPHYSICS 61, no. 2 (March 1996): 549–60. http://dx.doi.org/10.1190/1.1443981.

Full text
Abstract:
In sedimentary environments, horizontal fine layering can cause significant complications when analyzing and comparing seismic data with different frequencies and propagation directions. At the Whitchester test site, three boreholes penetrate upper Carboniferous cyclical sediments, involving interbedded carbonates, sandstones, and mudstones, with seismic velocities ranging from less than 3.0 km/s in the mudstones to over 4.5 km/s in the carbonates. Initial crosshole results from two boreholes approximately 200 m deep and 75 m apart showed a poor correlation with the borehole logs recorded in a third, intermediate borehole. Furthermore, the tomographic images were inconsistent with the expected geology. The objective of this paper is to reconcile the crosshole seismic data with the borehole log information. The borehole information must be upscaled to match the resolution of the crosshole experiment. However, upscaling techniques based on Backus averaging lead to the prediction of significant anisotropy (of the order of 20% in places) with a vertical symmetry axis. This anisotropy is a result of a combination of fine layering and the intrinsic mineral anisotropy measured on the core samples, although it is the layer‐induced anisotropy that dominates at the crosshole frequencies of 400 Hz. This prediction was tested by including anisotropy parameters into the analysis of the crosshole data, using anisotropic velocity tomography. In the central part of the final anisotropic velocity tomograms, where the ray coverage is adequate, these crosshole results are consistent with the anisotropy predictions. Once the anisotropy was properly accounted for, the tomographic images are consistent with the layered nature of the geology at the site, and they show the location and throw of a known fault in the section. We conclude that, at this site and at crosshole frequencies, seismic layer‐induced anisotropy plays a significant role and must be accounted for when processing and interpreting crosshole seismic data.
APA, Harvard, Vancouver, ISO, and other styles
10

Han, S.-M., and J.-Y. Rho. "Dependence of broadband ultrasound attenuation on the elastic anisotropy of trabecular bone." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 212, no. 3 (March 1, 1998): 223–26. http://dx.doi.org/10.1243/0954411981534006.

Full text
Abstract:
The effect of trabecular elastic anisotropy on broadband ultrasound attenuation (BUA) and bone mineral density (BMD) was investigated with human and bovine cubic cancellous bones. Ultrasonic parameters describing trabecular anisotropy were found from the three orthogonal ultrasound velocities. BMD was measured using quantitative computed tomography. Three elastic anisotropy ratios were compared to BUA in all three directions and to BMD. The combined effect of anisotropic characteristics and BMD was also correlated with BUA. The results showed that the anisotropy ratios were significantly related to BUA (p<0.05). There was, however, no correlation between BMD and the elastic anisotropy ratios. The combination of BMD and the anisotropy produced a significantly enhanced relationship with BUA.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Tomography and anisotropy"

1

Zhang, Qie Sandvol Eric Alan. "Seismic tomography and anisotropy: studies of intraplate seismic zones." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6855.

Full text
Abstract:
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 24, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Eric Sandvol. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
2

Segovia-Martinez, Manuel. "Texture anisotropy analysis of brain scans." Thesis, University of Surrey, 2001. http://epubs.surrey.ac.uk/844053/.

Full text
Abstract:
Currently, the world population is aging. People over 75 is one of the fastest growing age groups. This is the group most affected by Alzheimer's disease. Reliable early diagnosis and tracking methods are essential to assist therapy and prevention. This research aims to study anisotropy texture in tomographic brain scans to diagnose and quantify the severity of Alzheimer's disease. A full methodology to study computer tomography, magnetic resonance imaging and multispectral magnetic resonance imaging is presented in this thesis. Before applying any texture method to the tomographic brain images, a segmentation technique has to be used to extract the different regions of interest. We propose the use of connected filters and iterative region merging to perform the segmentation. Gradient vector histogram is applied to study the texture anisotropy of computer tomography scans. Computer tomography scans present evidence of texture changes in demented subjects compare to normal subjects. The overlap between these groups is considerable, so anisotropy texture using computer tomography does not seem to add more useful information to the diagnosis of Alzheimer's disease than other clinical criteria. Another method to study texture anisotropy is grey-level dependance histogram, which is based in a 3D generalisation for arbitrary orientation of the 2D co-occurrence matrices. This texture technique is applied to magnetic resonance imaging scans, where features extracted from the grey matter component have a strong correlation with the mini mental state examination1 scores. Finally, Multispectral Grey-Level Dependence Histogram (MGLDH), Absolute Difference Histogram (ADH) and spatial correlations are texture techniques designed to study multispectral images. These techniques are applied to multispectral magnetic resonance images. We evaluate the performance of the different multispectral texture methods, and compare them with single channel texture methods.
APA, Harvard, Vancouver, ISO, and other styles
3

Hammond, William Charles. "Dynamics, flow and melt content of the Southern East Pacific Rise upper mantle from teleseismic tomography /." view abstract or download file of text, 2000. http://wwwlib.umi.com/cr/uoregon/fullcit?p9998033.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2000.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 139-151). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Hui Ph D. Massachusetts Institute of Technology. "Ambient noise tomography for wavespeed and anisotropy in the crust of southwestern China." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87518.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references.
The primary objective of this thesis is to improve our understanding of the crustal structure and deformation in the southeastern Tibetan Plateau and adjacent regions using surface wave tomography. Green's functions for Rayleigh and Love waves are extracted from ambient noise interferometry. Using the Green's functions, we first conduct traditional traveltime tomography for the two shear wavespeeds Vsv and Vsh Their differences are measured as radial anisotropy. We then conduct Eikonal tomography to study azimuthal anisotropy in the crust. Our tomography results are well consistent with geology in the study region. In the Sichuan Basin, low wavespeed and positive radial anisotropy (Vsh> Vsv) in the upper crust reflect thick sedimentary layers at surface; high wavespeed and small radial anisotropy in the middle and lower crust reflect a cold and rigid basin root. Little azimuthal anisotropy is observed in the Basin, indicating small internal deformation. In the Tibetan Plateau, we observe widespread low wavespeed zones with positive anisotropy in the middle and lower crust, which may reflect combined effects of weakened rock mechanism and horizontal flow in the deep crust of southeastern Tibet. The northern part of the Central Yunnan block, which geographically coincides with the inner zone of the Emeishan flood basalt, reveals relatively higher wavespeeds than the surrounding regions and little radial anisotropy throughout the entire crust. We speculate that the high wavespeeds and small radial anisotropy are due to combined effects of the remnants of intruded material from mantle with sub-vertical structures and channel flow with sub-horizontal structures. In general, the azimuthal anisotropy in our study region is consistent with a clockwise rotation around the Eastern Himalayan Syntaxis. Careful examination reveals large angular differences between the azimuthal anisotropy in the upper and lower crust, suggesting different deformation patterns at the surface and in depth. Therefore, our tomography results support models with ductile flow in the deep crust of the southeastern Tibetan Plateau; however, the large lateral variation of both wavespeeds and anisotropy indicates that the flow also varies greatly in intensity and pattern in different geological units.
by Hui Huang.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
5

Bui, Truong Son. "Caractérisation et modélisation de l’endommagement des géomatériaux par méthode ultrasonore." Thesis, Orléans, 2014. http://www.theses.fr/2014ORLE2018/document.

Full text
Abstract:
Ce travail de recherche est consacré à l’étude de l’endommagement des géomatériaux en utilisant la méthode non destructive par ultrasons. Pour atteindre cet objectif, nous développons dans un premier temps un dispositif à ultrasons modern et novateur qui, en combinant avec un système de sollicitation mécanique, permet de caractériser le processus de l’endommagement du matériau au cours des essais telle que la compression uniaxiale/triaxiale. Plus précisément, le système ultrasonore construit comporte 96 voies et au cours des essais il est capable de mesurer de manière continue les trois types des ondes grâces aux capteurs piézoélectriques spécifiques.L’application de ce système ultrasonore à la caractérisation de l’endommagement des géomatériaux à matrice cimentaire a montré l’efficacité de cette approche. Au cours des essais de compression uniaxiale, l’évolution de la vitesse et de l’atténuation de trois types d’onde a été mise en évidence comme conséquence de l’endommagement au sein du matériau. Nous nous intéressons dans un deuxième temps l’application du système ultrasonore à capturer les images d’endommagement progressif à travers les tomographies des vitesses et de l’atténuation des ondes. L’étude sur les éprouvettes de mortier donne des résultats concordants avec les observations, surtout à la rupture, bien que la résolution reste assez grossière. La dernière partie de ce travail de recherche vise à modéliser l’endommagement du matériau par une approche dite changement d’échelle. Un modèle conceptuel est proposé pour ce type de matériau qui permet de prendre en compte deux mécanismes principaux d’endommagement : la propagation des fissures au sein de la matrice cimentaire et la décohésion entre les inclusions et la matrice. Via un schéma d’homogénéisation en deux étapes, l’influence de ces mécanismes sur l’évolution des vitesses des ondes ultrasonores a été élucidée. Une comparaison des prédictions numériques avec les résultats expérimentaux permet de valider le modèle utilisé
This research is devoted to study the damage of geomaterials using the nondestructive method like ultrasound. To this aim, we develop in the first step a modern and innovative system of ultrasound which, in combining with a mechanical system, can characterize the process of damage in material during the tests such as uniaxial/triaxial compression. More specifically, our ultrasonic system comprises 96 channels and can be able to measure continuously the three types of waves thanks to the specific piezoelectric sensors.The application of the developped system for characterization of the damage of a cement-based géomatériaux showed the efficacy of this approach. Under uniaxial loading, the evolution of the ultrasonic velocities and the attenuation of three types of wave have been detected as a result of damage within the material.We are interested in the second step the application of the ultrasonic system on the tomography (such as the velocities and attenuation) of damage during loading of materials. The study on some mortar specimens give good agreement between the obtained results and the observations, especially at failure , although the resolution is fairly coarse. The last part of this research is to model the damage of material by using a so-called up-scaling approach. A conceptual model is proposed for this type of material that allows to take into account two main damage mechanisms: crack in the cement matrix and debonding effect between the matrix and inclusions. Via a scheme of homogenization in two steps, the impact of such mechanisms on the evolution of velocities of the ultrasonic waves has been elucidated. The comparison of numerical predictions with experimental results allows validating the model
APA, Harvard, Vancouver, ISO, and other styles
6

Salaun, Gwénaëlle. "Structure et déformation du manteau supérieur de la région Egée-Anatolie par tomographie en ondes de Rayleigh." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENU025/document.

Full text
Abstract:
La tectonique actuelle et récente (~40 Ma) de la région Egée-Anatolie en fait un laboratoire naturel privilégié pour l'étude de la déformation continentale. L'analyse de la structure détaillée et de la déformation du manteau de cette zone de collision continentale immature constitue une étape indispensable pour comprendre les relations entre la cinématique de surface et la dynamique du manteau. La structure du manteau supérieur a été étudiée à l'échelle de la région en réalisant un modèle 3-D de la vitesse des ondes S par tomographie télésismique en ondes de surface. Les résolutions latérale (~100-200 km) et verticale (~50 km) des images obtenues, grâce à l'utilisation d'un réseau sismologique large bande composé de ~150 stations (permanentes et temporaires (expérience SIMBAAD), apporte de nouvelles contraintes sur la structure du manteau de la Grèce continentale à l'Anatolie centrale. Cette tomographie révèle notamment des corrélations verticales claires entre les géométries des déchirures affectant le slab Hellénique et celles des zones de cisaillement trans-tensives qui accommodent le mouvement rapide du bloc Egéen vers le SW. Le slab Chypriote est clairement imagé dans le modèle 3-D comme plissé et déchiré en plusieurs segments sous l'Anatolie. L'analyse de l'anisotropie azimutale par méthode de réseau sur les ondes de Rayleigh a permis de proposer l'existence de deux couches anisotropes dans le manteau supérieur. L'étude de variations latérales de l'anisotropie sous la région suggère que la déformation des slabs et la cinématique de surface sont contrôlées par des flux mantelliques toroïdaux de différentes échelles
The last ~40 M.y. tectonics of the Aegean-Anatolia region has shaped a natural laboratory ideal to study the continental deformation processes. The detailed analysis of the mantle structure and deformation of this non-mature continental collision zone constitutes an essential step to investigate the contribution of mantle dynamics to surface kinematics. The upper mantle structure is investigated over the entire region through a new 3-D S-wave velocity model from surface-wave tomography. The model reveals remarkable vertical correlations between geometries of the Hellenic slab tears and geometries of shear zones which accommodate the rapid SW movement of the Aegean bloc. The Cyprus slab is clearly identified in the 3-D model as fold and torn in tree segments beneath Anatolia. The observed azimuthal anisotropy from Rayleigh-wave array analysis suggests the existence of two anisotropic layers in the upper mantle. The lateral variations of anisotropy beneath the region are interpreted as the indication of toroidal mantle flows at different scales governing the slabs deformation and the surface kinematics
APA, Harvard, Vancouver, ISO, and other styles
7

Paridis, Kyriakos Costas. "The inverse conductivity problem : anisotropy, finite elements and resistor networks." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/the-inverse-conductivity-problem-anisotropy-finite-elements-and-resistor-networks(db58b164-9b6e-45f3-b4b9-4f5935c40e48).html.

Full text
Abstract:
EIT is a method of imaging that exists for a century, initially in geophysics and in recent years in medical imaging. Even though the practical applications of EIT go back to the early 20th century the systematic study of the inverse conductivity problem started in the late 1970s, hence many aspects of the problem remain unexplored. In the study of the inverse conductivity problem usually Finite Element Models are used since they can be easily adapted for bodies of irregular shapes. In this work though we use an equivalent approximation, the electrical resistor network, for which many uniqueness results as well as reconstruction algorithms exist. Furthermore resistor networks are important for EIT since they are used to provide convenient stable test loads or phantoms for EIT systems. In this thesis we study the transfer resistance matrix of a resistor network that is derived from n-port theory and review necessary and sufficient conditions for a matrix to be the transfer resistance of a planar network. The so called “paramountcy” condition may be useful for validation purposes since it provides the means to locate problematic electrodes. In the study of resistor networks in relation to inverse problems it is of a great importance to know which resistor networks correspond to some Finite Element Model. To give a partial answer to this we use the dual graph of a resistor network and we represent the voltage by the logarithm of the circle radius. This representation in combination with Duffin’s non-linear resistor network theory provides the means to show that a non-linear resistor network can be embedded uniquely in a Euclidean space under certain conditions. This is where the novelty of this work lies.
APA, Harvard, Vancouver, ISO, and other styles
8

Burr, Alexis. "Investigation of pore closure during polar firn densification." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI089/document.

Full text
Abstract:
.La densification du névé en glace est un processus essentiel à comprendre pour interpréter les enregistrements climatiques. Une bonne connaissance des mécanismes permet une datation précise de l'air capturé dans la glace lors de la fermeture des pores. Celle-ci est plus vieille que l'air capturé à cause du transport des gaz dans la colonne de névé plus rapide que la densification de celui-ci. Cette différence d'âge entre la glace et le gaz est généralement appelé le Δage. La densification de la neige consiste en un processus complexe de réarrangement de grains, de frittage et de déformation viscoplastique. Bien que le comportement viscoplastique du cristal de glace soit fortement anisotrope, les modèles de densification actuels ne tiennent pas compte de cette anisotropie. De plus, le caractère granulaire du névé affecte aussi sa densification. La relation entre la fermeture des pores et les mécanismes microstructuraux sous-jacents est encore méconnue. Le but de cette thèse est d'incorporer l'aspect granulaire ainsi que l'anisotropie du cristal de glace dans une approche de modélisation innovante de la densification. Des expériences sur l'indentation viscoplastique de cylindres monocristallins de glace ont été réalisées pour proposer une loi de contact basée sur la théorie de l'indentation, et prenant en compte la déformation préférentielle du cristal de glace sur les plans basaux. Cette loi de contact a été implémentée dans un code utilisant la méthode des éléments discrets pour prédire la densification du névé.La micro-tomographie aux rayons X a été utilisée pour caractériser ex situ le névé polaire en trois dimensions à différentes étapes de la densification (ρ= 0.55-0.88 g/cm3), i.e. pour différentes profondeurs (~23 à 130m). Une étude fine de la fermeture des pores et de différentes caractéristiques morphologiques et physiques a été réalisée pour les sites polaires Dome C et Lock In. Des essais mécaniques ont aussi été réalisés in situ sur du névé extrait de Dome C dans le but de modéliser la densification du névé. Les observations microstructurales des expériences ex situ et in situ révèlent d'importantes différences dues aux vitesses relativement importantes utilisées lors des essais mécaniques. Ces vitesses rapides permettent de découpler la contribution des cinétiques de diffusion de la contribution viscoplastique de la déformation. Les effets de ces contributions sur la morphologie des pores et leurs fermetures sont discutés. Pour caractériser la fermeture des pores, cette thèse propose un indice de connectivité définit par le ratio entre le volume du plus gros pore sur la porosité totale. En effet, cet indice est plus approprié lors de l'utilisation de la tomographie aux rayons X que le ratio de pores fermés pour prédire la densité au close-off
Densification from firn to ice is an essential phenomenon to understand for the interpretation of the climate record. A good knowledge of this mechanism enables the precise dating of the air embedded in the ice. The step at which the air becomes entrapped is the pore closure (or close-off). Because of gas flow in the firn column, the ice is older than the entrapped air. The difference between ice and gas is generally defined as Δage.Snow densification consists of grain rearrangements, sintering and viscoplastic deformation. Although the viscoplastic behaviour of the ice crystal is strongly anisotropic, densification models do not take into account this anisotropy. Firn also bears some granular characteristics that may affect its densification. The interactions between pore closure and microstructural mechanisms in the firn are still misunderstood.The aim of this PhD thesis is to incorporate both the granular aspect of firn and its anisotropy into an innovating approach of firn densification modelling. The mutual indentation of viscoplastic monocrystalline ice cylinders was experimentally carried out to propose a contact law that is based on indentation theory and that takes into account the preferential viscoplastic deformation on the basal plane. We have integrated this contact law into a DEM (Discrete Element Method) code for the prediction of firn densification.3D X-ray micro-tomography was performed on polar firn at different stages of the densification (ρ= 0.55-0.88 g/cm3) and depths (~23 to 130m). A thorough investigation of pore closure and of different morphological and physical parameters was achieved for the Dome C and the newly drilled Lock In polar sites. In addition to these ex situ analyses, in situ X-ray micro-mechanical experiments were carried out on firn extracted from Dome C in order to model its densification. Ex situ and in situ microstructural observations indicate significant differences that can be explained by the relatively large strain-rates imposed to the firn during in situ tests. These large strain rates allow for a decoupling of the effects of diffusion kinetics and of viscoplastic deformation. Their relative weights on the morphology of pores and on their closure are discussed. To measure pore closure, we propose a connectivity index, which is the ratio of the largest pore volume over the total pore volume. We show that this index is better suited for X-ray tomography analysis than the classic closed porosity ratio to predict the close-off density
APA, Harvard, Vancouver, ISO, and other styles
9

Estève, Clément. "Evolution and Tectonics of the Lithosphere in Northwestern Canada." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41097.

Full text
Abstract:
The lithosphere of northwestern Canada recorded more than 2.5 Gy of complex tectonic evolution, from the formation of the ancient cores of the continental lithosphere such as the Slave craton to the Phanerozoic Cordilleran orogeny with substantial variations in crust and upper mantle structures that led to the concentration of natural resources (i.e., diamonds in cratons). Present-day northwestern Canada juxtaposes a thin and hot Cordilleran lithosphere to the thick and cold cratonic lithosphere, which has important implications for regional geodynamics. Recently, seismic station coverage has drastically increased across northwestern Canada, allowing the development of seismic tomography models and other passive-source seismic methods at high resolution in order to investigate the tectonic evolution and dynamics of the lithosphere in this region. The P- and S-wave upper mantle structures of northwestern Canada reveal that the distribution of kimberlite fields in the Slave craton correlates with the margin of fast and slow seismic mantle anomalies, which could delineate weak zones in the lithosphere. Based on our tomographic models we identify two high-velocity seismic anomalies straddling the arcuate Cordillera Deformation Front that have controlled its regional deformation, including a newly identified Mackenzie craton characterized by high seismic velocities extending from the lower crust to the upper mantle to the north of the Mackenzie Mountains. Furthermore, our P-wave tomography model shows sharp velocity contrasts beneath the surface trace of the Tintina Fault. Estimates of seismic anisotropy show a progressive rotation of fast-axis directions when approaching the fault zone. Together, they provide seismic evidence for the trans-lithospheric nature of the Tintina Fault. We further propose that the Tintina Fault has chiseled off small pieces of the Laurentian craton between the Late Cretaceous and the Eocene, which would imply that large lithospheric-scale shear zones are able to cut through small pieces of refractory cratonic mantle and transport them over several hundred kilometers.
APA, Harvard, Vancouver, ISO, and other styles
10

VanderBeek, Brandon. "New Perspectives on Mid-Ocean Ridge Magmatic Systems and Deformation in the Uppermost Oceanic Mantle from Active- and Passive-Source Seismic Imaging in Cascadia." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24205.

Full text
Abstract:
In this dissertation, I use seismic imaging methods to constrain the evolution of the oceanic upper mantle across the Juan de Fuca (JdF) and Gorda plates. This work begins by studying the geometry of the mantle magmatic system and patterns of mantle flow beneath the northern JdF ridge in relation to ridge-parallel changes in accretionary processes. I find that the dynamics of lithospheric rifting exert the primary control on the distribution of shallow mantle melts and variations in crustal thickness and composition. The orientation of mantle divergence beneath the JdF ridge, as inferred from seismic anisotropy, is oblique to the overlying plate divergence direction. Similar observations made at the East Pacific Rise and Mid-Atlantic ridge suggest plate motions alone do not control mantle flow patterns. On the contrary, stresses exerted at the base of the plate by the asthenospheric flow field may contribute to changes in plate motion prompting a reorientation of oceanic spreading segments. The mantle anisotropic fabric of the JdF plate interior is then investigated to identify whether the rotated mantle flow field observed beneath the JdF ridge persisted throughout the recent geologic past. However, observations suggest that the anisotropic structure created at the ridge partially reorganizes off-axis obscuring the paleo-flow geometry. Next, I focus on how the physical state of the oceanic lithosphere evolves with time. Using local earthquake arrival times I test whether the seismic velocity structure of the upper mantle lithosphere is thermally controlled or dominated by heterogeneities introduced upon accretion at the ridge or by subsequent deformation off axis. Despite extensive surficial evidence of faulting across the Gorda plate, deformation appears to be restricted to crustal depths and mantle velocities are explained by conductive cooling. In contrast, the velocity structure of the JdF plate is inconsistent with conductively-cooled mantle. Hydration of the mantle lithosphere associated with tectonic discontinuities is invoked to explain anomalously slow P-wave speeds. Lastly, a joint inversion of teleseismic body and surface wave data is proposed to image the geometry of mantle upwelling and melt production beneath the JdF and Gorda Ridges. This dissertation includes previously published and unpublished coauthored material.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Tomography and anisotropy"

1

J, Mezcua, and Carreño E, eds. Iberian lithosphere heterogeneity and anisotropy, ILIHA. Madrid: Instituto Geográfico Nacional, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Yu-Pin. Isotropic and Anisotropic Seismic Tomography Using Active Source and Earthquake Records. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5068-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Yu-Pin. Isotropic and Anisotropic Seismic Tomography Using Active Source and Earthquake Records. Springer, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Isotropic and Anisotropic Seismic Tomography Using Active Source and Earthquake Records. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Tomography and anisotropy"

1

Lin, Yu-Pin. "Full-Wave Multiscale Anisotropy Tomography in Southern California." In Isotropic and Anisotropic Seismic Tomography Using Active Source and Earthquake Records, 71–88. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5068-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Creager, Kenneth C. "Inner core anisotropy and rotation." In Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, 89–114. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm117p0089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rørvik, Stein, and Lorentz Petter Lossius. "Measurement of Anode Anisotropy by Micro X-Ray Computed Tomography." In Light Metals 2019, 1293–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05864-7_159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kendall, J.-M. "Seismic anisotropy in the boundary layers of the mantle." In Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, 133–59. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm117p0133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mainprice, D., G. Barruol, and W. Ben Ismaïl. "The Seismic anisotropy of the Earth's mantle: From single crystal to polycrystal." In Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, 237–64. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm117p0237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moreno, Rodrigo, Magnus Borga, Eva Klintström, Torkel Brismar, and Örjan Smedby. "Anisotropy Estimation of Trabecular Bone in Gray-Scale: Comparison Between Cone Beam and Micro Computed Tomography Data." In Lecture Notes in Computational Vision and Biomechanics, 207–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13407-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Forte, Alessandro M. "Seismic-geodynamic constraints on mantle flow: Implications for layered convection, mantle viscosity, and seismic anisotropy in the deep mantle." In Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, 3–36. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm117p0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chandran, Vimal, Philippe Zysset, and Mauricio Reyes. "Prediction of Trabecular Bone Anisotropy from Quantitative Computed Tomography Using Supervised Learning and a Novel Morphometric Feature Descriptor." In Lecture Notes in Computer Science, 621–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24553-9_76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jansen, D. P., T. Chow, D. A. Hutchins, and R. P. Young. "Ultrasonic Tomographic Imaging of Anisotropic Solids." In Acoustical Imaging, 59–63. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3370-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bodin, Thomas, Yann Capdeville, Barbara Romanowicz, and Jean-Paul Montagner. "Interpreting Radial Anisotropy in Global and Regional Tomographic Models." In The Earth's Heterogeneous Mantle, 105–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15627-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Tomography and anisotropy"

1

Korta Martiartu, Naiara, Saule Simute, Christian Boehm, Lisa Ruby, Thomas Frauenfelder, Andreas Fichtner, Marga Rominger, and Sergio J. Sanabria. "Speed-of-sound anisotropy estimation using reflector-based pulse-echo ultrasound." In Ultrasonic Imaging and Tomography, edited by Nicole V. Ruiter and Brett C. Byram. SPIE, 2021. http://dx.doi.org/10.1117/12.2580952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kirby, Mitchell A., Peijun Tang, Maju Kuriakose, Matthew O’Donnell, Ruikang K. Wang, Russell Ettinger, Tam Pham, and Ivan Pelivanov. "Probing Elastic Anisotropy in Human Skin in vivo with Acoustic micro-tapping OCE and Polarization-sensitive OCT." In Optical Coherence Tomography. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/oct.2022.cs4e.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rudling, C. J., A. Riaz, and J. Smith. "Azimuthal Anisotropy Resolved By Tilted Orthorhombic Tomography." In First EAGE/PESGB Workshop on Velocities. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stekl, I., A. Umpleby, and M. Warner. "Seismic anisotropy effects in 3D wavefield tomography." In 72nd EAGE Conference and Exhibition - Workshops and Fieldtrips. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609.20149940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rao, Y., and Y. H. Wang. "Crosshole Seismic Tomography Including the Anisotropy Effect." In 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011. Netherlands: EAGE Publications BV, 2011. http://dx.doi.org/10.3997/2214-4609.20149052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soloviev, A. P., M. I. Perchenko, and O. V. Zyuryukina. "Effect of scattering anisotropy on acoustooptic tomography signal." In Saratov Fall Meeting and Workshop on Laser Physics and Photonics 2012, edited by Valery V. Tuchin, Elina A. Genina, Vladimir L. Derbov, and Igor V. Meglinski. SPIE, 2013. http://dx.doi.org/10.1117/12.2018942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Breckon. "The Problem of Anisotropy in Electrical Impedance Tomography." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.590118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Breckon, William. "The problem of anisotropy in Electrical Impedance Tomography." In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5762015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hossain, Murad, and Caterina M. Gallippi. "On the feasibility of quantifying mechanical anisotropy in transversely isotropic elastic materials using acoustic radiation force (ARF)-induced displacements." In Ultrasonic Imaging and Tomography, edited by Nicole V. Ruiter and Brett C. Byram. SPIE, 2019. http://dx.doi.org/10.1117/12.2511765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Unnikrishnan, Ginu U., Glenn D. Barest, David B. Berry, Amira I. Hussein, and Elise F. Morgan. "Influence of Specimen-Specific Trabecular Anisotropy on QCT-Based Finite Element Analyses of Lumbar Vertebra." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80114.

Full text
Abstract:
Quantitative computed tomography (QCT)-based finite element (FE) models provide better predictions of vertebral strength compared to traditional methods currently used in clinical diagnosis [1]. In QCT-based FE models, the intra- and inter-specimen variations in trabecular anisotropy are often ignored, despite evidence that the biomechanical behavior of the vertebra depends on the architecture of the vertebral trabecular bone [2]. A realistic representation of the specimen-specific, trabecular anisotropy in the FE models of vertebrae would potentially improve predictions of vertebral failure. The overall goal of this study was to evaluate the importance of incorporating specimen-specific, trabecular anisotropy for QCT-based FE predictions of vertebral stiffness and deformation patterns. The major aims of this study were (a) to compare the QCT-based FE results obtained with a constant, anisotropic, material model (the “generic-anisotropic” model) for trabecular bone to those obtained with a specimen-specific, anisotropic, material model and (b) to study the influence of degree of anisotropy (DA) on the FE predictions of vertebral stiffness.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Tomography and anisotropy"

1

Bauer, K., C. Haberland, R. G. Pratt, F. Hou, B E Medioli, and M. H. Weber. Ray-based cross-well tomography for P-wave velocity, anisotropy, and attenuation structure around the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/220883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography