Journal articles on the topic 'Tolerance to biotic stress'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Tolerance to biotic stress.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rauwane, Molemi, and Khayalethu Ntushelo. "Understanding Biotic Stress and Hormone Signalling in Cassava (Manihot esculenta): Potential for Using Hyphenated Analytical Techniques." Applied Sciences 10, no. 22 (November 18, 2020): 8152. http://dx.doi.org/10.3390/app10228152.
Full textHamli, S., K. Kadi, I. Bekhouche, I. Harnane, D. Addad, A. Abdelmalek, and N. Harrat. "Involvement of abiotic stress tolerance mechanisms in biotic stress tolerance in durum wheat." Journal of Fundamental and Applied Sciences 12, no. 2 (May 21, 2023): 738–54. http://dx.doi.org/10.4314/jfas.v12i2.15.
Full textBhar, Anirban, and Amit Roy. "Emphasizing the Role of Long Non-Coding RNAs (lncRNA), Circular RNA (circRNA), and Micropeptides (miPs) in Plant Biotic Stress Tolerance." Plants 12, no. 23 (November 23, 2023): 3951. http://dx.doi.org/10.3390/plants12233951.
Full textMarwal, Avinash, Akhilesh Kumar Srivastava, and R. K. Gaur. "Improved plant tolerance to biotic stress for agronomic management." Agrica 9, no. 2 (2020): 84–100. http://dx.doi.org/10.5958/2394-448x.2020.00013.9.
Full textTsaniklidis, Georgios, Polyxeni Pappi, Athanasios Tsafouros, Spyridoula N. Charova, Nikolaos Nikoloudakis, Petros A. Roussos, Konstantinos A. Paschalidis, and Costas Delis. "Polyamine homeostasis in tomato biotic/abiotic stress cross-tolerance." Gene 727 (February 2020): 144230. http://dx.doi.org/10.1016/j.gene.2019.144230.
Full textKandpal, Geeta, and MK Nautiyal. "Silicon solubilizer confers biotic stress tolerance in rice genotypes." International Journal of Agriculture and Nutrition 1, no. 2 (April 1, 2019): 28–30. http://dx.doi.org/10.33545/26646064.2019.v1.i2a.13.
Full textWijerathna-Yapa, Akila, and Jayeni Hiti-Bandaralage. "Tissue Culture—A Sustainable Approach to Explore Plant Stresses." Life 13, no. 3 (March 14, 2023): 780. http://dx.doi.org/10.3390/life13030780.
Full textHuang, Li, Xiangjing Yin, Xiaomeng Sun, Jinhua Yang, Mohammad Rahman, Zhiping Chen, and Xiping Wang. "Expression of a Grape VqSTS36-Increased Resistance to Powdery Mildew and Osmotic Stress in Arabidopsis but Enhanced Susceptibility to Botrytis cinerea in Arabidopsis and Tomato." International Journal of Molecular Sciences 19, no. 10 (September 30, 2018): 2985. http://dx.doi.org/10.3390/ijms19102985.
Full textFan, Jibiao, Weihong Zhang, Erick Amombo, Longxing Hu, Johan Olav Kjorven, and Liang Chen. "Mechanisms of Environmental Stress Tolerance in Turfgrass." Agronomy 10, no. 4 (April 6, 2020): 522. http://dx.doi.org/10.3390/agronomy10040522.
Full textBerens, Matthias L., Katarzyna W. Wolinska, Stijn Spaepen, Jörg Ziegler, Tatsuya Nobori, Aswin Nair, Verena Krüler, et al. "Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk." Proceedings of the National Academy of Sciences 116, no. 6 (January 23, 2019): 2364–73. http://dx.doi.org/10.1073/pnas.1817233116.
Full textShi, Haitao, Tiantian Ye, Ning Han, Hongwu Bian, Xiaodong Liu, and Zhulong Chan. "Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis." Journal of Integrative Plant Biology 57, no. 7 (January 13, 2015): 628–40. http://dx.doi.org/10.1111/jipb.12302.
Full textBetti, Federico, Maria José Ladera-Carmona, Pierdomenico Perata, and Elena Loreti. "RNAi Mediated Hypoxia Stress Tolerance in Plants." International Journal of Molecular Sciences 21, no. 24 (December 10, 2020): 9394. http://dx.doi.org/10.3390/ijms21249394.
Full textKudapa, Himabindu, Abirami Ramalingam, Swapna Nayakoti, Xiaoping Chen, Wei-Jian Zhuang, Xuanqiang Liang, Guenter Kahl, David Edwards, and Rajeev K. Varshney. "Functional genomics to study stress responses in crop legumes: progress and prospects." Functional Plant Biology 40, no. 12 (2013): 1221. http://dx.doi.org/10.1071/fp13191.
Full textSong, Weiyi, Hongbo Shao, Aizhen Zheng, Longfei Zhao, and Yajun Xu. "Advances in Roles of Salicylic Acid in Plant Tolerance Responses to Biotic and Abiotic Stresses." Plants 12, no. 19 (October 4, 2023): 3475. http://dx.doi.org/10.3390/plants12193475.
Full textLi, Xiaoying, Luyue Zhang, Xiaochun Wei, Tanusree Datta, Fang Wei, and Zhengqing Xie. "Polyploidization: A Biological Force That Enhances Stress Resistance." International Journal of Molecular Sciences 25, no. 4 (February 6, 2024): 1957. http://dx.doi.org/10.3390/ijms25041957.
Full textANSARI, Mahmood-ur, Tayyaba SHAHEEN, Shazia Anwer BUKHARI, and Tayyab HUSNAIN. "Genetic improvement of rice for biotic and abiotic stress tolerance." TURKISH JOURNAL OF BOTANY 39 (2015): 911–19. http://dx.doi.org/10.3906/bot-1503-47.
Full textLalotra, Shivani, Akhouri Hemantaranjan, Sanam Kumari, and Bhudeo Rana Yashu. "Jasmonates: An Emerging Approach in Biotic and Abiotic Stress Tolerance." Journal of Plant Science Research 36, no. 1–2 (November 9, 2020): 29–39. http://dx.doi.org/10.32381/jpsr.2020.36.1-2.4.
Full textLimbalkar, Omkar M., Vijay K. Meena, Mandeep Singh, and V. P. Sunilkumar. "Genetic Improvement of Wheat for Biotic and Abiotic Stress Tolerance." International Journal of Current Microbiology and Applied Sciences 7, no. 12 (December 10, 2018): 1962–71. http://dx.doi.org/10.20546/ijcmas.2018.712.226.
Full textJain, Ritika, and Meenu Saraf. "EXPLORING THE ABIOTIC AND BIOTIC STRESS TOLERANCE POTENTIAL OF RHIZOBACTERA ISOLATED FROM CYAMOPSIS." Journal of Advanced Scientific Research 12, no. 03 (August 31, 2021): 190–94. http://dx.doi.org/10.55218/jasr.202112327.
Full textMasmoudi, Fatma, Mohammed Alsafran, Hareb AL Jabri, Hoda Hosseini, Mohammed Trigui, Sami Sayadi, Slim Tounsi, and Imen Saadaoui. "Halobacteria-Based Biofertilizers: A Promising Alternative for Enhancing Soil Fertility and Crop Productivity under Biotic and Abiotic Stresses—A Review." Microorganisms 11, no. 5 (May 9, 2023): 1248. http://dx.doi.org/10.3390/microorganisms11051248.
Full textHura, Tomasz. "Wheat and Barley: Acclimatization to Abiotic and Biotic Stress." International Journal of Molecular Sciences 21, no. 19 (October 8, 2020): 7423. http://dx.doi.org/10.3390/ijms21197423.
Full textZhuang, Wei-Bing, Yu-Hang Li, Xiao-Chun Shu, Yu-Ting Pu, Xiao-Jing Wang, Tao Wang, and Zhong Wang. "The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses." Molecules 28, no. 8 (April 20, 2023): 3599. http://dx.doi.org/10.3390/molecules28083599.
Full textBaillo, Kimotho, Zhang, and Xu. "Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement." Genes 10, no. 10 (September 30, 2019): 771. http://dx.doi.org/10.3390/genes10100771.
Full textBoutet, Gilles, Clément Lavaud, Angélique Lesné, Henri Miteul, Marie-Laure Pilet-Nayel, Didier Andrivon, Isabelle Lejeune-Hénaut, and Alain Baranger. "Five Regions of the Pea Genome Co-Control Partial Resistance to D. pinodes, Tolerance to Frost, and Some Architectural or Phenological Traits." Genes 14, no. 7 (July 4, 2023): 1399. http://dx.doi.org/10.3390/genes14071399.
Full textMoustafa-Farag, Mohamed, Abdulwareth Almoneafy, Ahmed Mahmoud, Amr Elkelish, Marino B. Arnao, Linfeng Li, and Shaoying Ai. "Melatonin and Its Protective Role against Biotic Stress Impacts on Plants." Biomolecules 10, no. 1 (December 28, 2019): 54. http://dx.doi.org/10.3390/biom10010054.
Full textForster, B. P. "Genetic engineering for stress tolerance in the Triticeae." Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 99, no. 3-4 (1992): 89–106. http://dx.doi.org/10.1017/s0269727000005522.
Full textLukács, A., G. Pártay, T. Németh, S. Csorba, and C. Farkas. "Drought stress tolerance of two wheat genotypes." Soil and Water Research 3, Special Issue No. 1 (June 30, 2008): S95—S104. http://dx.doi.org/10.17221/10/2008-swr.
Full textChen, Yudong, Shuai Yang, Jiaxuan Li, Kesu Wei, and Long Yang. "NRD: Nicotiana Resistance Database, a Comprehensive Platform of Stress Tolerance in Nicotiana." Agronomy 12, no. 2 (February 17, 2022): 508. http://dx.doi.org/10.3390/agronomy12020508.
Full textul Haq, Khan, Ali, Khattak, Gai, Zhang, Wei, and Gong. "Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses." International Journal of Molecular Sciences 20, no. 21 (October 25, 2019): 5321. http://dx.doi.org/10.3390/ijms20215321.
Full textShelp, Barry J., Morteza Soleimani Aghdam, and Edward J. Flaherty. "γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities." Plants 10, no. 9 (September 17, 2021): 1939. http://dx.doi.org/10.3390/plants10091939.
Full textAl-Khayri, Jameel M., Ramakrishnan Rashmi, Varsha Toppo, Pranjali Bajrang Chole, Akshatha Banadka, Wudali Narasimha Sudheer, Praveen Nagella, et al. "Plant Secondary Metabolites: The Weapons for Biotic Stress Management." Metabolites 13, no. 6 (May 31, 2023): 716. http://dx.doi.org/10.3390/metabo13060716.
Full textKovács, V., G. Vida, G. Szalai, T. Janda, and M. Pál. "Relationship between biotic stress tolerance and protective compounds in wheat genotypes." Acta Agronomica Hungarica 60, no. 2 (June 1, 2012): 131–41. http://dx.doi.org/10.1556/aagr.60.2012.2.4.
Full textSaad, Rania Ben, Walid Ben Romdhane, Anis Ben Hsouna, Wafa Mihoubi, Marwa Harbaoui, and Faiçal Brini. "Insights into plant annexins function in abiotic and biotic stress tolerance." Plant Signaling & Behavior 15, no. 1 (December 10, 2019): 1699264. http://dx.doi.org/10.1080/15592324.2019.1699264.
Full textHussain, Syed Sarfraz, Muhammad Ali, Maqbool Ahmad, and Kadambot H. M. Siddique. "Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants." Biotechnology Advances 29, no. 3 (May 2011): 300–311. http://dx.doi.org/10.1016/j.biotechadv.2011.01.003.
Full textSaxena, Amrita, Richa Raghuwanshi, and Harikesh Bahadur Singh. "Trichodermaspecies mediated differential tolerance against biotic stress of phytopathogens inCicer arietinumL." Journal of Basic Microbiology 55, no. 2 (September 10, 2014): 195–206. http://dx.doi.org/10.1002/jobm.201400317.
Full textWilliams, Alex, Jingfang Hao, Moaed Al Meselmani, Rosine De Paepe, Bertrand Gakiere, and Pierre Petriacq. "Mitochondrial Complex 1is Important for Plant Tolerance to Fungal Biotic Stress." Annals of Ecology and Environmental Science 1, no. 1 (2017): 16–26. http://dx.doi.org/10.22259/2637-5338.0101002.
Full textHuang, Zhuo, Han-Du Guo, Ling Liu, Si-Han Jin, Pei-Lei Zhu, Ya-Ping Zhang, and Cai-Zhong Jiang. "Heterologous Expression of Dehydration-Inducible MfWRKY17 of Myrothamnus Flabellifolia Confers Drought and Salt Tolerance in Arabidopsis." International Journal of Molecular Sciences 21, no. 13 (June 29, 2020): 4603. http://dx.doi.org/10.3390/ijms21134603.
