Academic literature on the topic 'TNF-like core domain'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TNF-like core domain.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "TNF-like core domain"

1

Saito, Kousuke, Keith Meyer, Rebecca Warner, Arnab Basu, Ratna B. Ray, and Ranjit Ray. "Hepatitis C Virus Core Protein Inhibits Tumor Necrosis Factor Alpha-Mediated Apoptosis by a Protective Effect Involving Cellular FLICE Inhibitory Protein." Journal of Virology 80, no. 9 (May 1, 2006): 4372–79. http://dx.doi.org/10.1128/jvi.80.9.4372-4379.2006.

Full text
Abstract:
ABSTRACT We have previously shown that hepatitis C virus (HCV) core protein modulates multiple cellular processes, including those that inhibit tumor necrosis factor alpha (TNF-α)-mediated apoptosis. In this study, we have investigated the signaling mechanism for inhibition of TNF-α-mediated apoptosis in human hepatoma (HepG2) cells expressing core protein alone or in context with other HCV proteins. Activation of caspase-3 and the cleavage of DNA repair enzyme poly(ADP-ribose) polymerase were inhibited upon TNF-α exposure in HCV core protein-expressing HepG2 cells. In vivo protein-protein interaction studies displayed an association between TNF receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD), suggesting that the core protein does not perturb this interaction. A coimmunoprecipitation assay also suggested that HCV core protein does not interfere with the TRADD-Fas-associated death domain protein (FADD)-procaspase-8 interaction. Further studies indicated that HCV core protein expression inhibits caspase-8 activation by sustaining the expression of cellular FLICE (FADD-like interleukin-1β-converting enzyme)-like inhibitory protein (c-FLIP). Similar observations were also noted upon expression of core protein in context to other HCV proteins expressed from HCV full-length plasmid DNA or a replicon. A decrease in endogenous c-FLIP by specific small interfering RNA induced TNF-α-mediated apoptotic cell death and caspase-8 activation. Taken together, our results suggested that the TNF-α-induced apoptotic pathway is inhibited by a sustained c-FLIP expression associated with the expression of HCV core protein, which may play a role in HCV-mediated pathogenesis.
APA, Harvard, Vancouver, ISO, and other styles
2

Cheng, Taksum, Nathan J. Pavlos, Cathy Wang, Jamie We-Yin Tan, Jian Ming Lin, Jillian Cornish, Ming-Hao Zheng, and Jiake Xu. "Mutations within the TNF-Like Core Domain of RANKL Impair Osteoclast Differentiation and Activation." Molecular Endocrinology 23, no. 1 (January 1, 2009): 35–46. http://dx.doi.org/10.1210/me.2007-0465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Xiaoliang, Yun Li, Qin Chen, Chenhe Su, Zili Zhang, Chengkui Yang, Zhilin Hu, et al. "Herpes Simplex Virus 1 (HSV-1) and HSV-2 Mediate Species-Specific Modulations of Programmed Necrosis through the Viral Ribonucleotide Reductase Large Subunit R1." Journal of Virology 90, no. 2 (November 11, 2015): 1088–95. http://dx.doi.org/10.1128/jvi.02446-15.

Full text
Abstract:
ABSTRACTReceptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells.IMPORTANCEThis study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV.
APA, Harvard, Vancouver, ISO, and other styles
4

Gandotra, Sheetal, Sihyug Jang, Peter J. Murray, Padmini Salgame, and Sabine Ehrt. "Nucleotide-Binding Oligomerization Domain Protein 2-Deficient Mice Control Infection with Mycobacterium tuberculosis." Infection and Immunity 75, no. 11 (August 20, 2007): 5127–34. http://dx.doi.org/10.1128/iai.00458-07.

Full text
Abstract:
ABSTRACT Nucleotide-binding oligomerization domain proteins (NODs) are modular cytoplasmic proteins implicated in the recognition of peptidoglycan-derived molecules. NOD2 has recently been shown to be important for host cell cytokine responses to Mycobacterium tuberculosis, to synergize with Toll-like receptor 2 (TLR2) in mediating these responses, and thus to serve as a nonredundant recognition receptor for M. tuberculosis. Here, we demonstrate that macrophages and dendritic cells from NOD2-deficient mice were impaired in the production of proinflammatory cytokines and nitric oxide following infection with live, virulent M. tuberculosis. Mycolylarabinogalactan peptidoglycan (PGN), the cell wall core of M. tuberculosis, stimulated macrophages to release tumor necrosis factor (TNF) and interleukin-12p40 in a partially NOD2-dependent manner, and M. tuberculosis PGN required NOD2 for the optimal induction of TNF. However, NOD2-deficient mice were no more susceptible to infection with virulent M. tuberculosis than wild-type mice: they controlled the replication of M. tuberculosis in lung, spleen, and liver as well as wild-type mice, and both genotypes displayed similar lung pathologies. In addition, mice doubly deficient for NOD2 and TLR2 were similarly able to control an M. tuberculosis infection. Thus, NOD2 appears to participate in the recognition of M. tuberculosis by antigen-presenting cells in vitro yet is dispensable for the control of the pathogen during in vivo infection.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Dianrong, Tao Xu, Yang Cao, Huayi Wang, Lin Li, She Chen, Xiaodong Wang, and Zhirong Shen. "A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis." Proceedings of the National Academy of Sciences 112, no. 16 (April 7, 2015): 5017–22. http://dx.doi.org/10.1073/pnas.1505244112.

Full text
Abstract:
Receptor-interacting protein kinase 3, RIP3, and a pseudokinase mixed lineage kinase-domain like protein, MLKL, constitute the core components of the necroptosis pathway, which causes programmed necrotic death in mammalian cells. Latent RIP3 in the cytosol is activated by several upstream signals including the related kinase RIP1, which transduces signals from the tumor necrosis factor (TNF) family of cytokines. We report here that RIP3 activation following the induction of necroptosis requires the activity of an HSP90 and CDC37 cochaperone complex. This complex physically associates with RIP3. Chemical inhibitors of HSP90 efficiently block necroptosis by preventing RIP3 activation. Cells with knocked down CDC37 were unable to respond to necroptosis stimuli. Moreover, an HSP90 inhibitor that is currently under clinical development as a cancer therapy was able to prevent systemic inflammatory response syndrome in rats treated with TNF-α. HSP90 and CDC37 cochaperone complex-mediated protein folding is thus an important part of the RIP3 activation process during necroptosis.
APA, Harvard, Vancouver, ISO, and other styles
6

Hai, Tao, Man-Lung Yeung, Thomas G. Wood, Yuanfen Wei, Shoji Yamaoka, Zoran Gatalica, Kuan-Teh Jeang, and Allan R. Brasier. "An Alternative Splice Product of IκB Kinase (IKKγ), IKKγ-Δ, DifferentiallyMediates Cytokine and Human T-Cell Leukemia Virus Type 1 Tax-Induced NF-κB Activation." Journal of Virology 80, no. 9 (May 1, 2006): 4227–41. http://dx.doi.org/10.1128/jvi.80.9.4227-4241.2006.

Full text
Abstract:
ABSTRACT NF-κB is an inducible transcription factor mediating innate immune responses whose activity is controlled by the multiprotein IκB kinase (IKK) “signalsome”. The core IKK consists of two catalytic serine kinases, IKKα and IKKβ, and a noncatalytic subunit, IKKγ. IKKγ is required for IKK activity by mediating kinase oligomerization and serving to couple the core catalytic subunits to upstream mitogen-activated protein 3-kinase cascades. We have discovered an alternatively spliced IKKγ mRNA isoform, encoding an in-frame deletion of exon 5, termed IKKγ-Δ. Using a specific reverse transcription-PCR assay, we find that IKKγ-Δ is widely expressed in cultured human cells and normal human tissues. Because IKKγ-Δ protein is lacking a critical coiled-coil domain important in protein-protein interactions, we sought to determine its signaling properties by examining its ability to self associate, couple to activators of the canonical pathway, and mediate human T-cell leukemia virus type 1 (HTLV-1) Tax-induced NF-κB activity. Coimmunoprecipitation and confocal colocalization assays indicate IKKγ-Δ has strong homo- and heterotypic association with wild-type (WT) IKKγ and, like IKKγ WT, associates with the IKKβ kinase. Similarly, IKKγ-Δ mediates IKK kinase activity and downstream NF-κB-dependent transcription in response to tumor necrosis factor (TNF) and the NF-κB-inducing kinase-IKKα signaling pathway. Surprisingly, however, in contrast to IKKγ WT, IKKγ-Δ is not able to mediate HTLV-1 Tax-induced NF-κB-dependent transcription, even though IKKγ-Δ binds and colocalizes with Tax. These observations suggest that IKKγ-Δ is a functionally distinct alternatively spliced mRNA product differentially mediating TNF-induced, but not Tax-induced, signals converging on the IKK signalsome. Differing levels of IKKγ-Δ expression, therefore, may affect signal transduction cascades coupling to IKK.
APA, Harvard, Vancouver, ISO, and other styles
7

Ley, Steven C., and Rudi Beyaert. "Priming IKKβ kinase for action." Biochemical Journal 463, no. 1 (September 8, 2014): e1-e2. http://dx.doi.org/10.1042/bj20140989.

Full text
Abstract:
IKKβ (IκB kinase β) is a core component of signalling pathways that control the activation of NF-κB (nuclear factor κB) transcription factors, which regulate many physiological processes, including cell survival, immunity and DNA-damage responses. Like many kinases, activation of IKKβ requires phosphorylation of the activation loop of its kinase domain. Different upstream protein kinases, and IKKβ itself, have been reported to directly phosphorylate and activate IKKβ in vitro, but the exact molecular mechanism of IKKβ activation in cells has remained unclear. In a recent article in the Biochemical Journal, Zhang and co-workers showed that IKKβ is activated by two sequential phosphorylations of its activation loop in response to TNF (tumour necrosis factor), IL-1 (interleukin-1) and TLR (Toll-like receptor) ligands. Using a combination of biochemical and genetic approaches, they demonstrate that IKKβ is first phosphorylated by the upstream kinase TAK1 [TGFβ (transforming growth factor β)-activated kinase-1] at Ser177, which then serves as a priming signal for subsequent IKKβ autophosphorylation at Ser181. This study resolves two apparently conflicting earlier models of IKKβ activation into a single unified model, and suggests that the IKKβ activation loop may integrate distinct ‘upsteam’ signals to activate NF-κB.
APA, Harvard, Vancouver, ISO, and other styles
8

Zheng, Xingwu, Masami Niiya, X. Long Zheng, and Eleanor S. Pollak. "Isolation and Characterization of Human ADAMTS13 Gene Promoter Region - Control of ADAMTS13 Gene Expression by Hepatic Transcription Factors and Inflammatory Cytokines." Blood 108, no. 11 (November 16, 2006): 1603. http://dx.doi.org/10.1182/blood.v108.11.1603.1603.

Full text
Abstract:
Abstract ADAMTS13 (A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats-13) controls von Willebrand factor multimer sizes by cleaving the Tyr1605-Met1606 bond in the central A2 domain. Deficiency of plasma ADAMTS13 activity can result in a lethal syndrome, thrombotic thrombocytopenic purpura (TTP). ADAMTS13 is primarily synthesized in hepatic stellate cells (HSCs), endothelial cells and megakaryocytes. We determined the transcription initiation site, the core region for promoter activity, the putative transcription factor binding sites as well as the influence of inflammatory cytokines on ADAMTS13 promoter activity. To explore the transcriptional control of ADAMTS13 gene expression, we constructed reporter genes containing 991 base pairs (bp) of the ADAMTS13 5′ untranslated (UT) region. We showed by deletion mutagenesis and luciferase reporter expression that the proximal-most 197 bp region was required for maximal luciferase activity in transfected cells in the human hepatic stellate cell line (LX-2) and in the human hepatocyte-like cell line (HepG2); the major transcription initiation site determined by 5′ - RACE was found at 77 bp upstream from the translation start site (ATG). However, the minimal sequences that were required for the promoter activity varied depending on the cells, with required sequences of approximately 147 and 127 bp in LX-2 and HepG2 cells, respectively. The proximal ADAMTS13 promoter region is evolutionally conserved between humans, mice and rats. This region is rich in GC content (72%) and contains putative binding sites for the transcription factors heat shock factor-2 (HSF2), FOXa2 [also named hepatocyte nuclear factor 3beta (HNF-3b)] and AP-1. A footprint assay demonstrated that the region between −116 and −126, containing the putative FOXa2 binding site, was largely protected by Dnase I digestion. The luciferase reporter activity was suppressed in cells transfected with the plasmid containing the proximal 314 bp human 5′ UT ADAMTS13 sequence in parallel with the inflammatory cytokines found to be elevated in patients with TTP: IL-4, TNF-alpha and INF-gamma. These inflammatory cytokines inhibited the Adamts13 mRNA and protein expression in rat primary HSCs in culture in a dose dependent manner. Approximately 70%, 71% and 80% of Adamts13 mRNA (by real time RT-PCR) and 77%, 78% and 92% of Adamts13 proteolytic activity (by FRETS-VWF73) were suppressed at 48 hours by IL-4 (10 ng/ml), TNF-alpha (10 ng/ml) and INF-gamma (100 ng/ml), respectively. We conclude that under physiological conditions ADAMTS13 synthesis may be strictly maintained at relatively low levels by binding transcription factors, whereas under pathological conditions inflammatory cytokines, released due to systemic inflammation, may further suppress ADAMTS13 gene expression, which may result in thrombotic complications. However, the mechanism regarding how the inflammatory cytokines negatively regulate ADAMTS13 (or Adamts13) synthesis remains to be determined.
APA, Harvard, Vancouver, ISO, and other styles
9

Samson, André L., Sarah E. Garnish, Joanne M. Hildebrand, and James M. Murphy. "Location, location, location: A compartmentalized view of TNF-induced necroptotic signaling." Science Signaling 14, no. 668 (February 2, 2021): eabc6178. http://dx.doi.org/10.1126/scisignal.abc6178.

Full text
Abstract:
Necroptosis is a lytic, proinflammatory cell death pathway, which has been implicated in host defense and, when dysregulated, the pathology of many human diseases. The central mediators of this pathway are the receptor-interacting serine/threonine protein kinases RIPK1 and RIPK3 and the terminal executioner, the pseudokinase mixed lineage kinase domain–like (MLKL). Here, we review the chronology of signaling along the RIPK1-RIPK3-MLKL axis and highlight how the subcellular compartmentalization of signaling events controls the initiation and execution of necroptosis. We propose that a network of modulators surrounds the necroptotic signaling core and that this network, rather than acting universally, tunes necroptosis in a context-, cell type–, and species-dependent manner. Such a high degree of mechanistic flexibility is likely an important property that helps necroptosis operate as a robust, emergency form of cell death.
APA, Harvard, Vancouver, ISO, and other styles
10

Jung, Hyo Young, Hyun Jung Kwon, Woosuk Kim, Kyu Ri Hahn, Seung Myung Moon, Yeo Sung Yoon, Dae Won Kim, and In Koo Hwang. "Phosphoglycerate Mutase 1 Prevents Neuronal Death from Ischemic Damage by Reducing Neuroinflammation in the Rabbit Spinal Cord." International Journal of Molecular Sciences 21, no. 19 (October 8, 2020): 7425. http://dx.doi.org/10.3390/ijms21197425.

Full text
Abstract:
Phosphoglycerate mutase 1 (PGAM1) is a glycolytic enzyme that increases glycolytic flux in the brain. In the present study, we examined the effects of PGAM1 in conditions of oxidative stress and ischemic damage in motor neuron-like (NSC34) cells and the rabbit spinal cord. A Tat-PGAM1 fusion protein was prepared to allow easy crossing of the blood-brain barrier, and Control-PGAM1 was synthesized without the Tat peptide protein transduction domain. Intracellular delivery of Tat-PGAM1, not Control-PGAM1, was achieved in a time- and concentration-dependent manner. Immunofluorescent staining confirmed the intracellular expression of Tat-PGAM1 in NSC34 cells. Tat-PGAM1, but not Control-PGAM1, significantly alleviated H2O2-induced oxidative stress, neuronal death, mitogen-activated protein kinase, and apoptosis-inducing factor expression in NSC34 cells. After ischemia induction in the spinal cord, Tat-PGAM1 treatment significantly improved ischemia-induced neurological impairments and ameliorated neuronal cell death in the ventral horn of the spinal cord 72 h after ischemia. Tat-PGAM1 treatment significantly mitigated the ischemia-induced increase in malondialdehyde and 8-iso-prostaglandin F2α production in the spinal cord. In addition, Tat-PGAM1, but not Control-PGAM1, significantly decreased microglial activation and secretion of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α induced by ischemia in the ventral horn of the spinal cord. These results suggest that Tat-PGAM1 can be used as a therapeutic agent to reduce spinal cord ischemia-induced neuronal damage by lowering the oxidative stress, microglial activation, and secretion of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "TNF-like core domain"

1

Tan, Jamie We-Yin. "The investigation of RANKL TNF-like core domain by truncation mutation." University of Western Australia. School of Surgery and Pathology, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0032.

Full text
Abstract:
Osteoclasts are multinucleated cells found exclusively in bone and are derived from the haematopoietic cells of monocytes/macrophage lineage. The cell-to-cell interaction between osteoblastic/stromal cells and osteoclast precursor cells is necessary for osteoclastogenesis. Receptor Activator of NF-κB ligand (RANKL) was identified as a membrane-bound TNF ligand family member that is the ‘master’ cytokine expressed on osteoblastic/stromal cells, which stimulate osteoclastogenesis through cell-to-cell contact with osteoclast precursors. RANKL is considered to be a factor that is necessary and sufficient for the induction of osteoclastogenesis (Lacey, et al., 1998). RANKL is a type II transmembrane cytokine of the TNF ligand superfamily and has an active TNF-like core domain at the extracellular domain. This active TNF-like core domain is thought to be the region through which it binds to it’s active receptor, RANK, for the activation of signal transduction pathways for the initiation of processes leading to osteoclastogenesis (Lacey, et al., 1998; Li, et al., 1999). It was hypothesized that any change in the active TNF-like core domain might affect the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. Hence, this thesis sought to investigate the effects of changes in the active TNF-like core domain by truncation mutation on the ability of RANKL binding to RANK and consequently affect the activation of signal transduction pathways and osteoclastogenesis. A cDNA fragment encoding the full-length TNF-like core domain of rat RANKL (rRANKL) (aa160-318) was cloned into the bacterial expression pGEX vectors and stably expressed in Eschechia coli as a fusion protein with the C-terminus of glutathione S-transferase (GST). Four mutants (aa160-302, aa160-268, aa239-318 and aa246-318) were also generated by truncation mutation in the TNF-like core domain, and cloned into the pGEX vector to produce GST-rRANKL mutants. The proteins were over-expressed and affinity purified to 95% in purity. GST-rRANKL (160-318) containing the full length TNF-like core domain was able to induced osteoclastogenesis in spleen cells in the presence of M-CSF and in RAW264.7 cells in the absence of M-CSF. It was also found to activate mature osteoclast activity in vitro, ex vivo and in vivo. It has the highest binding affinity to RANK and the greatest potency for NF-κB activation as well as the induction of osteoclastogenesis compared to the truncated mutants. Mutants generated by truncation of the TNF-like core domain revealed that the TNF-like core domain is important for the interaction with the RANK, for high binding affinity, NF-κB activation and induction of osteoclastogenesis. In general, the truncated mutants not only displayed a reduction in the binding affinity to RANK, but also a reduction in NF-κB activation, and significantly reduced potency in the induction of osteoclastogenesis. Interestingly, mutant GST-rRANKL (160-268) showed a higher affectivity than the other mutants did, in that it had greater binding affinity to RANK, and in NF-κB activation than the rest of the truncated mutants. Mutants GST-rRANKL (239-318) and GST-rRANKL (246-318) on the other hand, showed little potency in the induction of osteoclast formation, however, might have an inhibitory effect through competition with full length GST-rRANKL (160-318) as well as inducing a response in vivo resulting in an increase in the serum calcium level. In conclusion, this thesis demonstrated that the TNF-like core domain of RANKL is active, and imperative in the binding to RANK, activating signal transduction pathways and induction of osteoclastogenesis. Changes in the active TNF-like core domain affected the ability, affinity and efficiency of RANKL binding to the receptor, RANK and consequently affected the activation of signal transduction pathways and osteoclastogenesis.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography