Journal articles on the topic 'TMEM16B'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'TMEM16B.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pedemonte, Nicoletta, and Luis J. V. Galietta. "Structure and Function of TMEM16 Proteins (Anoctamins)." Physiological Reviews 94, no. 2 (April 2014): 419–59. http://dx.doi.org/10.1152/physrev.00039.2011.
Full textSchreiber, Rainer, Jiraporn Ousingsawat, and Karl Kunzelmann. "Targeting of Intracellular TMEM16 Proteins to the Plasma Membrane and Activation by Purinergic Signaling." International Journal of Molecular Sciences 21, no. 11 (June 5, 2020): 4065. http://dx.doi.org/10.3390/ijms21114065.
Full textThomas-Gatewood, Candice, Zachary P. Neeb, Simon Bulley, Adebowale Adebiyi, John P. Bannister, M. Dennis Leo, and Jonathan H. Jaggar. "TMEM16A channels generate Ca2+-activated Cl− currents in cerebral artery smooth muscle cells." American Journal of Physiology-Heart and Circulatory Physiology 301, no. 5 (November 2011): H1819—H1827. http://dx.doi.org/10.1152/ajpheart.00404.2011.
Full textGyobu, Sayuri, Haruhiko Miyata, Masahito Ikawa, Daiju Yamazaki, Hiroshi Takeshima, Jun Suzuki, and Shigekazu Nagata. "A Role of TMEM16E Carrying a Scrambling Domain in Sperm Motility." Molecular and Cellular Biology 36, no. 4 (December 14, 2015): 645–59. http://dx.doi.org/10.1128/mcb.00919-15.
Full textScudieri, Paolo, Elvira Sondo, Emanuela Caci, Roberto Ravazzolo, and Luis J. V. Galietta. "TMEM16A–TMEM16B chimaeras to investigate the structure–function relationship of calcium-activated chloride channels." Biochemical Journal 452, no. 3 (May 31, 2013): 443–55. http://dx.doi.org/10.1042/bj20130348.
Full textAgostinelli, Emilio, and Paolo Tammaro. "Polymodal Control of TMEM16x Channels and Scramblases." International Journal of Molecular Sciences 23, no. 3 (January 29, 2022): 1580. http://dx.doi.org/10.3390/ijms23031580.
Full textBetto, Giulia, O. Lijo Cherian, Simone Pifferi, Valentina Cenedese, Anna Boccaccio, and Anna Menini. "Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel." Journal of General Physiology 143, no. 6 (May 26, 2014): 703–18. http://dx.doi.org/10.1085/jgp.201411182.
Full textShimizu, Takahiro, Takahiro Iehara, Kaori Sato, Takuto Fujii, Hideki Sakai, and Yasunobu Okada. "TMEM16F is a component of a Ca2+-activated Cl− channel but not a volume-sensitive outwardly rectifying Cl− channel." American Journal of Physiology-Cell Physiology 304, no. 8 (April 15, 2013): C748—C759. http://dx.doi.org/10.1152/ajpcell.00228.2012.
Full textCenedese, Valentina, Giulia Betto, Fulvio Celsi, O. Lijo Cherian, Simone Pifferi, and Anna Menini. "The voltage dependence of the TMEM16B/anoctamin2 calcium-activated chloride channel is modified by mutations in the first putative intracellular loop." Journal of General Physiology 139, no. 4 (March 12, 2012): 285–94. http://dx.doi.org/10.1085/jgp.201110764.
Full textDavis, Alison J., Abigail S. Forrest, Thomas A. Jepps, Maria L. Valencik, Michael Wiwchar, Cherie A. Singer, William R. Sones, Iain A. Greenwood, and Normand Leblanc. "Expression profile and protein translation of TMEM16A in murine smooth muscle." American Journal of Physiology-Cell Physiology 299, no. 5 (November 2010): C948—C959. http://dx.doi.org/10.1152/ajpcell.00018.2010.
Full textNguyen, Dung M., Louisa S. Chen, Wei-Ping Yu, and Tsung-Yu Chen. "Comparison of ion transport determinants between a TMEM16 chloride channel and phospholipid scramblase." Journal of General Physiology 151, no. 4 (January 22, 2019): 518–31. http://dx.doi.org/10.1085/jgp.201812270.
Full textGyobu, Sayuri, Kenji Ishihara, Jun Suzuki, Katsumori Segawa, and Shigekazu Nagata. "Characterization of the scrambling domain of the TMEM16 family." Proceedings of the National Academy of Sciences 114, no. 24 (May 30, 2017): 6274–79. http://dx.doi.org/10.1073/pnas.1703391114.
Full textPietra, Gianluca, Michele Dibattista, Anna Menini, Johannes Reisert, and Anna Boccaccio. "The Ca2+-activated Cl− channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons." Journal of General Physiology 148, no. 4 (September 12, 2016): 293–311. http://dx.doi.org/10.1085/jgp.201611622.
Full textCruz-Rangel, Silvia, José J. De Jesús-Pérez, Juan A. Contreras-Vite, Patricia Pérez-Cornejo, H. Criss Hartzell, and Jorge Arreola. "Gating modes of calcium-activated chloride channels TMEM16A and TMEM16B." Journal of Physiology 593, no. 24 (December 7, 2015): 5283–98. http://dx.doi.org/10.1113/jp271256.
Full textScudieri, Paolo, Elvira Sondo, Loretta Ferrera, and Luis J. V. Galietta. "The anoctamin family: TMEM16A and TMEM16B as calcium-activated chloride channels." Experimental Physiology 97, no. 2 (November 11, 2011): 177–83. http://dx.doi.org/10.1113/expphysiol.2011.058198.
Full textDibattista, Michele, Asma Amjad, Devendra Kumar Maurya, Claudia Sagheddu, Giorgia Montani, Roberto Tirindelli, and Anna Menini. "Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons." Journal of General Physiology 140, no. 1 (June 25, 2012): 3–15. http://dx.doi.org/10.1085/jgp.201210780.
Full textKim, Andrew Y., Huanghe Yang, Tovo David, Jason Tien, Shaun R. Coughlin, Yuh Nung Jan, and Lily Jan. "TMEM16F Ion Channel Regulates Calcium-Dependent PS Exposure, Hemostasis, and Thrombosis." Blood 120, no. 21 (November 16, 2012): 1111. http://dx.doi.org/10.1182/blood.v120.21.1111.1111.
Full textNguyen, Dung, Hwoi Kwon, and Tsung-Yu Chen. "Divalent Cation Modulation of Ion Permeation in TMEM16 Proteins." International Journal of Molecular Sciences 22, no. 4 (February 23, 2021): 2209. http://dx.doi.org/10.3390/ijms22042209.
Full textTa, Chau M., Kathryn E. Acheson, Nils J. G. Rorsman, Remco C. Jongkind, and Paolo Tammaro. "Contrasting effects of phosphatidylinositol 4,5-bisphosphate on cloned TMEM16A and TMEM16B channels." British Journal of Pharmacology 174, no. 18 (August 10, 2017): 2984–99. http://dx.doi.org/10.1111/bph.13913.
Full textGrigoriev, V. V. "Calcium-activated chloride channels: structure, properties, role in physiological and pathological processes." Biomeditsinskaya Khimiya 67, no. 1 (January 2021): 17–33. http://dx.doi.org/10.18097/pbmc20216701017.
Full textHernandez-Clavijo, Andres, Nicole Sarno, Kevin Y. Gonzalez-Velandia, Rudolf Degen, David Fleck, Jason R. Rock, Marc Spehr, Anna Menini, and Simone Pifferi. "TMEM16A and TMEM16B Modulate Pheromone-Evoked Action Potential Firing in Mouse Vomeronasal Sensory Neurons." eneuro 8, no. 5 (August 25, 2021): ENEURO.0179–21.2021. http://dx.doi.org/10.1523/eneuro.0179-21.2021.
Full textVocke, Kerstin, Kristin Dauner, Anne Hahn, Anne Ulbrich, Jana Broecker, Sandro Keller, Stephan Frings, and Frank Möhrlen. "Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels." Journal of General Physiology 142, no. 4 (September 30, 2013): 381–404. http://dx.doi.org/10.1085/jgp.201311015.
Full textAmjad, Asma, Andres Hernandez-Clavijo, Simone Pifferi, Devendra Kumar Maurya, Anna Boccaccio, Jessica Franzot, Jason Rock, and Anna Menini. "Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated chloride current in mouse vomeronasal sensory neurons." Journal of General Physiology 145, no. 4 (March 16, 2015): 285–301. http://dx.doi.org/10.1085/jgp.201411348.
Full textMaurya, Devendra Kumar, and Anna Menini. "Developmental expression of the calcium-activated chloride channels TMEM16A and TMEM16B in the mouse olfactory epithelium." Developmental Neurobiology 74, no. 7 (December 17, 2013): 657–75. http://dx.doi.org/10.1002/dneu.22159.
Full textZhang, Yang, Zhushan Zhang, Shaohua Xiao, Jason Tien, Son Le, Trieu Le, Lily Y. Jan, and Huanghe Yang. "Inferior Olivary TMEM16B Mediates Cerebellar Motor Learning." Neuron 95, no. 5 (August 2017): 1103–11. http://dx.doi.org/10.1016/j.neuron.2017.08.010.
Full textZhang, Yang, Zhushan Zhang, Shaohua Xiao, Trieu Le, Son Le, Lily Jan, Jason Tien, and Huanghe Yang. "Inferior Olivary TMEM16B Mediates Cerebellar Motor Learning." Biophysical Journal 114, no. 3 (February 2018): 132a—133a. http://dx.doi.org/10.1016/j.bpj.2017.11.752.
Full textGrubb, Søren, Kristian A. Poulsen, Christian Ammitzbøll Juul, Tania Kyed, Thomas K. Klausen, Erik Hviid Larsen, and Else K. Hoffmann. "TMEM16F (Anoctamin 6), an anion channel of delayed Ca2+ activation." Journal of General Physiology 141, no. 5 (April 29, 2013): 585–600. http://dx.doi.org/10.1085/jgp.201210861.
Full textYamamura, Hisao, Kaori Nishimura, Yumiko Hagihara, Yoshiaki Suzuki, and Yuji Imaizumi. "TMEM16A and TMEM16B channel proteins generate Ca2+-activated Cl−current and regulate melatonin secretion in rat pineal glands." Journal of Biological Chemistry 293, no. 3 (November 29, 2017): 995–1006. http://dx.doi.org/10.1074/jbc.ra117.000326.
Full textPifferi, Simone. "Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels." PLOS ONE 12, no. 1 (January 3, 2017): e0169572. http://dx.doi.org/10.1371/journal.pone.0169572.
Full textHernandez, Adan, Alfredo Alaniz-Palacios, Juan A. Contreras-Vite, and Ataúlfo Martínez-Torres. "Positive modulation of the TMEM16B mediated currents by TRPV4 antagonist." Biochemistry and Biophysics Reports 28 (December 2021): 101180. http://dx.doi.org/10.1016/j.bbrep.2021.101180.
Full textPifferi, Simone, Michele Dibattista, and Anna Menini. "TMEM16B induces chloride currents activated by calcium in mammalian cells." Pflügers Archiv - European Journal of Physiology 458, no. 6 (May 28, 2009): 1023–38. http://dx.doi.org/10.1007/s00424-009-0684-9.
Full textPifferi, Simone. "Molecular Mechanisms of Permeation in TMEM16b Ca2+-Activated Cl− Channel." Biophysical Journal 110, no. 3 (February 2016): 291a. http://dx.doi.org/10.1016/j.bpj.2015.11.1572.
Full textLe, Trieu, Son C. Le, Yang Zhang, Pengfei Liang, and Huanghe Yang. "Evidence that polyphenols do not inhibit the phospholipid scramblase TMEM16F." Journal of Biological Chemistry 295, no. 35 (July 24, 2020): 12537–44. http://dx.doi.org/10.1074/jbc.ac120.014872.
Full textOusingsawat, Jiraporn, Rainer Schreiber, and Karl Kunzelmann. "TMEM16F/Anoctamin 6 in Ferroptotic Cell Death." Cancers 11, no. 5 (May 5, 2019): 625. http://dx.doi.org/10.3390/cancers11050625.
Full textRasche, Sebastian, Bastian Toetter, Jenny Adler, Astrid Tschapek, Julia F. Doerner, Stefan Kurtenbach, Hanns Hatt, Helmut Meyer, Bettina Warscheid, and Eva M. Neuhaus. "Tmem16b is Specifically Expressed in the Cilia of Olfactory Sensory Neurons." Chemical Senses 35, no. 3 (January 25, 2010): 239–45. http://dx.doi.org/10.1093/chemse/bjq007.
Full textPifferi, Simone, Valentina Cenedese, and Anna Menini. "Anoctamin 2/TMEM16B: a calcium-activated chloride channel in olfactory transduction." Experimental Physiology 97, no. 2 (October 13, 2011): 193–99. http://dx.doi.org/10.1113/expphysiol.2011.058230.
Full textKim, Hanggu, Eunyoung Kim, and Byoung-Cheol Lee. "Investigation of Phosphatidylserine-Transporting Activity of Human TMEM16C Isoforms." Membranes 12, no. 10 (October 17, 2022): 1005. http://dx.doi.org/10.3390/membranes12101005.
Full textFalzone, Maria E., Mattia Malvezzi, Byoung-Cheol Lee, and Alessio Accardi. "Known structures and unknown mechanisms of TMEM16 scramblases and channels." Journal of General Physiology 150, no. 7 (June 18, 2018): 933–47. http://dx.doi.org/10.1085/jgp.201711957.
Full textJi, Wanying, Donghong Shi, Sai Shi, Xiao Yang, Yafei Chen, Hailong An, and Chunli Pang. "TMEM16A Protein: Calcium-Binding Site and its Activation Mechanism." Protein & Peptide Letters 28, no. 12 (December 2021): 1338–48. http://dx.doi.org/10.2174/0929866528666211105112131.
Full textYarotskyy, Viktor, Arianna R. S. Lark, Sara R. Nass, Yun K. Hahn, Michael G. Marone, A. Rory McQuiston, Pamela E. Knapp, and Kurt F. Hauser. "Chloride channels with ClC-1-like properties differentially regulate the excitability of dopamine receptor D1- and D2-expressing striatal medium spiny neurons." American Journal of Physiology-Cell Physiology 322, no. 3 (March 1, 2022): C395—C409. http://dx.doi.org/10.1152/ajpcell.00397.2021.
Full textKeckeis, Susanne, Nadine Reichhart, Christophe Roubeix, and Olaf Strauß. "Anoctamin2 (TMEM16B) forms the Ca2+-activated Cl− channel in the retinal pigment epithelium." Experimental Eye Research 154 (January 2017): 139–50. http://dx.doi.org/10.1016/j.exer.2016.12.003.
Full textBetto, Giulia, O. Lijo Cherian, Simone Pifferi, Valentina Cenedese, Anna Boccaccio, and Anna Menini. "Interactions between permeation and gating in the TMEM16B/anoctamin2 calcium-activated chloride channel." Journal of General Physiology 144, no. 1 (June 30, 2014): 125. http://dx.doi.org/10.1085/jgp.20141118206192014c.
Full textGallos, George, Kenneth E. Remy, Jennifer Danielsson, Hiromi Funayama, Xiao Wen Fu, Herng-Yu Sucie Chang, Peter Yim, Dingbang Xu, and Charles W. Emala. "Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle." American Journal of Physiology-Lung Cellular and Molecular Physiology 305, no. 9 (November 1, 2013): L625—L634. http://dx.doi.org/10.1152/ajplung.00068.2013.
Full textJeng, Grace, Muskaan Aggarwal, Wei-Ping Yu, and Tsung-Yu Chen. "Independent activation of distinct pores in dimeric TMEM16A channels." Journal of General Physiology 148, no. 5 (October 17, 2016): 393–404. http://dx.doi.org/10.1085/jgp.201611651.
Full textTalbi, Khaoula, Jiraporn Ousingsawat, Raquel Centeio, Rainer Schreiber, and Karl Kunzelmann. "Calmodulin-Dependent Regulation of Overexpressed but Not Endogenous TMEM16A Expressed in Airway Epithelial Cells." Membranes 11, no. 9 (September 21, 2021): 723. http://dx.doi.org/10.3390/membranes11090723.
Full textKunzelmann, Karl, Jiraporn Ousingsawat, Roberta Benedetto, Ines Cabrita, and Rainer Schreiber. "Contribution of Anoctamins to Cell Survival and Cell Death." Cancers 11, no. 3 (March 19, 2019): 382. http://dx.doi.org/10.3390/cancers11030382.
Full textYan, Huifang, Shuyan Yang, Yiming Hou, Saima Ali, Adrian Escobar, Kai Gao, Ruoyu Duan, et al. "Functional Study of TMEM163 Gene Variants Associated with Hypomyelination Leukodystrophy." Cells 11, no. 8 (April 9, 2022): 1285. http://dx.doi.org/10.3390/cells11081285.
Full textCenteio, Raquel, Inês Cabrita, Roberta Benedetto, Khaoula Talbi, Jiraporn Ousingsawat, Rainer Schreiber, John K. Sullivan, and Karl Kunzelmann. "Pharmacological Inhibition and Activation of the Ca2+ Activated Cl− Channel TMEM16A." International Journal of Molecular Sciences 21, no. 7 (April 7, 2020): 2557. http://dx.doi.org/10.3390/ijms21072557.
Full textZeng, Mengying, Ziyan Xie, Jiahao Zhang, Shicheng Li, Yanxiang Wu, and Xiaowei Yan. "Arctigenin Attenuates Vascular Inflammation Induced by High Salt through TMEM16A/ESM1/VCAM-1 Pathway." Biomedicines 10, no. 11 (October 31, 2022): 2760. http://dx.doi.org/10.3390/biomedicines10112760.
Full textCherian, O. Lijo, Anna Menini, and Anna Boccaccio. "Multiple effects of anthracene-9-carboxylic acid on the TMEM16B/anoctamin2 calcium-activated chloride channel." Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, no. 4 (April 2015): 1005–13. http://dx.doi.org/10.1016/j.bbamem.2015.01.009.
Full text