Full textRAZA, A. "GENETIC BASIS OF STRESS TOLERANCE IN RICE." Biological and Agricultural Sciences Research Journal 2022, no. 1 (October 15, 2022): 5. http://dx.doi.org/10.54112/basrj.v2022i1.5.
Full textGoodwin, Paul H., and Madison A. Best. "Ginsenosides and Biotic Stress Responses of Ginseng." Plants 12, no. 5 (March 1, 2023): 1091. http://dx.doi.org/10.3390/plants12051091.
Full textHasanuzzaman, Mirza, and Masayuki Fujita. "Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions 2.0." International Journal of Molecular Sciences 24, no. 21 (October 30, 2023): 15740. http://dx.doi.org/10.3390/ijms242115740.
Full textNakai, Yusuke, Sumire Fujiwara, Yasuyuki Kubo, and Masa H. Sato. "Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis." Plant Signaling & Behavior 8, no. 3 (March 2013): e23358. http://dx.doi.org/10.4161/psb.23358.
Full textJanaki Ramayya, Perumalla, Vishnu Prasanth Vinukonda, Uma Maheshwar Singh, Shamshad Alam, Challa Venkateshwarlu, Abhilash Kumar Vipparla, Shilpi Dixit, et al. "Marker-assisted forward and backcross breeding for improvement of elite Indian rice variety Naveen for multiple biotic and abiotic stress tolerance." PLOS ONE 16, no. 9 (September 2, 2021): e0256721. http://dx.doi.org/10.1371/journal.pone.0256721.
Full textRhouma, Abdelhak, Lobna Hajji-Hedfi, Okon Godwin Okon, and Hasadiah Okon Bassey. "Investigating the effectiveness of endophytic fungi under biotic and abiotic agricultural stress conditions." JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT 6, no. 01 (April 21, 2024): 111–26. http://dx.doi.org/10.56027/joasd.122024.
Full textRoy, Subhas Chandra. "Genetic Resources of Wild Rice (Oryza rufipogon) for Biotic and Abiotic Stress Tolerance Traits." NBU Journal of Plant Sciences 13, no. 1 (2021): 19–26. http://dx.doi.org/10.55734/nbujps.2021.v13i01.003.
Full textAlbacete, Alfonso. "Get Together: The Interaction between Melatonin and Salicylic Acid as a Strategy to Improve Plant Stress Tolerance." Agronomy 10, no. 10 (September 28, 2020): 1486. http://dx.doi.org/10.3390/agronomy10101486.
Full textXiang, Xiang-Ying, Jia Chen, Wen-Xin Xu, Jia-Rui Qiu, Li Song, Jia-Tong Wang, Rong Tang, Duoer Chen, Cai-Zhong Jiang, and Zhuo Huang. "Dehydration-Induced WRKY Transcriptional Factor MfWRKY70 of Myrothamnus flabellifolia Enhanced Drought and Salinity Tolerance in Arabidopsis." Biomolecules 11, no. 2 (February 22, 2021): 327. http://dx.doi.org/10.3390/biom11020327.
Full textBarna, Balázs. "Manipulation of Senescence of Plants to Improve Biotic Stress Resistance." Life 12, no. 10 (September 26, 2022): 1496. http://dx.doi.org/10.3390/life12101496.
Full textDu, Shuyuan, Chundi Yu, Lin Tang, and Lixia Lu. "Applications of SERS in the Detection of Stress-Related Substances." Nanomaterials 8, no. 10 (September 25, 2018): 757. http://dx.doi.org/10.3390/nano8100757.
Full textFinkelshtein, Alin, Hala Khamesa-Israelov, and Daniel A. Chamovitz. "Overexpression of S30 Ribosomal Protein Leads to Transcriptional and Metabolic Changes That Affect Plant Development and Responses to Stress." Biomolecules 14, no. 3 (March 7, 2024): 319. http://dx.doi.org/10.3390/biom14030319.
Full textSilva, Joana, Susana de Sousa Araújo, Hélia Sales, Rita Pontes, and João Nunes. "Quercus suber L. Genetic Resources: Variability and Strategies for Its Conservation." Forests 14, no. 9 (September 21, 2023): 1925. http://dx.doi.org/10.3390/f14091925.
Full text