Academic literature on the topic 'TIR Raman Tribometer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TIR Raman Tribometer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "TIR Raman Tribometer"

1

Praveena, Manimunda, Kaustav Guha, Abhilash Ravishankar, Sanjay K. Biswas, Colin D. Bain, and Vikram Jayaram. "Total internal reflection Raman spectroscopy of poly(alpha-olefin) oils in a lubricated contact." RSC Adv. 4, no. 42 (2014): 22205–13. http://dx.doi.org/10.1039/c4ra02261k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Praveena, Manimunda, Colin D. Bain, Vikram Jayaram, and Sanjay K. Biswas. "Total internal reflection (TIR) Raman tribometer: a new tool for in situ study of friction-induced material transfer." RSC Advances 3, no. 16 (2013): 5401. http://dx.doi.org/10.1039/c3ra00131h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Su, Yan Liang, Yue Feng Lin, Sun Hui Yao, and Chia Jui Hsu. "Effects of Tungsten Addition on Mechanical and Tribological Properties of Carbon Nitride Prepared by DC Magnetron Sputtering." Key Engineering Materials 642 (April 2015): 24–29. http://dx.doi.org/10.4028/www.scientific.net/kem.642.24.

Full text
Abstract:
Carbon nitride coatings doped with tungsten were deposited on high speed steel disks by unbalanced DC magnetron sputtering using nitrogen-argon mixture gas. The coatings were deposited on three different types of interlayer (Ti, Ti/TiN and Ti/TiC), and the tungsten target current was varied from 0 to 0.9 A. Surface morphology of the coatings were measured by roughness testing and scanning electron microscopy (SEM). In addition, the chemical composition and depth profile were analyzed by X-ray Diffraction (XRD) analysis, Raman spectroscopy, and glow discharge spectroscopy (GDS). Finally, the hardness (H) and elasticity (E) were measured by nanoindentation and a Rockwell indentation test, while the tribological properties were tested using a pin-on-disk tribometer. After all, the coatings were measured by cutting testing of tuning inserts and micro-drillers. It is found that all of the coatings are amorphous and have a thickness of approximately 1.5 μm. Moreover, the nitrogen content is around 30 at%, while the tungsten content varies in the range of 0-9 at%. In addition, the hardness values are in the range of 15-20 GPa and the elasticity varies from 236 to 274 GPa. A good correlation is observed between the wear resistance and the indentation adhesion level. Furthermore, it is found that the hardness is not significantly correlated to the tungsten content and the coatings deposited on the Ti/TiC interlayer have greater adhesion. Finally, the coatings generally have a very low coefficient of friction (0.01-0.3) and a wear coefficient as low as 10-6 mm3/Nm, and the CN/TiC coating reduced 41% and 43% of flank wear in the cutting testing of turning inserts and micro-drillers respectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Zhen, Yanfeng Han, and Jin Qian. "Improving Mechanical and Tribological Behaviors of GLC Films on NBR under Water Lubrication by Doping Ti and N." Coatings 12, no. 7 (July 1, 2022): 937. http://dx.doi.org/10.3390/coatings12070937.

Full text
Abstract:
Water lubrication has been widely used in marine equipment, where rubber bearings and seals suffer intense friction and severe wear under mixed and boundary conditions. It has good research prospects and practical value to study the composite of amorphous carbon on water lubrication rubber to improve lubrication and reduce wear. In this work, modified graphite-like carbon films incorporated with titanium and nitrogen ((Ti:N)-GLC) were integrated on nitrile butadiene rubber (NBR) with multi-target magnetron sputtering. Direct current (DC) sputtering of graphite target was used as the carbon source. The incorporation of Ti and N elements was accomplished by using radio frequency (RF) magnetron sputtering of three different targets: Ti, TiC and TiN, to optimize the mechanical and tribological performance. This work is aimed to clarify the modification mechanism of Ti and N incorporation and obtain the optimum scheme. The influence of RF power on surface topography, chemical composition, mechanical properties and tribological properties was investigated by SEM, XPS, Raman spectra, nanoindentor and tribometer. The consequences revealed that the characteristics of films depend on RF target types and power. For the Ti-C and TiC-C series, when RF power is 100 W and below, with low content of Ti (6 at.%~13 at.%) and N (around 10 at.%), the incorporation of Ti and N optimizes the surface topology, improves the mechanical properties and maintains excellent adhesion to NBR substrate. The tribological and wear behaviors of (Ti:N)-GLC films are better than GLC films under mixed and boundary lubrication. When RF power grows to 200 W, the dopants result in the deterioration of surface and mechanical properties, followed by worse lubrication and wear behaviors. For TiN-C series, the incorporation of TiN takes no advantage over GLC films, even worse in the case of high RF power. Overall, the incorporation of Ti or TiC by magnetron sputtering in Ar/N2 atmosphere is an effective modification method for GLC films on NBR to improve mechanical and tribological behaviors.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yanyan, Yang Wang, Jia-jie Kang, Guozheng Ma, Lina Zhu, Haidou Wang, Zhiqiang Fu, Haipeng Huang, and Wen Yue. "Tribological Properties of Ti-Doped Diamond-Like Carbon Coatings Under Boundary Lubrication With ZDDP." Journal of Tribology, December 17, 2020, 1–28. http://dx.doi.org/10.1115/1.4049373.

Full text
Abstract:
Abstract Diamond-like carbon (DLC) coatings containing 0.7%, 5.8% and 23.3% Ti were deposited via pulsed cathodic arc deposition and magnetron sputtering on AISI 316L stainless steel substrates. The varied Ti content was controlled by setting Ti target current at 3, 5 and 7A. The composition, microstructure, mechanical and tribological properties of Ti-doped DLC (Ti-DLC) coatings were investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, nanoindentation and ball-on-disc tribometer. The results show that TiC formed when Ti content in the coating was higher than 5.8% and the ID/IG ratios increased gradually with the increasing Ti content. Ti-DLC with 0.7 Ti had the highest H/E and H3/E2 ratios and exhibited optimal tribological properties under lubrication, especially when ZDDP was contained in the oil. Furthermore, ZDDP tribofilms played an important role in wear reduction by protecting the rubbing surfaces against adhesion and suppressing the tribo-induced graphitization of DLC coatings.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography