Academic literature on the topic 'TNFα'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TNFα.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "TNFα"
Yang, Liyun, Yan Chen, Sainan Zhu, Dingfang Bu, Lixiang Wang, Xiaojie Jiao, Xuechun Lu, Hongxing Liu, and Ping Zhu. "Haploidentical Allogeneic Hematopoietic Stem Cell Transplantation Using the Donors with the HLA-B*5801-TNFα -308A Haplotype Produced Higher Frequency of Untoward Effects in Acute Lymphocytic Leukemia Patients." Blood 120, no. 21 (November 16, 2012): 2002. http://dx.doi.org/10.1182/blood.v120.21.2002.2002.
Full textMa, Li, Haiyan Gong, Haiyan Zhu, Pei Su, Shannan Cao, Peng Liu, Jianfeng Yao, et al. "Identification Of a Novel Small-Molecule TNFα Inhibitor With Activity Against Inflammation In a Hepatitis Mouse Model." Blood 122, no. 21 (November 15, 2013): 4229. http://dx.doi.org/10.1182/blood.v122.21.4229.4229.
Full textGharamti, Amal, Omar Samara, Anthony Monzon, Lilian Vargas Barahona, Sias Scherger, Kristen DeSanto, Daniel B. Chastain, et al. "1003. Cytokine Levels in Sepsis and TNFα Association with Mortality but not Sepsis Severity or Infection Source: a Systematic Review and Meta-analysis." Open Forum Infectious Diseases 8, Supplement_1 (November 1, 2021): S592. http://dx.doi.org/10.1093/ofid/ofab466.1197.
Full textBertolaccini, M. L., J. S. Lanchbury, A. R. Caliz, K. Katsumata, R. W. Vaughan, E. Kondeatis, M. A. Khamashta, T. Koike, G. R. V. Hughes, and T. Atsumi. "Plasma Tumor Necrosis Factor α Levels and the –238* A Promoter Polymorphism in Patients with Antiphospholipid Syndrome." Thrombosis and Haemostasis 85, no. 02 (2001): 198–203. http://dx.doi.org/10.1055/s-0037-1615676.
Full textTani-Ishii, N., A. Tsunoda, T. Teranaka, and T. Umemoto. "Autocrine Regulation of Osteoclast Formation and Bone Resorption by IL-1α and TNFα." Journal of Dental Research 78, no. 10 (October 1999): 1617–23. http://dx.doi.org/10.1177/00220345990780100601.
Full textRosenzweig, Holly L., Manabu Minami, Nikola S. Lessov, Sarah C. Coste, Susan L. Stevens, David C. Henshall, Robert Meller, Roger P. Simon, and Mary P. Stenzel-Poore. "Endotoxin Preconditioning Protects against the Cytotoxic Effects of TNFα after Stroke: A Novel Role for TNFα in LPS-Ischemic Tolerance." Journal of Cerebral Blood Flow & Metabolism 27, no. 10 (February 28, 2007): 1663–74. http://dx.doi.org/10.1038/sj.jcbfm.9600464.
Full textDroessler, Linda, Valeria Cornelius, Alexander G. Markov, and Salah Amasheh. "Tumor Necrosis Factor Alpha Effects on the Porcine Intestinal Epithelial Barrier Include Enhanced Expression of TNF Receptor 1." International Journal of Molecular Sciences 22, no. 16 (August 14, 2021): 8746. http://dx.doi.org/10.3390/ijms22168746.
Full textLi, Yusheng, Darrell L. Dinwiddie, Kevin S. Harrod, Yong Jiang, and K. Chul Kim. "Anti-inflammatory effect of MUC1 during respiratory syncytial virus infection of lung epithelial cells in vitro." American Journal of Physiology-Lung Cellular and Molecular Physiology 298, no. 4 (April 2010): L558—L563. http://dx.doi.org/10.1152/ajplung.00225.2009.
Full textKapás, L., A. B. Cady, M. R. Opp, A. E. Postlethwaite, J. M. Seyer, and J. M. Krueger. "Somnogenic and pyrogenic activity of TNFα, TNFβ and fragments of TNFα." International Journal of Immunopharmacology 13, no. 6 (January 1991): 717. http://dx.doi.org/10.1016/0192-0561(91)90210-x.
Full textSanz, Maria-Jesus, Adele Hartnell, Patricia Chisholm, Cindy Williams, Dawn Davies, Vivian B. Weg, Marc Feldmann, Mark A. Bolanowski, Roy R. Lobb, and Sussan Nourshargh. "Tumor Necrosis Factor α-Induced Eosinophil Accumulation in Rat Skin Is Dependent on α4 Integrin/Vascular Cell Adhesion Molecule-1 Adhesion Pathways." Blood 90, no. 10 (November 15, 1997): 4144–52. http://dx.doi.org/10.1182/blood.v90.10.4144.
Full textDissertations / Theses on the topic "TNFα"
Oates, Anna. "Mapping of functional TNFα-ligand interactions." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615706.
Full textOrsini, Marion. "Inhibition de l’érythropoïèse par la voie TNFα/sphingomyélinase/céramide : rôle du réseau de régulation microARN/facteurs de transcription et impact sur l’autophagie." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0225/document.
Full textAnemia is a common symptom in cancer patients. It can be caused by the release of pro-inflammatory cytokines such as TNFα, a known inhibitor of erythropoiesis. Erythropoiesis involves proliferation arrest and autophagy. Our previous studies showed that TNFα inhibits the expression of erythroid markers as well as hematopoietic transcription factors (TF) expression. The aim is to study the involvement of TNFα/sphingomyelinase (SMase)/ceramide pathway in erythropoiesis inhibition using recombinant erythropoietin (Epo)-induced CD34+ hematopoietic stem cells. Using exogenous ceramides, a bacterial SMase and sphingomyelinase inhibitors, we show the involvement of SMase/ceramide pathway in the inhibition of erythroid markers as well as the induction of myeloid differentiation as shown by the increase in CD11b expression. This effect is correlated to the modulation of the TF/miR network involving GATA-1, GATA-2 and PU.1 as well as miR-144, 451, 155, 146a and 223. We show that TNFα and ceramides inhibit Epo-induced autophagy through transmission electron microscopy analysis, the absence of GFP-LC3 punctae formation and SQSTM1/p62 accumulation. Analysis of proteins involved in autophagy regulation showed that TNFα and ceramides activate mTOR, which is confirmed using rapamycin as well as the inhibition of ULK1 and Atg13. Moreover, TNFα and ceramides inhibit Beclin 1 expression and Atg5-Atg12 complex formation. These results demonstrate the role of TNFα/SMase/ceramide pathway in hematopoietic homeostasis through an erythropoiesis-myelopoiesis switch resulting from perturbation of TF/miR network and autophagy
Mouhsine, Hadley. "Développement de nouveaux inhibiteurs du TNFα identifiés par Drug Design." Thesis, Paris, CNAM, 2012. http://www.theses.fr/2012CNAM0842/document.
Full textMonoclonal antibodies have been a revolution for the treatment of chronicinflammatory diseases but present several drawbacks (secondary effects, prohibitive costs,resistance)Our team develops TNFα inhibitors using two approaches : active immunizationagainst cytokine peptides and small compounds having a direct inhibition on TNFα.I have evaluated in vitro the best compounds selected after in silico screening of achemical library and I have identified a small molecule which was protective in two animalmodels (septic shock and DSS induced colitis). I have also analyzed chemical analogues ofthe best compounds found in vitro.I have also tested the immunogenicity of TNFα peptides but they did not yieldneutralizing antibodies in vitro, and we thus did not test them in vivo.My work was at the interface of bioinformatics, chemistry and biology, and this hasenabled me to understand the key issues in the modern development of drugs
Fouche, Celeste. "Differential effects of TNfα on satellite cell differentiation." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/19596.
Full textENGLISH ABSTRACT: Tumour necrosis factor alpha (TNFα) is a pleiotropic cytokine and has a wide variety of dose dependent cellular effects ranging from cell growth and differentiation, to inducing apoptosis. It has long been implicated in muscle and non-muscle inflammatory disorders, such as muscle wasting in chronic disease states, and rheumatoid arthritis. However, a physiological role for TNFα in muscle regeneration has been proposed as elevated levels of the cytokine are present when muscle regeneration processes are initiated: TNFα is secreted by infiltrating inflammatory cells, and by injured muscle fibres. Adult skeletal muscle contains a population of resident stem cell-like cells called satellite cells, which become activated, proliferate and differentiate following muscle injury to bring about repair of damaged muscle. Much research on the effects of TNFα on satellite cell differentiation has been conducted in recent years. It is however difficult to get a complete characterisation of the cytokine’s action as all models used slightly differ. We aimed therefore at providing comprehensive assessment of the effects of increasing doses of chronically supplemented TNFα on differentiating C2C12 cells. Cells were allowed to differentiate with or without TNFα supplementation for 7 days. Differentiation was induced at day 0. The effect on differentiation was assessed at days 1, 3, 5, and 7 by western blot analysis, and supplementary immunohistochemical analysis at days 1, 4, and 7 of markers of differentiation - muscle regulatory factors: MyoD and myogenin, markers of the cell cycle p21, PCNA, and the integral signalling molecule, p38MAPK. TNFα supplementation at day 1 tended to positively regulate early markers of differentiation. With continued supplementation however, markers of differentiation decreased dose dependently in treated cultures as the initial effect appeared to be reversed: A trend towards a dose dependent decrease in MyoD, myogenin and p21 protein existed in treated cultures at days 3, 5, and 7. These findings were significant at day 5 (p21, p<0.05), and day 7 (myogenin, p<0.05). A significant dose dependent decrease in p38 phosphorylation was evident at day 3 (p<0.05), while phospho-p38 was dose dependently increased at day 7 (p<0.05). Taken together, these data show that TNFα supplementation for 24 hours following the induction of differentiation in vitro, tends to increase levels of early markers of differentiation, and with continued TNFα supplementation decrease markers of differentiation in a dose dependent fashion. This study provides a comprehensive characterisation of the dose and time dependent effects of TNFα on satellite cell differentiaton in vitro. The model system used in the current study, allows us to make conclusions on more chronic disease states.
AFRIKAANSE OPSOMMING: Tumor nekrose faktor alfa (TNFα) is ‘n pleiotropiese sitokien wat ‘n wye verskeidenheid, dosis afhanklike, sellulêre effekte te weeg bring. Hierdie sellulêre effekte sluit sel groei en differensiasie tot sel dood in. TNFα is by beide spier en niespier inflammatoriese stoornisse soos spier tering in kroniese siektetoestande, en rumatiese artritis betrek. ‘n Fisiologiese rol vir TNFα is egter voorgestel aangesien verhoogde vlakke van die sitokien tydens inisiasie van spier herstel meganismes teenwoordig is: TNFα word deur infiltrerende inflammatoriese selle, asook deur beseerde spier vesels afgeskei. Volwasse skeletspier bevat ‘n populasie stamselagtige selle, sogenoemde satelliet selle. Laasgenoemde word geaktiveer, prolifereer en differensieër volgende spierbesering, om sodoende herstel van beskadigde spier te weeg te bring. Baie navorsing op die effekte van TNFα op satelliet sel differensiasie is onlangs uitgevoer. Dit is egter aansienlik moeilik om volgens hierdie navorsing‘n algehele beeld van TNFα se aksies te vorm aangesien alle modelle wat gebruik word verskil. Ons doel was daarom om ‘n omvangryke assessering van toenemende konsentrasies kronies gesupplementeerde TNFα op differensieërende C2C12 selle op ‘n enkele model uit te voer. Selle was vir 7 dae met of sonder TNFα supplementasie gedifferentieër. Differensiasie was by Dag 0 geïnduseer. TNFα se effek op differensiasie is op dae 1, 3, 5, en 7 deur middel van western blot analise geassesseer. Aanvullende immunohistochemiese bepalings op dae 1, 4, en 7 is verder deurgevoer. Merkers vir differensiasie het die spier regulatoriese faktore MyoD en miogenien, sel siklus merkers p21 en PCNA, asook die integrale sein transduksie molekule p38MAPK ingesluit. TNFα supplementasie by dag 1 het geneig om vroeë merkers van differensiasie positief te reguleer. Met voortdurende supplementasie is die vroeë positiewe effekte (op ‘n dosis afhanklike manier) egter omgekeer: ‘n neiging teenoor (‘n dosis afhanklike) vermindering in MyoD, miogenien en p21 proteïen het in behandelde kulture op dae 3, 5, en 7 bestaan. Hierdie bevindinge was beduidend by dag 5 (p21, p<0.05), en dag 7 (miogenien, p<0.05). A beduidende dosis afhanklike afname in p38 fosforilasie was duidelik by dag 3 (p<0.05), terwyl fosfo-p38 by dag 7 verhoog het met verhoogde konsentrasie TNFα (p<0.05). Bogenoemde saamgevat, dui aan dat TNFα supplementasie 24h volgende die induksie van differensiasie in vitro, verhoogde vlakke van vroeë differnsiasie merkers te weeg bring. Met voortdurende TNFα supplementasie, word differensiasie merkers egter met toenemende dosis verminder. Hierdie studie voorsien ‘n omvattende karakterisering van die dosis- en tyd afhanklike effekte van TNFα op satelliet sel differesiasie in vitro. Die model sisteem in hierdie studie gebruik, maak afleidings oor meer kroniese siektetoestande moontlik.
Zeiller, Caroline. "Phospholipase D, perméabilité endothéliale, et apoptose TNFα dépendante." Lyon, INSA, 2007. http://theses.insa-lyon.fr/publication/2007ISAL0087/these.pdf.
Full textPLD is a membrane-bound enzyme which plays a key role in lipid metabolism by generating phosphatidic acid, an anionic phospholipid involved in many cellular functions. Two isoforms PLD 1 and PLD2 exist in mammals. We have shown that PLD enhances the permeability of endothelial cell monolayers (HUV-EC-C cells) through an actin reorganization which is characterized by synthesis of stress fibers. PLD2 might be more particularly implicated, because of its sub cellular localization to membrane caveolae. We also studied the role of PLD in Tumor Necrosis Factor alpha (TNFα)-induced apoptosis of ECV304 cells. TNFα, a pleiotropic cytokine, activates both apoptotic and pro-survival signals depending on the cell model. We showed that PLD exerts a protective effect against cell death induced by TNFα in the presence of an inhibitor of protein synthesis, cycloheximide. PLD 1 isoform plays a predominant role in this process. Different mechanisms explaining the protective role of PLD are proposed
Fischer, Johannes. "Tierexperimentelle Untersuchungen zu Stress, Zytokinen und depressionsähnlichem Verhalten." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-169143.
Full textFaletti, Laura [Verfasser], and Christoph [Akademischer Betreuer] Borner. "Molecular mechanisms of TNFα sensitization to fasL-induced apoptosis." Freiburg : Universität, 2017. http://d-nb.info/1183569556/34.
Full textMarshall, Aiden Christopher James 1976. "The role of Fas and TNFα in experimental autoimmune gastritis." Monash University, Dept. of Pathology and Immunology, 2003. http://arrow.monash.edu.au/hdl/1959.1/9413.
Full textSomers, Sarin J. "Role of nuclear factors kappa-B in TNFα-induced cytoprotection." Master's thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/3466.
Full textSAITO, Kiyoshi, Jun YOSHIDA, Hisao SEO, Kenichi WAKABAYASHI, Fukushi KAMBE, Takashi NAGAYA, and Mihoko KATO. "Effect of PPARα Ligand on TNFα -Dependent Expression of EGF Receptor in Human Glioma Cell Line." Research Institute of Environmental Medicine, Nagoya University, 2002. http://hdl.handle.net/2237/2776.
Full textBooks on the topic "TNFα"
Sanjay, Khare, ed. TNF superfamily. Austin, Tex: Landes Bioscience, 2007.
Find full textSanjay, Khare, ed. TNF superfamily. Austin, Tex: Landes Bioscience, 2007.
Find full textWeinberg, Jeffrey M., and Robin Buchholz, eds. TNF-alpha Inhibitors. Basel: Birkhäuser-Verlag, 2006. http://dx.doi.org/10.1007/3-7643-7438-1.
Full textBayry, Jagadeesh, ed. The TNF Superfamily. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0669-7.
Full textBayry, Jagadeesh, ed. The TNF Superfamily. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1130-2.
Full textAfya, Tanzania Wizara ya. TNF: Tanzania National Formulary. 2nd ed. [Dar es Salaam]: Ministry of Health, 2005.
Find full text1946-, Wallach David, Kovalenko Andrew, and Feldmann Marc, eds. Advances in TNF family research: Proceedings of the 12th International TNF Conference, 2009. New York [N.Y.]: Springer, 2011.
Find full textWu, Hao, ed. TNF Receptor Associated Factors (TRAFs). New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-70630-6.
Full textWallach, David, Andrew Kovalenko, and Marc Feldmann, eds. Advances in TNF Family Research. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6612-4.
Full textD, Wu Hao Ph, ed. TNF receptor associated factors (TRAFs). New York: Springer Science+Business Media, 2007.
Find full textBook chapters on the topic "TNFα"
Ignatowski, Tracey A., Bernice K. Noble, John R. Wright, Janet L. Gorfien, and Robert N. Spengler. "TNFα." In Advances in Experimental Medicine and Biology, 219–24. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0407-4_28.
Full textMoss, Marcia, J. David Becherer, Marcos Milla, Gregory Pahel, Mill Lambert, Rob Andrews, Stephen Frye, et al. "TNFα converting enzyme." In Metalloproteinases as Targets for Anti-Inflammatory Drugs, 187–203. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8666-6_9.
Full textGirardin, E. "TNFα and Soluble TNF Receptors in Meningococcemia." In Update in Intensive Care and Emergency Medicine, 68–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84827-8_5.
Full textToro, C. Marani, M. Mabilia, F. Mancini, M. Giannangeli, and C. Milanese. "Modeling of Suramin-TNFα Interactions." In Molecular Modeling and Prediction of Bioactivity, 359–60. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4141-7_76.
Full textGonçalves, João, Helena Soares, Norman L. Eberhardt, Sarah C. R. Lummis, David R. Soto-Pantoja, David D. Roberts, Umadas Maitra, et al. "TNFα (Tumor Necrosis Factor α)." In Encyclopedia of Signaling Molecules, 1884. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101378.
Full textNajafi, Sheyda, Ehab M. Abo-Ali, and Vikas V. Dukhande. "Methods for Studying TNFα-Induced Autophagy." In Methods in Molecular Biology, 131–46. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0247-8_12.
Full textVan der Auwera, P. "Interactions between TNFα and Human Polymorphonuclear Leukocytes." In Yearbook of Intensive Care and Emergency Medicine, 49–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84734-9_6.
Full textLin, Anning. "Temporal Control of TNFα Signaling by Miz1." In Advances in Experimental Medicine and Biology, 127–28. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6612-4_13.
Full textLin, Tong-Jun, Antonio Enciso, Elyse Y. Bissonnette, Agnes Szczepek, and A. Dean Befus. "Cytokine and Drug Modulation of TNFα in Mast Cells." In Advances in Experimental Medicine and Biology, 279–85. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5855-2_40.
Full textScherbel, U., R. Raghupat, M. Nakamura, M. McNamara, T. McIntosh, and E. Neugebauer. "Nachweis der Bedeutung von TNFα nach Schädel/Hirntrauma (Polytrauma) auf das neurologische Outcome durch Verwendung einer transgenen TNFα knock out Maus." In Hefte zur Zeitschrift „Der Unfallchirurg“, 815–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60913-8_295.
Full textConference papers on the topic "TNFα"
Wood, AM, SC Gough, and RA Stockley. "Sputum TNFα Levels Are Associated withTNFAGenotype." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2942.
Full textReynaert, Niki, Irene Eurlings, Evi Mercken, Rafael De Cabo, Scott Aesif, Jos Van der Velden, Yvonne Janssen-Heininger, Emiel Wouters, and Mieke Dentener. "Involvement of JNK in TNFα driven remodelling." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa5058.
Full textBevill, Scott L., and Thomas P. Andriacchi. "Dynamic Compression in the Presence of TNF-Alpha Differentially Effects Gene Expression in Tibial Plateau Cartilage Covered and Uncovered by the Meniscus." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192575.
Full textRowlands, DJ, J. Lindert, and J. Bhattacharya. "Mitochondria Determine TNFα Receptor Shedding in Lung Microvessels." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2348.
Full textMercogliano, María F., Mara De Martino, Sofia Bruni, Leandro Venturutti, Martín Rivas, Matías Amasino, Cecilia J. Proietti, Patricia V. Elizalde, and Roxana Schillaci. "Abstract 1195: TNFα induces multiresistance to HER2-targeted TNFα induces multiresistance to HER2-targeted therapies in HER2-positive breast cancer." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1195.
Full textKindermann, Sophie, Anda Nodieva, Ingrida Sture, Anita Skangale, Anita Jagmane, Nailja Lukmanova, Gunta Kirvelaite, et al. "Tuberculosis in patients on TNFα inhibitor treatment in Latvia." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa2684.
Full textVestbo, J., E. Wouters, S. Rennard, B. Miller, L. Edwards, and R. Tal-Singer. "TNFα and Systemic Manifestations in COPD Patients and Controls." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a3781.
Full textMarin Mathieu, N., X. Chen, P. Delmotte, and G. C. Sieck. "TNFα Increases Mitochondrial Biogenesis in Human Airway Smooth Muscle." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a2172.
Full textRamirez Ramirez, O. A., S. Mahadev Bhat, P. Delmotte, and G. C. Sieck. "TNFα Mediates Mitophagy in Human Airway Smooth Muscle Cells." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a2331.
Full textRobinson, L., J. Plumb, A. Bizzi, F. Facchinetti, R. Patacchini, and D. Singh. "17-BMP Potently Suppresses TNFα Production from COPD Alveolar Macrophages." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a4566.
Full textReports on the topic "TNFα"
Grueso-Navarro, Elena, Leticia Rodríguez-Alcolado, Ángel Arias, Emilio J. Laserna-Mendieta, and Alfredo J. Lucendo. Influence of HLA-DQA1*05 allele in the response to anti-TNFα drugs in inflammatory bowel diseases. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2023. http://dx.doi.org/10.37766/inplasy2023.2.0076.
Full textMeidan, Rina, and Joy Pate. Roles of Endothelin 1 and Tumor Necrosis Factor-A in Determining Responsiveness of the Bovine Corpus Luteum to Prostaglandin F2a. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7695854.bard.
Full textLi, Peng, and Junjun Liu. Effect of tumor necrosis factor inhibitors on the risk of adverse cardiovascular events in patients with psoriasis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0090.
Full textAnders, Greg T. Induction of TNF-A and IL-1 in Human Tuberculosis (CIC3). Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada259308.
Full textWang, Jun, Congcong Wang, Hongjuan Fu, Zezhong Liu, Yimin Zhang, and Tong Zhang. TNF alpha antagonists improve oxidative stress and atherosclerosis induced by rheumatoid arthritis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2023. http://dx.doi.org/10.37766/inplasy2023.1.0033.
Full textYang, Dajun. Testing Clinical Relevance and Therapeutic Potential of a Novel Secreted Ligand of TNF Family. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada424660.
Full textLewis, James, Meenakshi Bewtra, Frank Scott, Colleen Brensinger, Shelby Reed, Jason Roy, Mark Osterman, et al. Patient Valued Comparative Effectiveness of Corticosteroids versus Anti-TNF Alpha Therapy for Inflammatory Bowel Disease. Patient-Centered Outcomes Research Institute (PCORI), November 2018. http://dx.doi.org/10.25302/11.2018.ce.12114143.
Full textYu, Ling, Qiaojia Huang, and Bing Su. The Role of MEKK3 Signaling Pathway in the Resistance of Breast Cancer Cells to TNF-(alpha)-Mediated Apoptosis. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada443658.
Full textYu, Ling, Qjaojia Huang, and Bing Su. The Role of MEKK3 Signaling Pathway in the Resistance of Breast Cancer Cells to TNF-Alpha-Mediated Apoptosis. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada456016.
Full textVarela, Linda M., and Margot M. Ip. The Role and Regulation of TNF-Alpha in Normal Rat Mammary Gland during Development and in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada330243.
Full text