To see the other types of publications on this topic, follow the link: Titanium sapphire.

Journal articles on the topic 'Titanium sapphire'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Titanium sapphire.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

SARUKURA, NOBUHIKO. "Titanium sapphire laser." Review of Laser Engineering 21, no. 1 (1993): 73–76. http://dx.doi.org/10.2184/lsj.21.73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rapoport, W. R., and Chandra P. Khattak. "Titanium sapphire laser characteristics." Applied Optics 27, no. 13 (July 1, 1988): 2677. http://dx.doi.org/10.1364/ao.27.002677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Treviño-Palacios, Carlos Gerardo, Oscar Javier Zapata-Nava, and M. David Iturbe-Castillo. "Hybrid Titanium-Sapphire: Dye laser." Journal of Physics: Conference Series 274 (January 1, 2011): 012075. http://dx.doi.org/10.1088/1742-6596/274/1/012075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hickey, L. M. B., and J. S. Wilkinson. "Titanium diffused waveguides in sapphire." Electronics Letters 32, no. 24 (1996): 2238. http://dx.doi.org/10.1049/el:19961519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jelínková, H., P. Vaněk, P. Valach, K. Hamal, J. Kubelka, V. Škoda, and M. Jelínek. "Pumping of titanium sapphire laser." Czechoslovak Journal of Physics 43, no. 2 (February 1993): 131–38. http://dx.doi.org/10.1007/bf01589636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Talyansky, V., S. Choopun, M. J. Downes, R. P. Sharma, T. Venkatesan, Y. X. Li, L. G. Salamanca-Riba, M. C. Wood, R. T. Lareau, and K. A. Jones. "Pulsed laser deposition of titanium nitride films on sapphire." Journal of Materials Research 14, no. 8 (August 1999): 3298–302. http://dx.doi.org/10.1557/jmr.1999.0446.

Full text
Abstract:
We successfully deposited high-quality TiN films on c-plane sapphire by using the pulsed laser deposition technique. TiN grew on sapphire with two in-plane epitaxial relationships: (111)TiN//(0001)sapphire and [101]TiN//[1100]sapphire or (111)TiN// (0001)sapphire and [101]TiN//[1100]sapphire. The TiN unit cell showed a ±30° in-plane rotation for sapphire. The misfit between the TiN film and the sapphire substrate was calculated by using the near coincidence site lattice approach. The deposited films were analyzed by x-ray diffraction, transmission electron microscopy, atomic force microscopy, Rutherford backscattering or channeling spectrometry, electrical, and spectrophotometric measurements. The dependence of the film's crystalline quality on the deposition temperature has been investigated. The full width half-maximum of the rocking curve of the TiN 111 peak was 0.2–0.3°. The minimum ion channeling was 5%, and the room temperature resistivity was as low as 13 μω cm.
APA, Harvard, Vancouver, ISO, and other styles
7

Vu, Doan Thi Anh, Alongkot Fanka, Abhisit Salam, and Chakkaphan Sutthirat. "Variety of Iron Oxide Inclusions in Sapphire from Southern Vietnam: Indication of Environmental Change during Crystallization." Minerals 11, no. 3 (February 26, 2021): 241. http://dx.doi.org/10.3390/min11030241.

Full text
Abstract:
Sapphires from alluvial deposits associated with Cenozoic basalts in Southern Vietnam were collected for investigation of mineral inclusions. In this report, primary iron oxide inclusions were focused on, with detailed mineral chemistry using a Raman spectroscope and electron probe micro-analyzer. Consequently, a variety of iron oxide inclusions were recognized as wüstite, hercynite, and ilmenite. Ilmenite falling within an ilmenite–hematite series ranged in composition between Il24-30He36-38Mt35-40 and Il49-54He34-40Mt7-10, classified as titanomagnetite and titanohematite, respectively. Wüstite with non-stoichiometry, (Fe2+0.3-0.9)(Ti3+<0.179Al3+≤0.6Cr3+<0.1Fe3+≤0.46)☐≤0.23O, was associated with hercynite inclusions, clearly indicating cogenetic sapphire formation. Wüstite and sapphire appear to have been formed from the breakdown reaction of hercynite (hercynite = sapphire+wüstite) within a reduction magma chamber. Titanohematite and titanomagnetite series might have crystallized during iron–titanium reequilibration via subsolidus exsolution under a slightly oxidized cooling process.
APA, Harvard, Vancouver, ISO, and other styles
8

Raymond, T. D., and A. V. Smith. "Injection-seeded titanium-doped-sapphire laser." Optics Letters 16, no. 1 (January 1, 1991): 33. http://dx.doi.org/10.1364/ol.16.000033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fraser, D. J., and M. H. R. Hutchinson. "A high intensity titanium-doped sapphire laser." Journal of Modern Optics 43, no. 5 (May 1996): 1055–62. http://dx.doi.org/10.1080/09500349608233265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bogdanov, B. I., I. G. Markovska, Y. Hristov, and D. P. Georgiev. "Titanium Containing Monocrystals of Ruby and Sapphire." Chemical Engineering & Technology 34, no. 4 (March 2, 2011): 542–44. http://dx.doi.org/10.1002/ceat.201000508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Xiao, S. Q., D. A. Phillips, and A. H. Heuer. "New titanium oxide precipitates in Ti-doped sapphire." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 954–55. http://dx.doi.org/10.1017/s0424820100150605.

Full text
Abstract:
When Ti-doped α-Al2O3 single crystals are annealed at 1400°C, needle-like rutile TiO2 precipitates form on the basal plane of α-Al2O3 and cause the asterism in star sapphire. Tetragonal rutile has a = 0.459 nm and c = 0.296 nm, and has the following orientation relationship with the α-Al2O3 matrix: (100)r // (0001)s and <011>r // <100>s, where the subscripts r and s refer to the rutile and sapphire, respectively. Moon and Phillips studied the precipitation in natural blue sapphire containing both Fe and Ti. They found that rutile precipitates formed after annealing at 1350°C but an orthorhombic α-TiO2 precipitate formed after annealing at 1150°C. In this study, Ti-doped α-Al2O3 single crystals were annealed at 1300°C. TEM specimens were prepared with their plane normals parallel to <110>s, <100>s and <0001>s, respectively, and ion beam thinned to electron transparency.Three different types of precipitates are present in the α-Al2O3 matrix. The first is the needlelike rutile precipitate lying on (0001)s, with the needle axes parallel to <100>s.
APA, Harvard, Vancouver, ISO, and other styles
12

Yelin, D., D. Oron, E. Korkotian, M. Segal, and Y. Silberberg. "Third-harmonic microscopy with a titanium–sapphire laser." Applied Physics B 74, S1 (June 2002): s97—s101. http://dx.doi.org/10.1007/s00340-002-0884-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lacovara, P., L. Esterowitz, and M. Kokta. "Growth, spectroscopy, and lasing of titanium-doped sapphire." IEEE Journal of Quantum Electronics 21, no. 10 (October 1985): 1614–18. http://dx.doi.org/10.1109/jqe.1985.1072563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kalachnikov, M. P., G. Sommerer, P. V. Nickles, and W. Sandner. "Multipass titanium : sapphire amplifier for terawatt laser systems." Quantum Electronics 27, no. 5 (May 31, 1997): 403–6. http://dx.doi.org/10.1070/qe1997v027n05abeh000953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

OLAWSKY, F. J., M. ZIADÉ, G. SITJA, and J. P. PIQUE. "TITANIUM : SAPPHIRE LASER PUMPED BY COPPER VAPOR LASER." Le Journal de Physique IV 01, no. C7 (December 1991): C7–347—C7–351. http://dx.doi.org/10.1051/jp4:1991792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gilmore, D. A., P. Vujkovic Cvijin, and G. H. Atkinson. "Intracavity absorption spectroscopy with a titanium: Sapphire laser." Optics Communications 77, no. 5-6 (July 1990): 385–89. http://dx.doi.org/10.1016/0030-4018(90)90130-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Blasse, G., and J. W. M. Verweij. "The luminescence of titanium in sapphire laser material." Materials Chemistry and Physics 26, no. 2 (October 1990): 131–37. http://dx.doi.org/10.1016/0254-0584(90)90033-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Alombert-Goget, Guillaume, Yannick Guyot, Abdeldjelil Nehari, Omar Benamara, Nicholas Blanchard, Alain Brenier, Nicolas Barthalay, and Kheirreddine Lebbou. "Scattering defect in large diameter titanium-doped sapphire crystals grown by the Kyropoulos technique." CrystEngComm 20, no. 4 (2018): 412–19. http://dx.doi.org/10.1039/c7ce02004j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Su, Juan, Raphaël Boichot, Elisabeth Blanquet, Frédéric Mercier, and Michel Pons. "Chemical vapor deposition of titanium nitride thin films: kinetics and experiments." CrystEngComm 21, no. 26 (2019): 3974–81. http://dx.doi.org/10.1039/c9ce00488b.

Full text
Abstract:
Titanium nitride (TiN) films were grown by chemical vapor deposition (CVD) from titanium chlorides, ammonia (NH3) and hydrogen (H2) on single crystal c-plane sapphire, WC–Co, stainless steel and amorphous graphite substrates. The preferred orientation and color of TiN layer are studied by combining a simplified kinetic model with experiments.
APA, Harvard, Vancouver, ISO, and other styles
20

Nakagawa, Tsubasa, Isao Sakaguchi, Naoya Shibata, K. Matsunaga, Teruyasu Mizoguchi, Takahisa Yamamoto, Hajime Haneda, and Yuichi Ikuhara. "Direct Measurement of Titanium Pipe Diffusion Coefficients in Sapphire." Materials Science Forum 558-559 (October 2007): 939–42. http://dx.doi.org/10.4028/www.scientific.net/msf.558-559.939.

Full text
Abstract:
The diffusion behavior of Ti3+ along basal dislocations in sapphire has been investigated by SIMS technique. High-density unidirectional dislocations were introduced by the high-temperature mechanical deformation, and Ti3+ ions were subsequently diffused along the dislocations. The SIMS diffusion profiles clearly showed diffusion tail due to the short circuit diffusion along the dislocations called pipe diffusion. Lattice diffusion coefficient and pipe diffusion coefficient of Ti3+ at 1300°C were measured to be 1.0±0.2×10-19 [m2/sec] and 2.0±0.6× 10-13 [m2/sec], respectively.
APA, Harvard, Vancouver, ISO, and other styles
21

Kiriyama, Hiromitsu, Alexander S. Pirozhkov, Mamiko Nishiuchi, Yuji Fukuda, Akito Sagisaka, Akira Kon, Yasuhiro Miyasaka, et al. "Petawatt Femtosecond Laser Pulses from Titanium-Doped Sapphire Crystal." Crystals 10, no. 9 (September 3, 2020): 783. http://dx.doi.org/10.3390/cryst10090783.

Full text
Abstract:
Ultra-high intensity femtosecond lasers have now become excellent scientific tools for the study of extreme material states in small-scale laboratory settings. The invention of chirped-pulse amplification (CPA) combined with titanium-doped sapphire (Ti:sapphire) crystals have enabled realization of such lasers. The pursuit of ultra-high intensity science and applications is driving worldwide development of new capabilities. A petawatt (PW = 1015 W), femtosecond (fs = 10−15 s), repetitive (0.1 Hz), high beam quality J-KAREN-P (Japan Kansai Advanced Relativistic ENgineering Petawatt) Ti:sapphire CPA laser has been recently constructed and used for accelerating charged particles (ions and electrons) and generating coherent and incoherent ultra-short-pulse, high-energy photon (X-ray) radiation. Ultra-high intensities of 1022 W/cm2 with high temporal contrast of 10−12 and a minimal number of pre-pulses on target has been demonstrated with the J-KAREN-P laser. Here, worldwide ultra-high intensity laser development is summarized, the output performance and spatiotemporal quality improvement of the J-KAREN-P laser are described, and some experimental results are briefly introduced.
APA, Harvard, Vancouver, ISO, and other styles
22

Molnár, G., M. Benabdesselam, J. Borossay, D. Lapraz, P. Iacconi, V. S. Kortov, and A. I. Surdo. "Photoluminescence and thermoluminescence of titanium ions in sapphire crystals." Radiation Measurements 33, no. 5 (October 2001): 663–67. http://dx.doi.org/10.1016/s1350-4487(01)00080-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Brockman, Philip, Clayton H. Bair, James C. Barnes, Robert V. Hess, and Edward V. Browell. "Pulsed injection control of a titanium-doped sapphire laser." Optics Letters 11, no. 11 (November 1, 1986): 712. http://dx.doi.org/10.1364/ol.11.000712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Donin, V. I., V. A. Ivanov, V. I. Kovalevski, and D. V. Yakovin. "Continuous-wave titanium-sapphire laser with high pumping levels." Journal of Optical Technology 66, no. 12 (December 1, 1999): 1038. http://dx.doi.org/10.1364/jot.66.001038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ertel, Klaus, Chris Hooker, Steve J. Hawkes, Bryn T. Parry, and John L. Collier. "ASE suppression in a high energy Titanium sapphire amplifier." Optics Express 16, no. 11 (May 19, 2008): 8039. http://dx.doi.org/10.1364/oe.16.008039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Allen, R., and L. Esterowitz. "CW tunable ytterbium YAG laser pumped by titanium sapphire." Electronics Letters 31, no. 8 (1995): 639. http://dx.doi.org/10.1049/el:19950439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nazarenko, P. N., N. V. Okladnikov, and G. A. Skripko. "Nonlinear refraction in sapphire crystals doped with trivalent titanium." Journal of Applied Spectroscopy 55, no. 1 (July 1991): 722–27. http://dx.doi.org/10.1007/bf00661730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gremillard, Laurent, Eduardo Saiz, Jerome Chevalier, and Antoni P. Tomsia. "Wetting and strength in the tin–silver–titanium/sapphire system." Zeitschrift für Metallkunde 95, no. 4 (April 2004): 261–65. http://dx.doi.org/10.3139/146.017947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mileiko, S. T., K. B. Povarova, V. P. Korzhov, A. V. Serebryakov, A. A. Kolchin, V. M. Kiiko, M. Yu Starostin, N. S. Sarkissyan, and A. V. Antonova. "High-temperature creep of sapphire-fibre/titanium-aluminide-matrix composites." Scripta Materialia 44, no. 10 (May 2001): 2463–69. http://dx.doi.org/10.1016/s1359-6462(01)00924-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rasskazov, Gennady, Vadim V. Lozovoy, and Marcos Dantus. "Spectral amplitude and phase noise characterization of titanium-sapphire lasers." Optics Express 23, no. 18 (August 31, 2015): 23597. http://dx.doi.org/10.1364/oe.23.023597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Muslimov, A. E., A. V. Butashin, V. M. Kanevsky, V. A. Babaev, and N. M. R. Alikhanov. "Epitaxy of CdTe on sapphire substrates with titanium buffer layers." Crystallography Reports 62, no. 3 (May 2017): 455–59. http://dx.doi.org/10.1134/s1063774517030154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ell, Richard, Gregor Angelow, Wolfgang Seitz, Max J. Lederer, Heinz Huber, Daniel Kopf, Jonathan R. Birge, and Franz X. Kärtner. "Quasi-synchronous pumping of modelocked few-cycle Titanium Sapphire lasers." Optics Express 13, no. 23 (2005): 9292. http://dx.doi.org/10.1364/opex.13.009292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ruzeng, Yang, Yang Yuan, and Xu Hongyi. "Sapphire diffusion treatment and the behaviour of iron and titanium." Journal of Gemmology 29, no. 7 (2005): 455–60. http://dx.doi.org/10.15506/jog.2005.29.7.455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

DeShazer, L. G., K. W. Kangas, and J. M. Eggleston. "Saturation of green absorption in titanium-doped sapphire laser crystals." Optics Letters 13, no. 5 (May 1, 1988): 363. http://dx.doi.org/10.1364/ol.13.000363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hussels, J., C. Cheng, E. J. Salumbides, and W. Ubachs. "Chirp-compensated pulsed titanium–sapphire laser system for precision spectroscopy." Optics Letters 45, no. 21 (October 20, 2020): 5909. http://dx.doi.org/10.1364/ol.401703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bussière, B., O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J. Y. Natoli, and J. P. Chambaret. "Bulk laser-induced damage threshold of titanium-doped sapphire crystals." Applied Optics 51, no. 32 (November 9, 2012): 7826. http://dx.doi.org/10.1364/ao.51.007826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hartnett, John G., Michael E. Tobar, and Jerzy Krupka. "Complex paramagnetic susceptibility in titanium-doped sapphire at microwave frequencies." Journal of Physics D: Applied Physics 34, no. 6 (March 14, 2001): 959–67. http://dx.doi.org/10.1088/0022-3727/34/6/318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Vassen, Wim, Claus Zimmermann, Reinald Kallenbach, and Theodor W. Hänsch. "A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy." Optics Communications 75, no. 5-6 (March 1990): 435–40. http://dx.doi.org/10.1016/0030-4018(90)90209-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Knowles, M. R. H., and C. E. Webb. "Cavity configurations for copper vapour laser pumped titanium sapphire lasers." Optics Communications 89, no. 5-6 (May 1992): 493–506. http://dx.doi.org/10.1016/0030-4018(92)90563-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Aleksandrov, A. G., V. E. Zavalova, A. V. Kudryashov, A. L. Rukosuev, and V. V. Samarkin. "Adaptive Correction of a High-Power Titanium-Sapphire Laser Radiation." Journal of Applied Spectroscopy 72, no. 5 (September 2005): 744–50. http://dx.doi.org/10.1007/s10812-005-0142-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ahmad, H. B., X. Jiang, and T. A. King. "Operation of Cr4+: Mg2SiO4 Pumped With A Titanium Sapphire Laser." Journal of Optics 22, no. 4 (December 1993): 133–35. http://dx.doi.org/10.1007/bf03549259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Peddada, S. R., I. M. Robertson, and H. K. Birnbaum. "Hydride precipitation in vapor deposited Ti thin films." Journal of Materials Research 8, no. 2 (February 1993): 291–96. http://dx.doi.org/10.1557/jmr.1993.0291.

Full text
Abstract:
Titanium hydrides having two different crystal structures were observed in α–Ti thin films grown epitaxially on sapphire substrates by e-beam physical vapor deposition. One of the hydrides (γ-hydride) had a face-centered tetragonal structure (c/a > 1) with an ordered arrangement of hydrogen atoms. The second hydride formed was the fcc δ-hydride. The γ-hydride grew as platelets in the α–Ti lattice with {10$\overline 1$0}Ti habit planes, whereas the γ-hydrides formed directly on the sapphire substrate parallel to the (0001)Ti. These hydrides are one of the principal causes of film decohesion.
APA, Harvard, Vancouver, ISO, and other styles
43

Zaharinie, T., Farazila Yusof, Mohd Hamdi Abdul Shukor, and T. Ariga. "A Study on Interfacial Reaction and Titanium Distribution in Brazing Sapphire to Inconel 600 Using Cu/Ni Porous Composite." Advanced Materials Research 383-390 (November 2011): 898–902. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.898.

Full text
Abstract:
In this study, a Cu/Ni porous composite was introduced when brazing sapphire to Inconel 600 using a special active filler metal of BAg-8 + 2Ti. The aim of the research is to investigate the Ti distributionin the Cu/Niporous composite and braze joint. The brazing was carried out in brazingtemperature of 830°C for 30 minutes by a vacuum environment (10-4 Pa). The interface of braze joint/sapphire and braze joint/Inconel 600 were observed by an electron microscope followed by elements analyzing using SEM-EDS. The observation and analysis shows that there is a black and thin reaction layer at braze joint/sapphire interface and a non-uniform of reaction layer was formed at braze joint/Inconel 600 interface. The formation of reaction layer is influenced by thermodynamic activity of Ti during brazing.
APA, Harvard, Vancouver, ISO, and other styles
44

Korotkova, Klavdiya, Dashi Bainov, Serafim Smirnov, Igor Yunusov, and Yury Zhidik. "Electrical Conductivity and Optical Properties of Nanoscale Titanium Films on Sapphire for Localized Plasmon Resonance-Based Sensors." Coatings 10, no. 12 (November 28, 2020): 1165. http://dx.doi.org/10.3390/coatings10121165.

Full text
Abstract:
The developing area of plasmonics has led to the possibility of creating a new type of high-speed, high-sensitivity optical sensor for biological environment analysis. The functional layer of such biosensors are nanoscale films of noble metals. In this work we suggest using a thin film of titanium as a functional layer. This paper presents the results of the research on electrical and optical characteristics of 5 to 80 nm thick titanium films deposited on sapphire substrates by magnetron sputtering. It is shown that surface plasmon resonance is consistently observed in the investigated titanium films and the theoretical grounds of surface plasmon resonance excitement is given. In structures with titanium films less than 15 nm thick, local plasmon resonance is observed along with surface plasmon resonance. Local plasmon resonance is more sensitive to the surface state of a thin film of titanium, which on the one hand increases the sensitivity of a biosensor, and on the other hand imposes restrictions on the parameters of nanoscale films.
APA, Harvard, Vancouver, ISO, and other styles
45

Гаджиев, М. Х., Р. М. Эмиров, А. Э. Муслимов, М. Г. Исмаилов, and В. М. Каневский. "Формирование сверхтвердых покрытий в процессе обработки низкотемпературной плазмой азота в открытой атмосфере пленок титана." Письма в журнал технической физики 47, no. 9 (2021): 44. http://dx.doi.org/10.21883/pjtf.2021.09.50908.18701.

Full text
Abstract:
Results of the formation of superhard coatings in the low-temperature nitrogen plasma treatment process in the open atmosphere of titanium films on sapphire substrates are given. It is shown that during plasma treatment a coating of nitrogen-containing TiO2 with rutile structure is formed with a double increase (in comparison with rutile TiO2) of microhardness (up to 27 GPa). The application of this coating leads to hardening of the surface of sapphire plates by 22-23%. High productivity and implementation of synthesis in an open atmosphere make it possible to consider the proposed procedure is promising for the production of superhard coatings with high resistance to oxygen.
APA, Harvard, Vancouver, ISO, and other styles
46

Wong, Wing C., Donald S. McClure, Sergei A. Basun, and Milan R. Kokta. "Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons." Physical Review B 51, no. 9 (March 1, 1995): 5682–92. http://dx.doi.org/10.1103/physrevb.51.5682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang Xiaocui, 张小翠, 司继良 Si Jiliang, 徐民 Xu Min, 梁晓燕 Liang Xiaoyan, and 储玉喜 Chu Yuxi. "Growth Method, Optical and Laser Properties of Titanium-Doped Sapphire Crystals." Chinese Journal of Lasers 41, no. 5 (2014): 0506001. http://dx.doi.org/10.3788/cjl201441.0506001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bernath, S., T. Wagner, S. Hofmann, and M. Rühle. "Interface formation between ultrathin films of titanium and (0001) sapphire substrates." Surface Science 400, no. 1-3 (March 1998): 335–44. http://dx.doi.org/10.1016/s0039-6028(97)00890-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Smith, H. A., S. Elhamri, K. G. Eyink, Z. J. Biegler, R. L. Adams, K. Mahalingam, T. C. Back, A. M. Urbas, and A. N. Reed. "Investigation of strain and stoichiometry of epitaxial titanium nitride on sapphire." Thin Solid Films 697 (March 2020): 137832. http://dx.doi.org/10.1016/j.tsf.2020.137832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Marques, C., E. Alves, C. McHargue, L. C. Ononye, T. Monteiro, J. Soares, and L. F. Allard. "Influence of annealing atmosphere on the behavior of titanium implanted sapphire." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 191, no. 1-4 (May 2002): 644–48. http://dx.doi.org/10.1016/s0168-583x(02)00626-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography