Academic literature on the topic 'Tissues'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tissues.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tissues"
Bakhshandeh, Behnaz, Payam Zarrintaj, Mohammad Omid Oftadeh, Farid Keramati, Hamideh Fouladiha, Salma Sohrabi-jahromi, and Zarrintaj Ziraksaz. "Tissue engineering; strategies, tissues, and biomaterials." Biotechnology and Genetic Engineering Reviews 33, no. 2 (July 3, 2017): 144–72. http://dx.doi.org/10.1080/02648725.2018.1430464.
Full textSomepalli, Gowthami, Sarthak Sahoo, Arashdeep Singh, and Sridhar Hannenhalli. "Prioritizing and characterizing functionally relevant genes across human tissues." PLOS Computational Biology 17, no. 7 (July 16, 2021): e1009194. http://dx.doi.org/10.1371/journal.pcbi.1009194.
Full textApa, Ludovica, Marianna Cosentino, Flavia Forconi, Antonio Musarò, Emanuele Rizzuto, and Zaccaria Del Prete. "The Development of an Innovative Embedded Sensor for the Optical Measurement of Ex-Vivo Engineered Muscle Tissue Contractility." Sensors 22, no. 18 (September 12, 2022): 6878. http://dx.doi.org/10.3390/s22186878.
Full textTezcaner, A., G. Köse, and V. Hasırcı. "Fundamentals of tissue engineering: Tissues and applications." Technology and Health Care 10, no. 3-4 (July 8, 2002): 203–16. http://dx.doi.org/10.3233/thc-2002-103-406.
Full textPatil, Amol Somaji, Yash Merchant, and Preethi Nagarajan. "Tissue Engineering of Craniofacial Tissues – A Review." journal of Regenerative Medicine and Tissue Engineering 2, no. 1 (2013): 6. http://dx.doi.org/10.7243/2050-1218-2-6.
Full textDuance, Vic. "Connective tissue: Get connected with connective tissues." Biochemist 25, no. 5 (October 1, 2003): 7–10. http://dx.doi.org/10.1042/bio02505007.
Full textLeong, Ivone. "New tissue processing technique for adipose tissues." Nature Reviews Endocrinology 14, no. 3 (January 29, 2018): 128. http://dx.doi.org/10.1038/nrendo.2018.8.
Full textYoshizato, Katsutoshi. "Tissue reconstitution: metamorphosis, regeneration, and artificial tissues." Wound Repair and Regeneration 6, no. 4 (July 1998): 273–75. http://dx.doi.org/10.1046/j.1524-475x.1998.60403.x.
Full textVillar, Cristina C., and David L. Cochran. "Regeneration of Periodontal Tissues: Guided Tissue Regeneration." Dental Clinics of North America 54, no. 1 (January 2010): 73–92. http://dx.doi.org/10.1016/j.cden.2009.08.011.
Full textRickles, Richard J., and Sidney Strickland. "Tissue plasminogen activator mRNA in murine tissues." FEBS Letters 229, no. 1 (February 29, 1988): 100–106. http://dx.doi.org/10.1016/0014-5793(88)80806-8.
Full textDissertations / Theses on the topic "Tissues"
Moreau, Jodie E. "Stimulation of bone marrow stromal cells in the development of tissue engineered ligaments /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2005.
Find full textAdviser: Gregory H. Altman. Submitted to the Dept. of Biology--Biotechnology. Includes bibliographical references (leaves 183-192). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Deiuliis, Jeffrey Alan. "The metabolic and molecular regulation of adipose triglyceride lipase." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1185546165.
Full textCraddock, Russell. "Structural characterisation of aggrecan in cartilaginous tissues and tissue engineered constructs." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/structural-characterisation-of-aggrecan-in-cartilaginous-tissues-and-tissue-engineered-constructs(d1e72d1e-b0ac-4485-9a05-030a5faf8351).html.
Full textLi, Zhaohui. "Monitoring biological functions of cultured tissues using microdialysis." Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:f8b478fa-881e-4299-9ee5-b8ee29f37fe9.
Full textKalcioglu, Zeynep Ilke. "Mechanical behavior of tissue simulants and soft tissues under extreme loading conditions." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79558.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 157-168).
Recent developments in computer-integrated surgery and in tissue-engineered constructs necessitate advances in experimental and analytical techniques in characterizing properties of mechanically compliant materials such as gels and soft tissues, particularly for small sample volumes. One goal of such developments is to quantitatively predict and mimic tissue deformation due to high rate impact events typical of industrial accidents and ballistic insults. This aim requires advances in mechanical characterization to establish tools and design principles for tissue simulant materials that can recapitulate the mechanical responses of hydrated soft tissues under dynamic contact-loading conditions. Given this motivation, this thesis studies the mechanical properties of compliant synthetic materials developed for tissue scaffold applications and of soft tissues, via modifying an established contact based technique for accurate, small scale characterization under fully hydrated conditions, and addresses some of the challenges in the implementation of this method. Two different engineered material systems composed of physically associating block copolymer gels, and chemically crosslinked networks including a solvent are presented as potential tissue simulants for ballistic applications, and compared directly to soft tissues from murine heart and liver. In addition to conventional quasistatic and dynamic bulk mechanical techniques that study macroscale elastic and viscoelastic properties, new methodologies are developed to study the small scale mechanical response of the aforementioned material systems to concentrated impact loading. The resistance to penetration and the energy dissipative constants are quantified in order to compare the deformation of soft tissues and mechanically optimized simulants, and to identify the underlying mechanisms by which the mechanical response of these tissue simulant candidates are modulated. Finally, given that soft tissues are biphasic in nature, atomic force microscopy enabled load relaxation experiments are utilized to develop approaches to distinguish between poroelastic and viscoelastic regimes, and to study how the anisotropy of the tissue structure affects elastic and transport properties, in order to inform the future design of tissue simulant gels that would mimic soft tissue response.
by Zeynep Ilke Kalcioglu.
Ph.D.
Carlson, Grady E. "Dynamic Biochemical Tissue Analysis of L-selectin Ligands on Colon Cancer Tissues." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1343932605.
Full textUeda, Yuichiro. "Application of Tissue Engineering with Xenogenic Cells and Tissues for Regenerative Medicine." 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147657.
Full textMerkel, Matthias. "From cells to tissues." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-156597.
Full textEine wesentliche Voraussetzung für die Existenz mehrzelligen Lebens ist, dass sich einzelne Zellen sinnvoll zu Geweben ergänzen können. In dieser Dissertation untersuchen wir, wie großskalige Eigenschaften von Geweben aus dem kollektiven Verhalten einzelner Zellen hervorgehen. Dazu konzentrieren wir uns auf Epitheliengewebe, welches eine der Grundgewebearten in Tieren darstellt. Wir stellen theoretische Untersuchungen zu rheologischen Eigenschaften und zu zellulärer Polarität von Epithelien an. Diese theoretischen Untersuchungen vergleichen wir mit experimentellen Beobachtungen am sich entwickelnden Flügel der schwarzbäuchigen Taufliege (Drosophila melanogaster). Um die Mechanik von Epithelien zu untersuchen, entwickeln wir zunächst eine geometrische Beschreibung für die Verformung von zweidimensionalen zellulären Netzwerken. Unsere Beschreibung zerlegt die mittlere Verformung des gesamten Netzwerks in zelluläre Beitrage. Zum Beispiel wird eine Scherverformung des gesamten Netzwerks auf der zellulären Ebene exakt repräsentiert: einerseits durch die Verformung einzelner Zellen und andererseits durch topologische Veränderungen des zellulären Netzwerks. Mit Hilfe dieser Beschreibung quantifizieren wir die Verformung des Fliegenflügels während des Puppenstadiums. Des Weiteren führen wir die Verformung des Flügels auf ihre zellulären Beiträge zurück. Wir nutzen diese Beschreibung auch als Ausgangspunkt, um effektive rheologische Eigenschaften von Epithelien in Abhängigkeit von zellulären Fluktuationen zu untersuchen. Dazu simulieren wir Epithelgewebe mittels eines Vertex Modells, welches einzelne Zellen als elastische Polygone abstrahiert. Wir erweitern dieses Vertex Modell um zelluläre Fluktuationen und um die Möglichkeit, Schersimulationen beliebiger Dauer durchzuführen. Die Analyse des stationären Zustands dieser Simulationen ergibt plastisches Verhalten bei kleiner Fluktuationsamplitude und visko-elastisches Verhalten bei großer Fluktuationsamplitude. Neben mechanischen Eigenschaften untersuchen wir auch die Umorientierung einer Zellpolarität in Epithelien. Dazu entwickeln wir eine einfache hydrodynamische Beschreibung für die Umorientierung eines Polaritätsfeldes. Wir berücksichtigen dabei insbesondere Effekte durch Scherung, durch ein anderes Polaritätsfeld und durch einen lokalen Gleichrichtungseffekt. Um unsere theoretische Beschreibung mit experimentellen Daten zu vergleichen, entwickeln wir Methoden um Polaritätsmuster im Fliegenflügel zu quantifizieren. Schließlich stellen wir fest, dass unsere hydrodynamische Beschreibung in der Tat beobachtete Polaritätsmuster reproduziert. Das gilt nicht nur im Wildtypen, sondern auch in genetisch veränderten Tieren
Musson, David. "Adrenomedullin in dental tissues." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/794/.
Full textRosahl, Agnes Lioba. "How tissues tell time." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2015. http://dx.doi.org/10.18452/17113.
Full textA circadian clock in peripheral tissues regulates physiological functions through gene expression timing. However, despite the common and well studied core clock mechanism, understanding of tissue-specific regulation of circadian genes is marginal. Overrepresentation analysis is a tool to detect transcription factor binding sites that might play a role in the regulation of co-expressed genes. To apply it to circadian genes that do share a period of about 24 hours, but differ otherwise in peak phase timing and tissue-specificity of their oscillation, clear definition of co-expressed gene subgroups as well as the appropriate choice of background genes are important prerequisites. In this setting of multiple subgroup comparisons, a hierarchical method for false discovery control reveals significant findings. Based on two microarray time series in mouse macrophages and liver cells, tissue-specific regulation of circadian genes in these cell types is investigated by promoter analysis. Binding sites for CLOCK:BMAL1, NF-Y and CREB transcription factors are among the common top candidates of overrepresented motifs. Related transcription factors of BHLH and BZIP families with specific complexation domains bind to motif variants with differing strengths, thereby arranging interactions with more tissue-specific regulators (e.g. HOX, GATA, FORKHEAD, REL, IRF, ETS regulators and nuclear receptors). Presumably, this influences the timing of pre-initiation complexes and hence tissue-specific transcription patterns. In this respect, the content of guanine (G) and cytosine (C) bases as well as CpG dinucleotides are important promoter properties directing the interaction probability of regulators, because affinities with which transcription factors are attracted to promoters depend on these sequence characteristics.
Books on the topic "Tissues"
O, Phillips Glyn, ed. Advances in tissue banking. Singapore: World Scientific, 1997.
Find full textAnthony, Cryer, and Van R. L. R, eds. New perspectives in adipose tissue: Structure, function, and development. London: Butterworths, 1985.
Find full textHughes, Graham R. V. Connective tissue diseases. 4th ed. Oxford: Blackwell Scientific Publications, 1994.
Find full textUnited States. Congress. Senate. Committee on Governmental Affairs. Tissue banks: The dangers of tainted tissues and the need for federal regulation : hearing before the Committee on Governmental Affairs, United States Senate, One Hundred Eighth Congress, first session, May 14, 2003. Washington: U.S. G.P.O., 2003.
Find full textLeMaster, Leslie Jean. Cells and tissues. Chicago: Childrens Press, 1985.
Find full textZurr, Ionat, and Oron Catts. Tissues, Cultures, Art. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25887-9.
Full textHealy, Kieran Joseph. Last best gifts: Altruism and the market for human blood and organs. Chicago, IL: University of Chicago Press, 2006.
Find full textFederal-Provincial Advisory Committee on Institutional and Medical Services (Canada). Sub-Committee on Institutional Program Guidelines. Organ and tissue donation services in hospitals: Report. Ottawa: Health and Welfare Canada, 1986.
Find full textGalea, George. Essentials of tissue banking. Dordrecht: Springer, 2010.
Find full textUnited States. Congress. Office of Technology Assessment., ed. Ownership of human tissues and cells. Washington, D.C: Congress of the U.S., Office of Technology Assessment, 1987.
Find full textBook chapters on the topic "Tissues"
Mooney, David J., Joseph P. Vacanti, and Robert Langer. "Tissue engineering: Tubular tissues." In Yearbook of Cell and Tissue Transplantation 1996–1997, 275–82. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0165-0_27.
Full textFeeback, Daniel L. "Tissues." In Oklahoma Notes, 28–88. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4630-5_2.
Full textBellary, Sharath S., Wellington K. Hsu, Phuc Dang, Ranjan Gupta, Bastián Uribe-Echevarría, Brian R. Wolf, Matthew T. Provencher, Daniel J. Gross, Amun Makani, and Petar Golijanin. "Tissues." In Passport for the Orthopedic Boards and FRCS Examination, 69–97. Paris: Springer Paris, 2015. http://dx.doi.org/10.1007/978-2-8178-0475-0_4.
Full textVan Lommel, Alfons T. L. "Tissues." In From Cells to Organs, 59–122. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0353-8_4.
Full textLyon, H. "Tissue Processing: VI. Hard Tissues." In Theory and Strategy in Histochemistry, 207–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-73742-8_15.
Full textFon, Deniece, David R. Nisbet, George A. Thouas, Wei Shen, and John S. Forsythe. "Tissue Engineering of Organs: Brain Tissues." In Tissue Engineering, 457–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02824-3_22.
Full textAwwad, Hassan K. "Early Reacting Tissues: The Haematopoietic Tissue." In Radiation Oncology: Radiobiological and Physiological Perspectives, 223–46. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-015-7865-3_8.
Full textRipamonti, Ugo, Jean-Claude Petit, and June Teare. "Tissue Engineering of the Periodontal Tissues." In Regenerative Dentistry, 83–109. Cham: Springer International Publishing, 2010. http://dx.doi.org/10.1007/978-3-031-02581-5_3.
Full textRoseti, Livia, and Brunella Grigolo. "Tissue Engineering: Scaffolds and Bio-Tissues." In Joint Function Preservation, 207–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82958-2_18.
Full textMargulies, S. S., and D. F. Meaney. "Brain tissues." In Handbook of Biomaterial Properties, 70–80. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5801-9_8.
Full textConference papers on the topic "Tissues"
Hariri, Alireza, and Jean W. Zu. "Design of a Tissue Resonator Indenter Device for Measurement of Soft Tissue Viscoelastic Properties Using Parametric Identification." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87786.
Full textKlisch, Stephen M., Suzanne E. Holtrichter, Robert L. Sah, and Andrew Davol. "A Bimodular Second-Order Orthotropic Stress Constitutive Equation for Cartilage." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59475.
Full textVogt, William C., and Christopher G. Rylander. "Effects of Tissue Dehydration on Optical Diffuse Reflectance and Transmittance in Ex Vivo Porcine Skin." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80935.
Full textCai, Yang, and Talia Perez. "Haptic Perception with Artificial Tissues." In 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004632.
Full textShan, Baoxiang, and Assimina A. Pelegri. "Dynamic Analysis of Soft Tissues With Hard Inclusions." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68558.
Full textGupta, Shikha, Fernando Carrillo, Lisa Pruitt, and Christian Puttlitz. "Nanoscale Indentation of Simulated Soft Tissues." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61986.
Full textIrimia, Daniel, and Jens O. M. Karlsson. "Monte Carlo Simulation of Ice Formation in Tissues." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32681.
Full textDeVore, Dale P. "Preparation of Injectable Human Tissue Matrix." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2509.
Full textBreidenbach, Andrew P., Nathaniel A. Dyment, Yinhui Lu, Jason T. Shearn, David W. Rowe, Karl E. Kadler, and David L. Butler. "Combined Effects of Scaffold Material and Mechanical Stimulation on the Formation of Tissue Engineered Constructs Using Tendon and Ligament Progenitor Cells." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14379.
Full textKuznetsova, Liana V., and Dmitry A. Zimnyakov. "Coherent backscattering diagnostics of tissue-like media and tissues." In SPIE Proceedings, edited by Qingming Luo, Lihong V. Wang, Valery V. Tuchin, and Min Gu. SPIE, 2007. http://dx.doi.org/10.1117/12.741464.
Full textReports on the topic "Tissues"
Martinez, Melissa. Lab Basics: Semi-Automated Slice Lab. ConductScience, July 2022. http://dx.doi.org/10.55157/cs20220705.
Full textShugart, L. R. TNT metabolites in animal tissues. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5084219.
Full textStehney, A. F., and H. F. Lucas. Thorium isotopes in human tissues. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10173422.
Full textShugart, L. TNT metabolites in animal tissues. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5404375.
Full textShugart, L. TNT (trinitrotoluene) metabolites in animal tissues. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/7098581.
Full textSAMBANIS, ATHANASSIOS. Final Report on Cryopreservation of Biological Tissues. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/782715.
Full textBartz, Jason C. Prion Transport to Secondary Lymphoreticular System Tissues. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada446424.
Full textBartz, Jason C. Prion Transport to Secondary Lymphoreticular System Tissues. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada430336.
Full textWeier, Jingly F., Christy Ferlatte, and Heinz-Ulli G. Weier. Somatic genomic variations in extra-embryonic tissues. Office of Scientific and Technical Information (OSTI), May 2010. http://dx.doi.org/10.2172/1001041.
Full textShawkey, Matthew D. Characterization and Biomimcry of Avian Nanostructured Tissues. Fort Belvoir, VA: Defense Technical Information Center, January 2016. http://dx.doi.org/10.21236/ad1003687.
Full text