Contents
Academic literature on the topic 'Tôles ferromagnétiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tôles ferromagnétiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tôles ferromagnétiques"
Chabadec, Olivier, Jean-Louis Coulomb, Jean-Paul Bongiraud, and Gilles Cauffet. "Modélisation de tôles ferromagnétiques en problème inverse." Revue internationale de génie électrique 4, no. 1-2 (June 30, 2001): 19–39. http://dx.doi.org/10.3166/rige.4.19-39.
Full textvuillermet, Yannick, Olivier Chedebec, Jean-Louis Coulomb, Laure-Line Rouve, and Gilles Cauffet. "Formulations intégrales magnétostatiques Un bilan pour l'identification de l'aimantation de tôles ferromagnétiques." Revue internationale de génie électrique 10, no. 2-3 (June 28, 2008): 287–302. http://dx.doi.org/10.3166/rige.11.287-302.
Full textDissertations / Theses on the topic "Tôles ferromagnétiques"
Ben, Ismail Anis. "Modélisation de la découpe des tôles ferromagnétiques : corrélation entre l'état mécanique et les propriétés magnétiques." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24600/24600.pdf.
Full textThe correlation between material evolution when dealing with blanking process and the degradation of the magnetic properties constitutes a key point in the design of the electric machines. Moreover, the measurement of the magnetic properties currently constitutes a tool for non destructive testing in rise in industry. Within the framework of a project on this topic, our work concerns the development of a predictive tool to establish a correlation between the blanking process, the state of the material which results from it and the magnetic properties of this last. This study lies within the scope of a collaboration between the University of Technology of Compiegne, Laval University (Quebec, Canada) and CETIM and it were broken up into two parts. The first part was devoted to the analysis and modeling of blanking process. Concerning the experimental aspects of work, uniaxial tensile tests at various strain rates made it possible to reach the mechanical behaviour of material and its sensitivity at the velocity. In addition, blanking tests were carried out in order to analyze the influence of different parameters from the process such as the clearance punch-die and velocity (blanking velocity / strain rate). Concerning the numerical aspects, finite elements modeling need the use of techniques and approaches suitable to treat the multiples non-linearity’s present in this kind of problems. In the second part we were interested in the correlation between the mechanical state of material and its magnetic properties following a punching effect. To reach quantities characteristic of the mechanical state of material in the vicinity of the cut edge, nanoindentation tests were combined with technique of inverse identification. In addition, magnetic measurements carried out on tensile specimen with various strain rates allowed to establish the evolution curve of permeability according to the plastic strain. The combination of these results enabled us to establish a correlation between the mechanical state of material, in particular the plastic strain, and the degradation of its magnetic properties (falls of permeability) in the vicinity of the cut edge.
Ziani, Smail. "Contribution à la modélisation de courts-circuits entre tôles magnétiques." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10192/document.
Full textThe major difficulty to model lamination stacks with defects using finite element method is the multi-scale nature of lamination stacks. Indeed, this important scale factor stays a challenge, because of the fineness of the representation that depends on the number of elements used, which implies memory sizes and excessive computation times making the realization of a fine mesh adapted to the scale of each subdomain unworkable. Thus, the objective of this work was to model lamination stacks containing short-circuit with precision with an acceptable number of unknowns and computation times, by homogenizing volumes that do not necessarily require great precision and leaving subdomains containing defects with fine modeling. The difficulty of this approach is the coupling between the homogenized parts and the heterogeneous materials. The coupling approach allows us to directly obtain the steady state and takes into account the non-linear nature of the ferromagnetic laminations. The coupling approach has been validated by comparing its results to a classical approach without homogenization, especially considering defects under different conditions. Thermal modeling has also been developed to estimate the temperature rise of a defect. Comparing the results of our coupling approach with a conventional approach shows good agreement. These results demonstrate the ability of the proposed coupling approach to model a lamination stacks with defects accurately with computation time reduction
Dehmani, Helmi. "Étude de l’influence du procédé de poinçonnage sur la tenue en fatigue à grand nombre de cycles de tôles minces ferromagnétiques." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0014/document.
Full textNew electrical steel grades, with improved magnetic properties, are used to build electric motors. For these steel grades, the iron losses are reduced by adjusting the chemical composition (mostly the Si content), decreasing the thickness below 0.5 mm and increasing the grain size. The punching is used to produce electric motor components because it generates important alterations of sheet edges, this work aims at elaborating a HCf fatigue design strategy for thin punched electrical steel sheets. First, the quasi-static and cyclic behavior of this electric steel was studied through monotonic and cyclic tests. The behavior model of this material, which will be used in FE simulation, is then identified. The study of the high cycle fatigue (HCF) resistance of this material is performed using smooth and notched specimen’s geometries. The effect of stress ratio, temperature (180°C) and the punching process are considered. Due to its influence on the fatigue resistance, the effect of the punching process is finely investigated. Different experimental techniques such as microscopic observations, 3D surface topography, micro‒hardness and X‒ray diffraction are combined to characterize the specimen’s edges. To dissociate the respective influences of strain hardening, residual stresses and geometrical defects induced by the punching process, and to quantify the contribution of each parameter to the HCF resistance, different specimen’s configurations were tested. A strategy allowing the identification of the critical defects, on which fatigue crack initiation occurs, was adopted. The stress distribution around defects is determined from finite element analyses (FEA) on real defect geometries. A non‒local high cycle fatigue criterion is finally used as post‒processing of FEA to consider the effect of defects and the associated stress-strain gradients in the HCF strength assessment
Marbouh, Othmane. "Capteurs à ondes acoustiques de surface pour la caractérisation multiphysique des propriétés des tôles ferromagnétiques dans les machines électriques de fortes puissances." Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0019.
Full textHigh-power electrical machines are subjected to severe mechanical, thermal, and magnetic stresses during operation. To ensure their reliability and continuous operation, it is crucial to have real-time information on these constraints, often at a local scale. Wireless and battery-free sensor technologies, combined with effective data analysis and signal processing techniques, are essential to meet this need. Surface acoustic waves (SAW) allow the design of wireless and completely passive sensors capable of measuring various physical quantities such as temperature, mechanical stress, and magnetic fields, thanks to advanced design engineering. The work carried out in this thesis has enabled the development of multi-quantity SAW sensors for measuring deformations, temperature, and magnetic fields. These sensors were first calibrated on laboratory test benches and then used to characterize the mechanical properties, such as magnetostriction, and magnetic properties, such as magnetic losses, of ferromagnetic sheets used in the design of high-power electrical machines. Characterizing the properties of ferromagnetic sheets is crucial for several reasons: designing efficient electromagnetic systems, minimizing vibrations and unwanted noise, controlling energy dissipation, preventing material fatigue, optimizing component design for energy efficiency, and developing heat-resistant components for reliability and durability. The thesis project involves JEUMONT Electric (a high-tech company specializing in energy conversion solutions), the AIMAN-FILMS group from IEMN, and the Numerical Tools and Methods team from L2EP. Each partner brings specific expertise to address the multi-physical instrumentation of high-power electrical machines
Chadebec, Olivier. "Modélisation du champ magnétique induit par des tôles - identification de l'aimantation - Application à l'immunisation en boucle fermée d'une coque ferromagnétique." Phd thesis, Grenoble INPG, 2001. http://tel.archives-ouvertes.fr/tel-00010342.
Full textAbabsa, Mohamed Lamine. "Caractérisation de composants magnétiques et diélectriques pour les machines électriques tournantes très haute température High temperature magnetic characterization using an adapted Epstein frame High temperature characterization of electrical steels using an adapted Epstein frame." Thesis, Artois, 2018. http://www.theses.fr/2018ARTO0205.
Full textIn this thesis work, we carried out a magnetic characterization measurements (hysteresis cycles, losses, H_c...) at very high temperatures up to 600 °C, using a characterization device adapted to these extremes conditions which is an Epstein frame that we have developed and implemented. Its validation is verified with a standard frame at ambient temperature. The measurements are performed by two types of ferromagnetic sheets mostly used: FeSi GO and NO. The results show a decrease with temperature in iron losses and different parameters which define the hysteresis cycle, and expose a similarity between the variation of coercive field and the losses per cycle. Subsequently, we described the losses and the coercive field as a function of temperature and frequency. That is done by a linear empirical equations in case of saturated materials and by an extension at high temperature of the Bertotti equation via an identification of its parameters in case of unsaturated materials. In a second phase, by measuring the voltage of partial discharge and of the electrical breakdown we characterized the insulation of a conductor intended to be used at a high temperature covered by mica; this later has an inorganic origin. These results show that the inhomogeneity of this insulation along of the conductor causes destructive discharges without appearance of partial discharges. This kind of wire consists of copper surrounded by a thin nickel layer and this later has been characterized magnetically during our work
"Modélisation de la découpe des tôles ferromagnétiques. Corrélation entre l'état mécanique et les propriétés magnétiques." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24600/24600.pdf.
Full text