Dissertations / Theses on the topic 'TIN EVAPORATION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'TIN EVAPORATION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Maciel, Júnior Jorge Luiz Barbosa. "Investigação de propriedades de filmes finos de Sn'O IND. 2' e 'Al IND. 2''O IND. 3' para aplicação em dispositivos /." Bauru : [s.n.], 2010. http://hdl.handle.net/11449/88456.
Full textBanca: Margarida Juri Saeki
Banca: Tomaz Catunda
O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp
Resumo: A proposta deste trabalho é a investigação das propriedades elétricas e ópticas de filmes finos de dióxido de estanho (Sn'O IND. 2') obtidos via sol-gel e por solução alcoólica depositados via dip-coating, e, filmes de alumina ('Al IND. 2''O IND. 3') obtidos por deposição de filmes de alumínio (Al) via evaporação resistiva e tratamento térmico em diferentes ambientes, para promover a oxidação de Al. A investigação individual quanto às propriedades ópticas e elétricas desses materiais conhecer seu comportamento na forma de filmes, e estudar a região interfacial de Sn'O IND. 2' e 'Al IND. 2''O IND. 3'. As caracterizações estruturais dos filmes foram feitas por difração de raios-X (DRX), e, no caso dos filmes de alumina, utilizou-se também microscopia eletrônica de varredura (MEV) e microscopia óptica. Nas caracterizações ópticas foram utilizadas técnicas de espectroscopia na região do ultravioleta e no infravermelho próximo (UV-Vis-Nir). Tanto os filmes obtidos por meio alcoólico como obtidos via SGDC foram caracterizados como sendo de Sn'O IND. 2' de estrutura tetragonal do tipo rutilo, sendo que os filmes obtidos via processo alcoólico apresentaram condutividade elétrica maior do que os filmes obtidos via SGDC. Os resultados referentes aos filmes finos de alumínio indicam que independentemente da quantidade de camadas de alumínio depositadas e da atmosfera de tratamento térmico, tem-se a oxidação do alumínio à alumina ('Al IND. 2''O IND. 3'), sendo que a estrutura dominante depende da atmosfera de tratamento. A sua utilização como camada isolante no gate em dispositivo metal-óxido-semicondutor é viável, pois a corrente fonte-dreno apresenta valores significativamente maiores do que a corrente fonte-gate.
Abstract: The main goal of this work is the investigation of properties of tin dioxide (Sn'O IND. 2') and alumina ('Al IND. 2''O IND. 3) thin films. The first one was obtained through the sol-gel process as well as alcoholic solution, via dip-coating. The alumina thin films were obtained by resistive evaporation of aluminum (Al) followed by thermal annealing in distinct atmospheres, to promote the Al oxidation. The individual investigation of optical and electrical properties of these materials aims the knowledge of their behavior as thin films, which allows studying the interface layer of the heterojunction Sn'O IND. 2' e 'Al IND. 2''O IND. 3'. Structural characterization of films was carried out by X-ray diffraction (XRD) technique and particularly on the alumina films, scanning electron microscopy (SEM) and optical microscopy were done. For the optical characterization, wide spectra were obtained, with spectroscopy from ultraviolet to near infrared (UV-Vis-Nir). Either the films obtained in the alcoholic solution as well as via SGDC, where characterized as Sn'O IND. 2' of tetragonal structure of rutile type, and the films obtained through alcoholic process present electrical conductivity higher than the films obtained via SGDC. Results on aluminum thin films indicate that independent on the amount of deposited aluminum and thermal annealing atmosphere, the oxidation of aluminum to alumina ('Al IND. 2''O IND. 3) takes place, but the dominant alumina structure depends on the thermal annealing atmosphere. Besides, its utilization as insulating layer at the gate of a metal-oxide semicondutor device is achievable, because the source-drain current is significantly higher than the source-gate current.
Mestre
Maciel, Júnior Jorge Luiz Barbosa [UNESP]. "Investigação de propriedades de filmes finos de Sn'O IND. 2' e 'Al IND. 2''O IND. 3' para aplicação em dispositivos." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/88456.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A proposta deste trabalho é a investigação das propriedades elétricas e ópticas de filmes finos de dióxido de estanho (Sn'O IND. 2') obtidos via sol-gel e por solução alcoólica depositados via dip-coating, e, filmes de alumina ('Al IND. 2''O IND. 3') obtidos por deposição de filmes de alumínio (Al) via evaporação resistiva e tratamento térmico em diferentes ambientes, para promover a oxidação de Al. A investigação individual quanto às propriedades ópticas e elétricas desses materiais conhecer seu comportamento na forma de filmes, e estudar a região interfacial de Sn'O IND. 2' e 'Al IND. 2''O IND. 3'. As caracterizações estruturais dos filmes foram feitas por difração de raios-X (DRX), e, no caso dos filmes de alumina, utilizou-se também microscopia eletrônica de varredura (MEV) e microscopia óptica. Nas caracterizações ópticas foram utilizadas técnicas de espectroscopia na região do ultravioleta e no infravermelho próximo (UV-Vis-Nir). Tanto os filmes obtidos por meio alcoólico como obtidos via SGDC foram caracterizados como sendo de Sn'O IND. 2' de estrutura tetragonal do tipo rutilo, sendo que os filmes obtidos via processo alcoólico apresentaram condutividade elétrica maior do que os filmes obtidos via SGDC. Os resultados referentes aos filmes finos de alumínio indicam que independentemente da quantidade de camadas de alumínio depositadas e da atmosfera de tratamento térmico, tem-se a oxidação do alumínio à alumina ('Al IND. 2''O IND. 3'), sendo que a estrutura dominante depende da atmosfera de tratamento. A sua utilização como camada isolante no gate em dispositivo metal-óxido-semicondutor é viável, pois a corrente fonte-dreno apresenta valores significativamente maiores do que a corrente fonte-gate.
The main goal of this work is the investigation of properties of tin dioxide (Sn'O IND. 2') and alumina ('Al IND. 2''O IND. 3) thin films. The first one was obtained through the sol-gel process as well as alcoholic solution, via dip-coating. The alumina thin films were obtained by resistive evaporation of aluminum (Al) followed by thermal annealing in distinct atmospheres, to promote the Al oxidation. The individual investigation of optical and electrical properties of these materials aims the knowledge of their behavior as thin films, which allows studying the interface layer of the heterojunction Sn'O IND. 2' e 'Al IND. 2''O IND. 3'. Structural characterization of films was carried out by X-ray diffraction (XRD) technique and particularly on the alumina films, scanning electron microscopy (SEM) and optical microscopy were done. For the optical characterization, wide spectra were obtained, with spectroscopy from ultraviolet to near infrared (UV-Vis-Nir). Either the films obtained in the alcoholic solution as well as via SGDC, where characterized as Sn'O IND. 2' of tetragonal structure of rutile type, and the films obtained through alcoholic process present electrical conductivity higher than the films obtained via SGDC. Results on aluminum thin films indicate that independent on the amount of deposited aluminum and thermal annealing atmosphere, the oxidation of aluminum to alumina ('Al IND. 2''O IND. 3) takes place, but the dominant alumina structure depends on the thermal annealing atmosphere. Besides, its utilization as insulating layer at the gate of a metal-oxide semicondutor device is achievable, because the source-drain current is significantly higher than the source-gate current.
Hild, Florent. "Étude de la structure et des propriétés optiques de couches minces d’oxydes d’étain dopés avec des terres rares (Ce, Tb, Yb)." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0294/document.
Full textThis thesis concerns the structural characterization and the photoluminescence properties of tin oxide thin films doped with rare earths. The films are doped with cerium, terbium and ytterbium. The films were obtained by evaporation of SnO2 on silicon substrates. The as-deposited films were sub-stoichiometric and the films were then annealed in air at 600°C to reach rutile phase. The microstructural study reveals a substrate oxidation leading to a chemical reaction between tin oxide and silicon, and a complex microstructure. To limit the chemical interaction during annealing, silicon substrate coated with thermal silica were used. Undoped films show a broad luminescent band, which is discussed and linked with the microstructure. On the other hand, the structural study of doped films demonstrated the crystallization of a second phase of SnO2, which is orthorhombic. A STEM-EELS study allow to localize the rare earths ions in the films. Finally, the luminescence properties of the rare earths were study with respect to their concentration and the temperature of annealing. After annealing at 700°C, the Tb-doped films emit intensively in the green region, which might be of interest for the development of SnO2-based green light emitting diodes
Mustapha, Nazir Mohamad. "Reactive filtered arc evaporation." Thesis, Loughborough University, 1993. https://dspace.lboro.ac.uk/2134/26797.
Full textNarayanan, Shankar. "Gas assisted thin-film evaporation from confined spaces." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42780.
Full textAu, Daniel Tak Yin. "Evaporation cast thin film carbon nanotube strain gauges." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44860.
Full textHowell, Aaron W. "Evaporation and disintegration of heated thin liquid sheets." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53861.
Full textVaartstra, Geoffrey. "Comprehensive modeling of thin film evaporation in micropillar wicks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/128335.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 48-50).
In the Information Age, society has become accustomed to continuous, rapid advances in electronics technology. As the power density of these devices increases, heat dissipation threatens to become the limiting factor for growth in the electronics industry. In order to sustain rapid growth, the development of advanced thermal management strategies to efficiently dissipate heat from electronics is imperative. Porous wicks are of great interest in thermal management because they are capable of passively supplying liquid for thin film evaporation, a promising method to reliably dissipate heat in high-performance electronics. While the maximum heat flux that can be reliably sustained (the dryout heat flux) has been well-characterized for many wick configurations, key design information is missing as many previous models cannot determine the distribution of evaporator surface temperature nor temperature at the evaporator's interface with electronic components.
Temperature gradients are inherent to the passive capillary pumping mechanism since the shape of the liquid-vapor interface is a function of the local liquid pressure, causing spatial variation of permeability and the heat transfer coefficient (HTC). Accounting for the variation of the liquid-vapor interface to determine the resulting temperature gradients has been a significant modeling challenge. In this thesis, we present a comprehensive modeling framework for thin film evaporation in micropillar wicks that can predict dryout heat flux and local temperature simultaneously. Our numerical approach captures the effect of varying interfacial curvature across the micropillar evaporator to determine the spatial distributions of temperature and heat flux. Heat transfer and capillary flow in the wick are coupled in a computationally efficient manner via incorporation of parametric studies to relate geometry and interface shape to local permeability and HTC.
While most previous models only consider uniform thermal loads, our model offers the flexibility to consider arbitrary (non-uniform) thermal loads, making it suitable to guide the design of porous wick evaporators for cooling realistic electronic devices. We present case studies from our model that underscore its capability to guide design with respect to temperature and dryout heat flux. This model predicts notable variations of the HTC (-30%) across the micropillar wick, highlighting the significant effects of interfacial curvature that have not been considered previously. We demonstrate the model's capability to simulate non-uniform thermal loads and show that wick configuration with respect to the input thermal distribution has a significant effect on performance due to the distribution of the HTC and capillary pressure. Further, we are able to quantify the tradeoff associated with enhancing either dryout heat flux or the HTC by optimizing geometry.
We offer insights into optimization and further analyze the effects of micropillar geometry on the HTC. Finally, we integrate this model into a fast, compact thermal model (CTM) to make it suitable for thermal/electronics codesign of high-performance devices and demonstrate a thermal simulation of a realistic microprocessor using this CTM. We discuss further uses of our model and describe an experimental platform that could validate our predicted temperature distributions. Lastly, we propose a biporous, area-enhanced wick structure that could push thermal performance to new limits by overcoming the design challenge typically associated with porous wick evaporators.
by Geoffrey Vaartstra.
S.M.
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Pauken, Michael T. "An experimental investigation of the spreading, durability and maintainability of monolayer films for evaporation suppression from stationary watr pools." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/33624.
Full textSait, Hani. "Analytical and experimental study of thin film evaporation in heat pipes /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164540.
Full textJohnston, David A. "The use of metal evaporation in the design and manufacture of enzyme electrodes." Thesis, University of the West of Scotland, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323763.
Full textBack, Markus. "Investigation of the properties of thin films grown via sputtering and resistive thermal evaporation : an Ion Beam Analysis (IBA) study." Thesis, Uppsala universitet, Tillämpad kärnfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-257506.
Full textI det här projektet produceras tunnfilmer med olika metoder i en uppställning för tunnfilmsdeposition och karaktäriseras sedan för att bedöma om maskinen är kapabel att producera filmer av tillräckligt bra kvalitet för att kunna användas i forskningssyften inom jonfysikgruppen på avdelningen för tillämpad kärnfysik på Uppsala Universitet. Både koppar och silverfilmer produceras med magnetronsputtring. Kopparfilmer produceras också med resistiv förångning. Deposition sker på Si(001)-substrat. Filmerna analyseras med Rutherford Backscattering Spectrometry (RBS) och Time of Flight- Elastic Recoil Detection Analysis (ToF-ERDA). Resultaten visar att depositionshastigheten för maskinen är snabbare än det som angetts av företaget som producerar maskinen. Renheten hos filmerna, dvs. koncentrationen av föroreningar, finnes vara inom en acceptabel nivå för forskningstillämpningar med en genomsnittlig syrekontamination på och kolkontamination på för sputtrade kopparfilmer. Sputtrade silverfilmer finnes ha en syrekontamination på och en kolkontamination på . Förångade kopparfilmer finnes att ha en syrekontamination på och en kolkontamination på . Spår av guld () hittades enbart i sputtrade filmer. Spår av väte kunde också hittas i både sputtrade och förångade filmer. De förångade filmerna finnes ha lägre syrekontamination än de sputtrade filmerna, men tillverkningsprocessen som används i projektet vid tillverkning av förångade filmer är inte lämplig att använda i produktion av tunnfilmer med specifika tjocklekar då det saknas data för att kunna hitta en depositionshastighet. Totalt sett är uppställningen kapabel att producera filmer av adekvat kvalitet för att de ska kunna användas inom avdelningen för produktion av filmer för forskning.
Yeh, Jen-Yu. "Electron-beam biased reactive evaporation of silicon, silicon oxides, and silicon nitrides /." Online version of thesis, 1991. http://hdl.handle.net/1850/11106.
Full textJiao, Anjun. "Modeling of thin film evaporation heat transfer and experimental investigation of miniature heat pipes." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5613.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on June 8, 2009) Vita. Includes bibliographical references.
Gupta, Shikha S. B. Massachusetts Institute of Technology. "Fabrication of In₂(Se, Te)₃ chalcogenide thin films by thermal co-evaporation." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/114087.
Full textCataloged from PDF version of thesis. "May 2001."
Includes bibliographical references (pages 46-47).
In₂(Se, Te)₃ III-VI chalcogenides belong to a unique class of phase change materials that have interesting optical and electrical properties, making them suitable for a wide variety of applications, including absorbers for solar cells and storage materials in memory devices. A greater understanding of how different growth parameters influence the crystallinity and microstructure of such chalcogenide thin films can lead to an enhanced ability to manipulate the materials for desired optoelectrical characteristics. The purpose of the following thesis was threefold. The first was to fabricate homogeneous, single-phase thin films of In2(Se, Te)₃ using thermal co-evaporation of elemental In and (Se, Te) in a high vacuum vapor deposition chamber. The In₂(Se, Te)₃ samples prepared by this method were found to be single phase textured films. Since re-evaporation of (Se, Te) from the films has previously resulted in deviations from the stoichiometric In₂(Se, Te)₃ compound [1], the second element of this thesis involved the microstructural characterization of films deposited with an excess of (Se, Te). The results from XRD and AFM reveal that after annealing the films the excess material does not manifest itself in any observable manner. Preliminary results from RBS and EDS reveal that some of the excess material may actually be evaporating through the 50 Å A1₂O₃ capping layer deposited on the film's surface, though further analysis with Auger and XPS will be necessary to enhance the understanding of what happens to the excess material. The third element was to assess how temperature and duration of post deposition thermal treatment influenced the crystal structure and surface morphology of the films. The films were annealed at temperatures ranging from 473 to 673K for 5 minutes, 1 hour, and 4 hours. Results from XRD showed that vacuum annealing of the samples at temperatures above 623K for times above 1 hour consistently produced well-oriented thin films of high crystalline quality. Higher annealing temperature resulted in films with higher crystallinity, whereas annealing durations longer than 1 hour did not contribute significantly to the film phase or crystallinity. AFM measurements of surface morphology before and after annealing showed that the roughness of the films before annealing was on the order of a few angstroms, whereas large, distinct grains and surface inhomogeneites were present on the sample surface after annealing. Again, no observable change was reported for films with excess (Se, Te) indicating that the single-phase compound that formed was very stable.
by Shikha Gupta.
S.B.
Souche, Mireille, and Didier Long. "Ultra fast processes for solvent evaporation in thin polymer films below Tg." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-195014.
Full textSouche, Mireille, and Didier Long. "Ultra fast processes for solvent evaporation in thin polymer films below Tg." Diffusion fundamentals 3 (2005) 36, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14326.
Full textWolf, Michael Photovoltaics & Renewable Energy Engineering Faculty of Engineering UNSW. "Upgrading and commissioning of a high vacuum deposition system for the evaporation of silicon thin-film solar cells." Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2009. http://handle.unsw.edu.au/1959.4/43725.
Full textVemuri, Prasanna. "Synthesis of cubic boron nitride thin films on silicon substrate using electron beam evaporation." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc5542/.
Full textWee, Sang-Kwon. "Microscale observables for heat and mass transport in sub-micron scale evaporating thin film." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/312.
Full textSun, Wei. "EVAPORATION-INDUCED FORMATION OF WELL-ORDERED SURFACE PATTERNS ON POLYMER FILMS." UKnowledge, 2015. http://uknowledge.uky.edu/cme_etds/54.
Full textLu, Zhengmao. "Design and modeling of a high flux cooling device based on thin film evaporation from thin nanoporous membranes." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93824.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 44-46).
Heat dissipation is a limiting factor in the performance of integrated circuits, power electronics and laser diodes. State-of-the-art solutions typically use air-cooled heat sinks, which have limited performance owing to the use of air. One of the promising approaches to address these thermal management needs is liquid vapor phase-change. In this thesis, we present a study into the design and modeling of a cooling device based on thin film evaporation from a nanoporous membrane supported on microchannels. The concept utilizes the capillary pressure generated by the small pores to drive the liquid flow and largely reduces the viscous loss due to the thinness of the membrane. The interfacial transport has been re-investigated where we use the moment method to solve the Boltzmann Transport Equation. The pore-level transport has been modeled coupling liquid transport, vapor transport and the interfacial balance. The interfacial transport inside the pore also serves as a boundary condition for the device-level model. The heat transfer and pressure drop performance have been modeled and design guidelines are provided for the membrane-based cooling system. The optimized cooling device is able to dissipate 1 kW/cm² heat flux with a temperature rise less than 30 K from the vapor side. Future work will focus on more fundamental understanding of the mass and energy accommodation at the liquid vapor interface.
by Zhengmao Lu.
S.M.
Hus, Saban Mustafa. "Physical Properties Of Cdse Thin Films Produced By Thermal Evaporation And E-beam Techniques." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607608/index.pdf.
Full text#937
-cm)-1 and 1.6x10-6 and 5.7x10-7 (&
#937
-cm)-1for the thermally evaporated and e-beam evaporated samples respectively. After B implantation conductivity of these films increased 5 and 8 times respectively. Hall mobility measurements could be performed only on the thermally evaporated and B-implanted e-beam evaporated samples and found to be between 8.8 and 86.8 (cm2/V.s). The dominant conduction mechanism were determined to be thermionic emission above 250 K for all samples. Tunneling and v variable range hopping mechanisms have been observed between 150-240 K and 80- 140 K respectively. Photoconductivity &
#8211
illumination intensity plots indicated two recombination centers dominating at the low and high regions of studied temperature range of 80-400 K. Photoresponse measurements have corrected optical band gap measurements by giving peak value at 1.72 eV.
Tan, Qin [Verfasser]. "Influence of vacuum-assisted solvent evaporation on MAPbI3 layers and solar cells / Qin Tan." Berlin : Freie Universität Berlin, 2019. http://d-nb.info/1198862548/34.
Full textRIBEIRO, MONICA CRISTINA RICCIO. "THERMODYNAMIC MODELLING OF CDTE THIN FILM DEPOSITION BY ELEMENTAL CO-EVAPORATION, UNDER ISOTHERMAL TRANSPORT." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7072@1.
Full textO objetivo do presente trabalho é a deposição de filmes de telureto de cádmio a partir de duas fontes de materiais, Cd e Te, com base no uso de diagramas de potenciais termodinâmicos para avaliar as condições de deposição. Em especial, o método proposto permite avaliar a influência de contaminantes gasosos, tais como, oxigênio, sobre as fases condensadas. O método também pode ser aplicado para a deposição de outros compostos que sejam mais estáveis que os elementos que os compõem. O processamento utilizado na deposição utiliza uma técnica alternativa onde as temperaturas de fonte e de substrato são as mesmas.
The objective of the present work is deposition of Cadmiun Telurides films from two sources of materials, Cd and Te, on the basis of the use of diagrams of thermodynamic potentials to evaluate the deposition conditions. In special, the considered method allows to evaluate the influence of gaseous contaminantes, such as, oxygen, on the condensed phases. The method can be applied for the deposition of other compounds that are more stable than the constituent elements. The equipment used in the deposition uses an alternative technique where the temperatures of source and substrate are the same ones.
Steward, Ian. "Photoconductivity Spectroscopy of Deep Level Defects of ZnO Thin Films Grown by Thermal Evaporation." Miami University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=miami1283472110.
Full textSosnowski, Pawel. "Numerical investigation of evaporation and condensation of thin films in conjugated heat transfer systems." Doctoral thesis, Università degli studi di Trieste, 2013. http://hdl.handle.net/10077/8662.
Full textEvaporation and condensation of thin liquid films on solid surfaces are common elements of industrial processes. In many cases they have a significant impact on the physics of the studied case. At the same time, experimental studies can prove to be troublesome, mostly because of the amount of possible setups, complex geometries of interest, numerous materials being used and cost. For that reason it is reasonable to study this phenomena using numerical methods. Having the advantage in speed and cost of performance, computational studies become a valuable tool. For evaporation and condensation process, one has to deal with buoyancy driven fluid flows, conjugated heat transfer between gaseous and solid phases, film thickness modeling, vapor phase behavior, and phase transition of the thin fluid film into vapor phase. The strong conjunction and mutual interaction of mentioned effects is the main focus of presented work. The gas phase behavior is being calculated using incompressible Navier-Stokes equations under Boussinesq approximation. The solutions of the partial differential equations are obtained with numerical methods using Eulerian finite volume discretization (Kundu and Cohen [2002]). Time advancement is being treated with second order implicit discretization. For cases with high Reynolds number, large eddy simulation (LES) techniques are used. Due to the complexity of the geometries of interest a dynamic computation of the Smagorinsky constant is preferred, applying the lagrangian dynamic model proposed by Meneveau et al. [1996]. The liquid film present on the surface of the solids is modeled following Petronio[2010]. Since the film is thin, it is assumed that it can be represented only by its thickness. This also leads to assumption that the heat transfer through the film is instantaneous. The vapor is represented by concentration of this phase in the volume of gas. The concentration is transported by convection and diffusion. The phenomena of evaporation and condensation of the thin films are driven by the presence of concentration gradients next to the surfaces. Phase transition of vapor to fluid, or other way around, acts on the energy balance, id. est latent heat is released into the gas when condensation occurs or the solid is cooled during evaporation. The heat transport is modeled in both solid and fluid domains. The case is split into separate regions with different material properties. These regions are solved one by one in a serial way using numerical techniques consistent with domain decomposition methods described by Quarteroni and Valli [1999]. The energy transport among the regions is performed by applying a heat coupling boundary conditions. The main focus of this work is to provide a reliable model for simulation system with complex physics involving fluid motion, heat transport in multi region domains (fluid-solid), vapor transport, thin film evolution and evaporation and condensation effects on energy balance. Proposed model is validated on simple geometries and later applied to problem of evaporation in vertical channel flow. The reference to the channel case is work of Laaroussi et at. [2009]. Presented study aims in providing comprehensive insights into physical effects that appear when the solid wall is being directly modeled and when latent heat transformations are taken into account. The final test is performed on a vertical channel with forced turbulent flow, directly modeled solid walls and evaporation or condensation happening on the boundary. Having the model working within such complex frame allows for its future usage in elaborate industrial applications.
XXV Ciclo
1985
Karaagac, Hakan. "Electrical, Structural And Optical Properties Of Aggase2-xsx Thin Films Grown By Sintered Powder." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612362/index.pdf.
Full textGUERREIRO, SERGIO S. "Estudo e caracterizacao de filmes finos de nitreto de titanio obtidos por evaporacao a arco catodico de deposicao a vacuo." reponame:Repositório Institucional do IPEN, 1994. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10377.
Full textMade available in DSpace on 2014-10-09T14:05:53Z (GMT). No. of bitstreams: 1 05586.pdf: 7089535 bytes, checksum: 4459c81f8f267c76f9328265ae1fc952 (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Stewart, Brian K. "Development of a Thin-Film Evaporative Cooling System for a High Energy Thulium Holmium: Lutetium Lithium Flouride Solid-State Laser Oscillator Crystal." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/6973.
Full textGanapathy, Subramanian Santhana. "Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition." Texas A&M University, 2003. http://hdl.handle.net/1969.1/47.
Full textAdera, Solomon (Solomon E. ). "Thin-film evaporation from well-defined silicon micropillar wicks for high-heat-flux thermal management." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/110888.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 129-133).
The generation of concentrated heat loads in advanced microprocessors, power amplifiers, and concentrated photovoltaics present significant thermal management challenge for defense, space and commercial applications. Liquid to vapor phase-change strategies are promising due to the high latent heat of vaporization of the working fluid. In particular, capillary pumped thin-film evaporation from micropillar wicks has received significant attention owing to advances in micro/nano-fabrication and the potential to dissipate high heat fluxes by increasing the evaporative area. Yet, predictive tools to design various wicking structures are not available due to limited understanding of the thermal-fluidic transport. This thesis reports experimental characterization and modeling of capillary-limited thin-film evaporation from micropillar wicks. We fabricated test devices and experimentally characterized the thermal performance of well-defined silicon micropillar wicks. The experiments were designed to investigate the capillary-limited dryout heat flux by ensuring pure thin-film evaporation in the absence of nucleate boiling. The tests were performed in a temperature controlled saturated vapor environment to accurately control the operating conditions. We also developed a unified semi-analytical thermal-fluidic model that incorporates the capillary pressure, permeability, and thermal resistance to help explain the experimental results. We then extended this work to study capillary-limited thin-film evaporation for dissipating extreme heat fluxes. We experimentally dissipated =6 kW/cm2 from a 640x620 [mu]m2 footprint, the largest heat flux reported to date when compared to past thin-film evaporation studies with similar size hotspots. We also demonstrated the potential of our devices to cool concurrent hotspots as well as when moderate uniform background heat flux was superposed with a hotspot. Our thermal management strategy is self-regulating and provides on-demand cooling unlike existing thermal management solutions. To gain insight into the fundamental physics of fluidic and thermal transport within the micropillar wick and explain the ultra-high heat fluxes demonstrated in our experiments, we developed a semi-analytical thermal-fluidic model that can predict the capillary-limited dryout heat flux via thin-film evaporation. The model compares well with our experiments. The results of this investigation will assist to better understand the fluidic and thermal transport of thin liquid films in microstructured wicks during thin-film evaporation. These studies suggest that capillary-pumped thin-film evaporation is a promising thermal management strategy for the next generation of high performance electronics. The insights gained from this thesis can be used as guidelines to improve the design and optimize the heat transfer performance of wicking structures which are commonly used in phase-change based thermal management devices such as heat pipes, vapor chambers, and other closed-loop configurations.
by Solomon Adera.
Ph. D.
Candan, Idris. "Growth And Characterization Of Cuin1-x Gaxse2 (cigs) Thin Films For Solar Cell Structures." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611305/index.pdf.
Full textinto the electrical energy by the photovoltaic devices, is a promising way of meeting the energy needs of future. Thin film semiconductor materials show great promise for the production of efficient, low-cost solar cell devices. Recently advanced research on thin film photovoltaics in all aspects, has attracted intense attention. Thin film semiconductors for the photovoltaic applications are deposited in large areas by different methods. In this study, deposition and characterization of CuIn1-x GaxSe2 ( CIGS ) semiconductor thin films by thermal evaporation and e-beam evaporation methods were investigated. Material properties and deposition parameters of the thin films are aimed to be optimized for solar cell applications. Structural properties of the deposited CIGS thin films were examined through X-ray diffraction and Energy Dispersive X-ray Analysis. The temperature dependent electrical conductivity, Hall effect and photoconductivity of these samples have been measured between 100 and 400 K. For the optical characterization of CIGS thin films, the transmission measurements have been carried out in the wavelength region of 325-900 nm. The changes in the structural, electrical and optical properties of samples through post-depositional annealing effect were also analyzed.
Todorova, Desislava V. "Modelling of dynamical effects related to the wettability and capillarity of simple and complex liquids." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13740.
Full textYilmaz, Koray. "Investigation Of Inse Thin Film Based Devices." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605431/index.pdf.
Full text#61527
.cm)-1 at room temperature. Cd doping and post-depositional annealing effect on the samples were investigated and it was observed that annealing at 100 oC did not show any significant effect on the film properties, whereas the conductivity of the samples increased as the Cd content increases. Temperature dependent I-V and Hall effect measurements have shown that conductivity and carrier concentration increases with increasing absolute temperature while mobility is almost temperature independent in the studied temperature range of 100-430 K. The structural and electrical analysis on the as-grown CdS thin films have shown that the films were polycrystalline with n-type conductivity. Temperature dependent conductivity and Hall effect measurements have indicated that conductivity, mobility and carrier concentrations increases with increasing temperature. Transmission measurements on the as-grown InSe and CdS films revealed optical band gaps around 1.74 and 2.36 eV, respectively. Schottky diode structures in the form of TO/p-InSe/Metal were fabricated with a contact area of around 8x10-3 cm2 and characterized. The best rectifying devices obtained with Ag contacts while diodes with Au contacts have shown slight rectification. The ideality factor and barrier height of the best rectifying structure were determined to be 2.0 and 0.7 eV, respectively. Illuminated I-V measurements revealed open-circuit voltages around 300 mV with short circuit current 3.2x10-7 A. High series resistance effect was observed for the structure which was found to be around 588 &
#61527
. Validity of SCLC mechanism for Schottky structures was also investigated and it was found that the mechanism was related with the bulk of InSe itself. Heterostructures were obtained in the form of TO/n-CdS/p-InSe/Metal and the devices with Au and C contacts have shown the best photovoltaic response with open circuit voltage around 400 mV and short circuit current 4.9x10-8 A. The ideality factor of the cells was found to be around 2.5. High series resistance effect was also observed for the heterojunction devices and the fill factors were determined to be around 0.4 which explains low efficiencies observed for the devices.
Sedani, Salar Habibpur. "Fabrication And Doping Of Thin Crystalline Si Films Prepared By E-beam Evaporation On Glass Substrate." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615628/index.pdf.
Full textC. The crystallization occurred at lower temperatures in the case of MIC. For doping, P was evaporated from the effusion cell at a temperature between 600 °
C and 800 °
C. For B, the evaporation temperature was 1700 °
C and 1900 °
C. The thickness and the band gap of the Si films were determined by ellipsometry method and the results were compared for different evaporation temperatures. The effect of doping was monitored by the I-V and Hall Effect measurements. We have seen that the doping was accomplished in most of the cases. For the samples annealed at relatively high temperatures, the measured doping type was inconsistent with the expected results. This was attributed to the contamination from the glass substrate. To understand the origin of this contamination, we analyzed the chemical structure of the film and glass by X-ray Fluorescence (XRF) and seen that the glass is the main source of contamination. In order to prevent this contamination we have suggested covering the glass substrate with Si3N4 (Silicon Nitride) which act as a good diffusion barrier for impurities.
Lucy, Irine Banu. "Electrical and optical properties of Cu-GeOâ†2 thin solid films prepared by vacuum co-evaporation." Thesis, Brunel University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320860.
Full textHassan, Aseel Kadhim. "Studies in electronic conduction processes in organic semiconducting thin films of copper phthalocyanine prepared by evaporation." Thesis, Keele University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306847.
Full textDI, MARE Simone. "Tin sulphide solar cells by thermal evaporation." Doctoral thesis, 2017. http://hdl.handle.net/11562/961461.
Full textThe production of electricity by the combustion of fossil fuels or by the fission of radioactive materials leads to the pollution of Earth’s environment, impoverishes Earth of its resources and does not secure the future for generations to come. Although International Energy Agency (IEA) in its annual reports depicts an increase of electricity production from renewable energy sources, the increasing need for low cost clean energy pushes research towards new frontiers. In photovoltaics, year after year, we see research coming to fruition with the announcements of new world record efficiencies for many technologies: new emerging technologies, based on innovative concepts or materials, are added to the mature ones, such as those based on Si, CdTe o CuInxGa(1-x)Se2. Examples of these innovations are those based on semiconductor compounds totally constituted by non-toxic and Earth’s crust abundant chemical species (which could potentially be low cost materials), such as Cu2ZnSnS4 or SnS. In this doctoral dissertation, we will investigate some aspects of SnS (tin sulphide), in view of its application as absorber layer for thin film solar cells. Tin sulphide is characterized by excellent optoelectronic properties (direct band gap in the region of the maximum theoretical efficiency, excellent absorption coefficient, and shows intrinsically p-type conduction), which makes SnS a promising candidate for the photovoltaic of the future. In the first part of this thesis, we will discuss the issues related to the deposition apparatus, and the strategies applied to solve them. Afterwards, the SnS based solar device, which exhibited the best performance, will be described and discussed: our result is consistent with similar processes from international laboratories. Since the reproducibility of this result has been observed to be a complex task, we will study its origin. A possible correlation between the performance of our devices and the thermal history of the SnS raw material used to evaporate the absorber layer has been suggested. Then, since even the best performing device exhibited a poor performance, i.e. far from the theoretical limit for a material with the SnS energy band gap, we will study the effects of several post deposition treatments, designed to enhance optoelectronic characteristics by improving the crystalline quality of the absorber material. Similar post deposition treatments are fundamental in other technologies, as in the CdTe case. We will study two types of thermal treatment: those taking place in a controlled atmosphere and those in air, by adding different compounds (with and without chlorine) to promote the absorber layer recrystallization process. The results will be discussed case by case. Up to now, we focused on the improvement of the absorber layer to enhance the performance of our devices. In the last part of this thesis, we will investigate some alternatives for the other layers constituting the solar device: the front and back contact, and the n-type semiconductor material which completes the p-n junction.
GAUR, SHAILENDRA KUMAR. "HEAT & MASS TRANSFER ANALYSIS OF GOLD, TIN & INDIUM THIN LAYER DEPOSITION ON SURFACE." Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14778.
Full textTsai, Wei Tao, and 蔡維道. "The Study of Copper-Zinc-Tin-Sulfide Thin Film Prepared by Evaporation and Sulfurisation." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/17815306951236066473.
Full textHsieh, Ming-Hao, and 謝明浩. "Structural properties of copper-zinc-tin-sulfur (CZTS) thin film fabricated by co-evaporation method." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/93933273811371970805.
Full text逢甲大學
光電學系
101
In this study, the copper-zinc-tin-sulfuride (CZTS) thin-film was synthesized via co-evaporation and sequent sulfuration process. Copper, zinc and tin were used as the source for co-evaporation process. The sulfur powder was used for sulfuration process under high temperature 550 oC. The influence of sulfuration time (0.5 hr, 1 hr, 1.5 hr, 2 hr) on characteristic of CZTS thin-film was discussed. The morphology and compositional ratio of the as-fabricated CZTS thin-film was investigated used SEM and EDS, respectively. When the sulfuration time increases, the surface of CZTS thin-film is denser. In the XRD and Raman spectra of post-sulfurated sample, the purity CZTS crystalline phase was found. The band gap of the CZTS with sulfuration time 2 hr2 is around 1.2 eV in the photoluminescence spectra and the CZTS thin-film has the p-type semiconductor behavior in the Hall measurement.
ZAN, SHI-WEI, and 詹世偉. "Preparation and characterization of Indium-Tin-Oxide deposited by direct thermal evaporation of metal Indium and Tin." Thesis, 1986. http://ndltd.ncl.edu.tw/handle/21530797670498052337.
Full textChang, Chia-Hua, and 張家華. "Growth and Photovoltaic Applications of Indium Tin Oxide Nanostructures Using Electron Beam Evaporation." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/14752975434876605238.
Full text國立交通大學
光電工程學系
100
Indium-tin-oxide (ITO) has been a useful material as transparent conductive electrodes for the last two decades. Both solar cells and light-emitting-diodes benefit from the property of ITO to improve the conversion efficiency or light extraction, respectively. In this work, we developed a growth method to deposit ITO nanostructures, including the nano-columns, nanowhiskers, and nanorods. These nanostructures were applied for the GaAs-based, Si-based, and polymer-based solar cells, to reduce the surface reflectance or increase carrier collection. We further investigated the growth mechanism of ITO nanostructures which was dominated by the tin-induced self-catalytic vapor-liquid-solid (VLS) and the vapor-solid (VS) growth mechanism. The growth process could be divided into three steps: (1) nucleation, (2) column growth, and (3) side branch growth. We show evidence of the initial droplets formation to confirm the existence of the liquid phase. The core-shell structure had been observed in the TEM image of ITO nanorods, and hence the EDX analysis demonstrated higher concentration of tin in the shell than that in the core. The shell layer could absorb ITO vapor during the growth of ITO nanowhiskers. After investigation of the growth mechanism of ITO nanostructures, the applications had been discussed. First, we deposited the oriented ITO nano-columns on GaAs-based solar cell to provide broadband antireflection. Therefore, the conversion efficiency of the ITO nano-columns GaAs-based solar cell increased by 28% compared to a cell without any AR treatment. Next, we deposited the ITO nanowhiskers on the micro groove textured Si-based solar cell to combine the nano-and micro-textured antireflective coating. The compound antireflective structures increased light harvesting in the near-infrared. The conversion efficiency of the combined antireflective coated Si-based solar cell achieved 17.2%, compared to 16.1% of the conventional Si based solar. Finally, the ITO nanorods were prepared on ITO glass which functioned as three-dimensional (3D) nanoelectrode. The nano-electrode increased the hole collection efficiency for the organic solar cell. Compared to the organic solar cell with a flat electrode, the conversion efficiency and lifetime of the ITO nano-electrode organic solar cell increased by 10%, and 100%, respectively. We then conclude the growth and photovoltaic applications of the ITO nanostructures and provide future outlooks.
Chiu, Li-Yen, and 邱立言. "Structure and mechanical properties of AlSiN/TiN multilayer deposited by cathodic arc evaporation." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/47608317571405371385.
Full text明道大學
材料科學與工程學系碩士班
99
In this thesis, the bigger particle defect of AlSiN/TiN multilayer which was coated by using Cathode Arc Deposition (CAE) systems was studied. The rotation speed of the sample holder on process was changed when AlSiN/TiN multilayer was coated and the mechanical property and structure of multilayer ware measured. The advantage of CAE system is that it can use alloy target and it owns better uniformity, stronger adhesion and higher deposition rate. The advantage of multilayer films is not only that it combines the characteristics of each single film, also it significantly improve the hardness, adhesion loss. The mechanical properties of multilayer films are better than the one of single-layer. Multilayer film has more excellent performance; however, very few researches study the rotation speed on the coating process. Many evidences prove that the different rotation speed on the process can change adhesion wear, hardness of thin films, and indeed increase or decrease the thin film lifetime. In this study, the coating time was kept the same but the rotation speed and period number are changed. The change of mechanical structure with different period number was explored. The range of rotation speed is from 1 RPM to 16RPM. The mechanical properties such as surface hardness, adhesion and wear behavior are compared. The surfaces and cross sections of AlSiN / TiN multilayer are observed by using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Water Contact angle. The microstructures of thin films were analyzed by using X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). The adhesion was measured by using Rockwell Hardness Test and the Scratch Test. The hardness of films was measure by using Nanoindentation Test. The friction coefficient of film was measured by using the Wearing Test tests.
Lin, Che-Yu, and 林哲宇. "Synthesis of Tin Oxide Nanowires by Thermal Evaporation and Application of Field Emission." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/13539095624384016099.
Full text國立中正大學
化學工程研究所
99
This research was devoted to synthesize tin dioxide nanowires on the Si wafer by a thermal evaporation method and estimation of the field emission properties. The research was divided into two parts. The first part of the research was production. We used Au metal particles and silicon wafer as the catalyst and substrate , respectively , and use SnO powder as the evaporation source for the experiments. The result found that the diameter of SnO2 nanowires was changed by experiment parameters . SnO2 nanowires’ diameter were about 50~65 nm with the synthesis temperature of 1000℃. In addition , we found that the diameter decreased by increasing the amount of oxygen gas. The SnO2 nanowires were about 15~35 nm. In the second part of the research was the study of field emission properties. As-synthesized SnO2 nanowires was used as the cathod. The lowest turn-on field value was 1V/μm using 10~15nmSnO2 nanoemitters. We found that the turn-on field value was increased by increasing the diameter of SnO2 nanowires. The highest field enhancement factor value was 9650 usingt 15~20 nm SnO2 nanoemitters , The field enhancement factor value was decreased by increasing the diameter of SnO2 nanowires.
Huang, Meng-Shu, and 黃孟書. "Fabrication and characterization of Indium Tin Oxide transparent conductive films by Electron-Beam Evaporation." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/yv5b2a.
Full text國立虎尾科技大學
光電與材料科技研究所
95
Abstract ITO is the most popular material for transparent electrical conduction film of commercial applications. There are several applications based on its excellent properties such as good conductivity, high transmittance rate for visible light, high absorbability for ultraviolet region and good chemical stability. This thesis studies the e-beam vaporized ITO thin film on glass substrate. The optical and electrical properties were studies with several process parameters such as the flow rate of oxygen, growth temperature, e-beam accelerated voltage. Systematic studies for the ITO related process parameters in the e-beam technology were well done in this thesis. With well controlled ITO film with process parameters optimized in the thesis, sheet resistance as low as 9.8(Ω/□) and high transparency as 95% with wavelength 470nm can both be achieved.
Jie, Chen Zheng, and 陳政傑. "A study of indium tin-oxide transparent conductive oxide films by using electron-beam evaporation." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/60540112983326686828.
Full text明新科技大學
化學工程與材料科技系碩士班
101
Transparent conductive electrodes with high transmittance and low resistance to optoelectronic device have gradually been widely used,such as touch panel、solar call、liquid crystal displays、with the rapid expansion of these product markets、the growth transparent conductive electrode rapidly increase in demand.Wherein the Indium tin oxide (Indium Tin Oxide; ITO) plays the important role of the conductive electrodes in a plane display. ITO film having a low resistance, and have a high transmittance in the visible range, the method of the preparation of indium tin oxide, mainly by sputtering method and electron beam deposition method, wherein the electron beam deposition method does not cause the surface of the elementinjury, and therefore subject to widespread attention. In this study, using an electron beam deposition method a growing Indium tin oxide thin film on the sodaline glass. Study their structural, electrical and optical properties of the thin film micro different deposition thickness, substrate temperature, spot oxygen flow and subsequent heat process.Using X-ray diffraction analyzer crystalline; Scanning electron microscope to observe the surface morphology of the sample; UV / VIS / NIR spectrometer transmittance ; sheet resistance of the four-point probe studies; Hall effectThe measurement to obtain the carrier concentration and the mobility of the thin film. The interpretation of the results, indium tin oxide film at a substrate temperature of 200 oC growth ITO film 100 nm thin film growth leads to 8 sccm O2 annealing at 300 ℃ in the 550nm transmittance of 98%, you can get a better quality factor of 0.055Ω-1, the experimental results using an electron beam vapor deposition by appropriate annealing the transparent conductive film of low resistance and high transmittance can be obtained.
謝明穎. "Study on the Synthesis, Optical and Electrical Properties of Tin-Doped Indium Oxide Nanowires by Thermal Evaporation Method." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/59130193560766787511.
Full textGabriel, Brian M. Wolfe Douglas E. "Synthesis-structure-property-performance relationships of tin, CrN, and nanolayer (Ti,Cr)N coatings deposited by cathodic arc evaporation for hard particle erosion resistance." 2009. http://etda.libraries.psu.edu/theses/approved/PSUonlyIndex/ETD-3477/index.html.
Full text